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Abstract

In this study we deal with the two-dimensional non-guillotine cutting problem of how
to cut a set of larger rectangular objects to a set of smaller rectangular items in exactly a
demanded number of pieces. We are concerned with the special case of the problem in which
the non-used material of the cutting patterns (objects leftovers) may be used in the future,
for example if it is large enough to fulfill future item demands. Therefore, the problem is
seen as a two-dimensional non-guillotine cutting/packing problem with usable leftovers, also
known in the literature as a two-dimensional residual bin-packing problem. We use multilevel
mathematical programming models to represent the problem appropriately, which basically
consists of cutting the ordered items using a set of objects of minimum cost, among all possi-
ble solutions of minimum cost, choosing one that maximizes the value of the usable leftovers,
and, among them, selecting one that minimizes the number of usable leftovers. Because
of special characteristics of these multilevel models, they can be reformulated as one-level
mixed integer programming (MIP) models. Illustrative numerical examples are presented
and analysed.

Key words: Two-dimensional cutting with usable leftovers, MIP models, non-guillotine
cutting and packing, multilevel mathematical programming, residual bin-packing problem.

1 Introduction

Cutting problems are closely related to packing problems and basically consist of determining
the “best” way of cutting large stock objects to produce ordered small items so that one or more
objectives are optimized. For surveys on cutting and packing problems and their industrial
applications, readers may consult [20] and the references therein. In this study, we deal with the
two-dimensional non-guillotine cutting problem of how to cut a set of larger rectangular objects
to a set of smaller rectangular items in exactly demanded number of pieces. The cutting/packing
is referred to as two-dimensional since it involves two relevant dimensions, namely the widths
and heights of the objects and items. The term non-guillotine refers to the fact that cuts are not
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restricted to be guillotine cuts as imposed by some cutting machines or packing environments
(an orthogonal guillotine cut on a rectangle is a cut from one edge of the rectangle to the opposite
edge, parallel to the remaining edge). A feasible two-dimensional cutting/packing pattern for
an object is one in which items are entirely placed within the object, they do not overlap each
other and each item has one edge parallel to one edge of the object (i.e. an orthogonal pattern).
We assume that the assortment of ordered items can be strongly heterogeneous, i.e. the set of
items can be characterized by the fact that only very few items are of identical size.

We are particularly concerned with the special case of the problem in which the non-used
material of the cutting patterns (object remainders or leftovers) may be used in the future, if
they are large enough to fulfill future item demands. In other words, we consider that the trim
loss of a cutting pattern does not necessarily represent a waste of material. If this trim loss is of a
reasonable size, it can be stocked and used again as input (then called a residual piece or a retail
or a leftover) in subsequent cutting processes. Otherwise, if the trim loss is considered too small
to be used in the future, it represents material waste and is discarded as scrap. Therefore, the
problem is seen as a two-dimensional non-guillotine cutting problem with usable leftovers. Note
that the assortment of stock objects of this problem is considered heterogeneous as different
leftovers of previous cutting processes are put back into stock. According to the typology
in [26], this cutting problem can be characterized as a “residual bin-packing problem” because
of the possibility of creating new residual pieces and the assumption of strongly heterogeneous
assortment of small items. Otherwise, if the assortment of items were weakly heterogeneous,
the problem would be considered as a “residual cutting-stock problem”. We observe that the
simple objective of minimizing the cost or trim loss of the objects cut may not be appropriate
for this problem.

The use of object remainders in cutting and packing problems was apparently first discussed
in [8]. However, studies dealing with this subject began mainly after the work in [13]. One-
dimensional cutting/packing problems that allow the provision of residual pieces have been
studied by different authors (see pioneers’ work [22, 23] and some recent work such as [10, 11, 17]
and the references therein). Examples of applications of one-dimensional cutting problems with
usable leftovers were reported in, e.g. the textile industry [16], the agricultural light aircraft
manufacturing [1], and the wood-processing industry [19]. To the best of our knowledge, all
studies reported in the literature focus on one-dimensional residual bin-packing problems. We are
not aware of other studies dealing with residual bin-packing problems involving two dimensions.

Besides the inherent complexity of two-dimensional residual bin-packing problems, we are
also motivated by its practical relevance in different industrial settings, such as in the cutting of
steel and glass stock plates into required sizes, the cutting of wood sheets and textile materials to
make ordered pieces, the cutting of cardboards into boxes, among others. In this study we inves-
tigate multilevel mathematical programming models to represent appropriately two-dimensional
non-guillotine cutting problems with usable object remainders. These models basically consist
of cutting the ordered items using a set of objects of minimum cost, among all possible solutions
of minimum cost, choosing one that maximizes the value of the usable leftovers, and, among
them, selecting one that minimizes the number of usable leftovers. Because of special charac-
teristics of these multilevel models, we show that they can be reformulated as one-level mixed
integer programming (MIP) models. Numerical experiments are performed to highlight that the
models represent the problem appropriately and to illustrate their performances when solving
some problem instances using a commercial software.

The paper is organized as follows. In Section 2, we present a MIP model for the two-
dimensional non-guillotine cutting problem without considering leftovers. In Section 3, we de-
scribe multilevel approaches for the non-guillotine cutting problem with guillotine leftovers, i.e.
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the object residual pieces are restricted to be generated by two guillotine cuts and to be located
to the right and top of the objects. First, a bilevel model is presented to minimize costs of the
objects used and maximize the value of the generated (guillotine) leftovers. Then, the model is
reformulated as a MIP model and extended to also consider the minimization of the number of
valuable leftovers. In Section 4, we modify the models in order to consider the non-guillotine
cutting problem with arbitrary valuable leftovers, i.e. the constraints of guillotine leftovers are
relaxed and usable object remainders are free to be located anywhere within the objects. In
Section 5, we report and analyse the numerical results obtained by solving the models using
an optimization software. Finally, in Section 6, we present concluding remarks and discuss
perspectives for future research.

2 Modeling the non-guillotine cutting problem

Some studies in the literature have proposed MIP formulations for two-dimensional non-guillotine
cutting problems without considering leftovers. For example, [3] and [18] presented 0-1 linear
programming formulations for the problem with a single object using 0-1 decision variables for
the positions of the items cut from the object. In [25] and [9], the problem was formulated as
0-1 linear models using left, right, top, and bottom decision variables for the relative positions
of each pair of pieces cut from the object (with multiple choice disjunctive constraints). Other
related 0-1 linear formulations appear in [7, 14, 5, 6, 2] and 0-1 non-linear formulations were
presented in [24, 21, 4].

Given a set of n demanded items with width wi and height hi, i = 1, . . . , n, and a set of m
available objects with width Wj , height Hj , and cost cj per unit of area, j = 1, . . . ,m, the non-
guillotine cutting problem (without residual pieces) is defined as the one of cutting the demanded
items from the available objects minimizing the cost of the used objects. No rotations are allowed
and there are no other constraints related to the positioning of the items within the objects,
or the types of cuts of the objects (e.g. guillotine or staged cuts). We assume that the cuts of
the objects are infinitely thin (otherwise we consider that the saw thickness was added to the
dimensions of the objects and items). We also assume that the items’ and objects’ dimensions
are positive integers and the objects’ costs per unit of area are non-negative integers. These are
not very restrictive hypotheses to deal with real instances since, due to the finite precision of
the cutting and measuring tools and due to the finite precision used in any currency considered
to define the objects’ costs, they can be easily satisfied by a change of scale.

Let us define uj ∈ {0, 1}, j = 1, . . . ,m, to indicate whether object j is used to cut at least a
demanded item (uj = 1) or not (uj = 0), and vij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m, to assign
item i to object j (in this case vij = 1) or not (vij = 0). It is clear that these variables must
satisfy the relation

uj ≥ vij , i = 1, . . . , n, j = 1, . . . ,m, (1)

and that variables vij must satisfy the constraint

m
∑

j=1

vij = 1, i = 1, . . . , n, (2)

to ensure that each item is assigned to exactly one object. Moreover, at this point, it is also
possible to define the objective function to be minimized as

m
∑

j=1

cjWjHjuj . (3)
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If we now define (xi, yi), i = 1, . . . , n, as the Cartesian center’s coordinates of item i, we can
easily write constraints to model that item i must be contained within object j whenever vij = 1.
If, without loss of generality, we arbitrarily assume that the left-bottom corner of the objects is
located at the origin of the two-dimensional plane, these constraints can be written as

xi − wi/2 ≥ 0, i = 1, . . . , n,
yi − hi/2 ≥ 0, i = 1, . . . , n,

xi + wi/2 ≤ Wj + (Ŵ −Wj)(1− vij), i = 1, . . . , n, j = 1, . . . ,m,

yi + hi/2 ≤ Hj + (Ĥ −Hj)(1− vij), i = 1, . . . , n, j = 1, . . . ,m,

(4)

where Ŵ = maxj′=1,...,m{Wj′} and Ĥ = maxj′=1,...,m{Hj′}. Note that the set of constraints (4)
represents the big-M MIP reformulation of

vij = 1 =⇒ (xi, yi) ∈ [wi/2,Wj − wi/2]× [hi/2, Hj − hi/2], i = 1, . . . , n, j = 1, . . . ,m.

To avoid the overlapping between items i and i′ that are being assigned to object j, constraints
can be written as

vij = vi′j = 1 =⇒ (|xi − xi′ | ≥ (wi + wi′)/2 or |yi − yi′ | ≥ (hi + hi′)/2,
i = 1, . . . , n, i′ = i+ 1, . . . , n, j = 1, . . . ,m.

Re-writing “|a| ≥ b” as “a ≥ b or a ≤ −b” and defining auxiliary variables πii′ , τii′ ∈ {0, 1}, i =
1, . . . , n, i′ = i + 1, . . . , n, to consider the big-M MIP reformulation of the resulting four-terms
disjunctions, we obtain the following MIP constraints

xi′ + wi′/2 ≤ xi − wi/2 + Ŵ (1− vij) + Ŵ (1− vi′j) + Ŵπii′ + Ŵ τii′ ,

xi′ − wi′/2 ≥ xi + wi/2− Ŵ (1− vij)− Ŵ (1− vi′j)− Ŵπii′ − Ŵ (1− τii′),

yi′ + hi′/2 ≤ yi − hi/2 + Ĥ(1− vij) + Ĥ(1− vi′j) + Ĥ(1− πii′) + Ĥτii′ ,

yi′ − hi′/2 ≥ yi + hi/2− Ĥ(1− vij)− Ĥ(1− vi′j)− Ĥ(1− πii′)− Ĥ(1− τii′),
i = 1, . . . , n, i′ = i+ 1, . . . , n, j = 1, . . . ,m.

The first two “M -terms” of each constraint serve to neutralize the effect of the constraint
whenever vij = 0 or vi′j = 0, meaning that item i or item i′ was not assigned to object j and,
therefore, there is no overlapping to be avoided between items i and i′ on object j. The other
two “M -terms” of each constraint, together with the four possible combinations of values of the
binary variables πii′ and τii′ , serve to model the disjunction that ensures that, whenever items i′

and i are assigned to the same object, item i′ must be “to the left”, “to the right”, “below” or
“above” item i (with the minimum distance to avoid the overlapping).

As it was pointed out in [2], it is possible to see that if two items i and i′ are identical
(wi = wi′ and hi = hi′) then interchanging their roles generates a symmetric solution. To avoid
this situation that may slow down a branch-and-bound algorithm, constraints that avoid the
overlapping of a pair of identical items can be modeled in a different way. Roughly speaking, if
items i and i′ with i′ > i are identical, instead of requesting item i′ to be “to the left, to the
right, below or above” item i, it is enough to request item i′ to be “to the right” or “above”
item i. Assume, without loss of generality, that identical items are numbered consecutively, that
there are p different types of items, and that there are nq items of the q-th type, q = 1, . . . , p,

with
∑p

q=1 nq = n. Denoting oq =
∑q−1

q′=1 nq′ , we have that items of the q-th type are numbered
from oq + 1 to oq + nq. Therefore, non-overlapping constraints can be re-written as

xi′ − wi′/2 ≥ xi + wi/2− Ŵ (1− vij)− Ŵ (1− vi′j)− Ŵπii′ ,

yi′ − hi′/2 ≥ yi + hi/2− Ĥ(1− vij)− Ĥ(1− vi′j)− Ĥ(1− πii′),
q = 1, . . . , p, i = oq + 1, . . . , oq + nq, i

′ = i+ 1, . . . , oq + nq, j = 1, . . . ,m,

(5)
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and

xi′ + wi′/2 ≤ xi − wi/2 + Ŵ (1− vij) + Ŵ (1− vi′j) + Ŵπii′ + Ŵ τii′ ,

xi′ − wi′/2 ≥ xi + wi/2− Ŵ (1− vij)− Ŵ (1− vi′j)− Ŵπii′ − Ŵ (1− τii′),

yi′ + hi′/2 ≤ yi − hi/2 + Ĥ(1− vij) + Ĥ(1− vi′j) + Ĥ(1− πii′) + Ĥτii′ ,

yi′ − hi′/2 ≥ yi + hi/2− Ĥ(1− vij)− Ĥ(1− vi′j)− Ĥ(1− πii′)− Ĥ(1− τii′),
q = 1, . . . , p, i = oq + 1, . . . , oq + nq, i

′ = oq + nq + 1, . . . , n, j = 1, . . . ,m.

(6)

The set of constraints (5) models the non-overlapping between identical items using a halved
number of constraints and binary variables, with the extra feature of avoiding the mentioned
type of symmetric solutions. The set of constraints (6) models the non-overlapping between
pairs of non-identical items as previously introduced.

Summing up, the MIP model of the tackled non-guillotine cutting problem is given by
minimizing (3) on uj ∈ {0, 1} (j = 1, . . . ,m), vij ∈ {0, 1} (i = 1, . . . , n, j = 1, . . . ,m),
xi, yi ∈ R (i = 1, . . . , n), πii′ ∈ {0, 1} (i = 1, . . . , n, i′ = i + 1, . . . , n), and τii′ ∈ {0, 1}
(q = 1, . . . , p, i = oq + 1, . . . , oq + nq, i

′ = oq + nq + 1, . . . , n) subject to (1,2,4,5,6). There are
m+mn+n(n−1)−

∑p
q=1 nq(nq−1)/2 binary variables (which coincide with m+mn+n(n−1)

in the case in which there are no identical items), 2n continuous variables, and 3mn + 3n +
2m
∑p

q=1 nq(nq − 1)/2 + 4m[n(n− 1)/2−
∑p

q=1 nq(nq − 1)/2] constraints (which coincide with
3mn+ 3n+ n(n− 1) in the case in which there are no identical items).

As an illustrative example, consider an instance with m = 2 identical objects with W1 =
W2 = 12, H1 = H2 = 20, and c1 = c2 = 1, and n = 4 different items with w1 = w2 = w3 =
w4 = 5 and h1 = 16, h2 = 14, h3 = 12, and h4 = 8. Figures 1(a–b) show two different feasible
solutions with cost 480. Since the sum of the areas of the four demanded items is larger than
the area of any of the objects, at least two objects are needed to cut the items and, therefore,
the depicted feasible solutions are optimal. However, there is a feature that differentiates these
two optimal solutions which is not being captured by the introduced model. Assuming that
the result of a first horizontal guillotine cut could be saved as a residual piece to be used in
the future, the optimal solution in Figure 1(b) has a leftover in one of the objects that can
potentially be used to cut two items such as item 4 (with w4 = 5 and h4 = 8), while the optimal
solution in Figure 1(a) does not present this property. In the following section, the notion of
guillotine leftovers is introduced and added to model (1–6) in order to obtain an optimal solution
to (1–6) that maximizes the value of the leftovers.

3 A multilevel approach for considering guillotine leftovers

In this section, the notion of guillotine leftovers is introduced. We arbitrarily assume that
two guillotine leftovers can be produced from each used object (unused objects cannot produce
residual pieces) and that each leftover is generated by a single guillotine cut, i.e. before cutting
the items from an object there are two possibilities: (a) a vertical guillotine cut is made in
such a way that the right-hand side of the object is a leftover and then a horizontal guillotine
cut is made in such a way that the top part of the object is a leftover; or (b) the horizontal
guillotine cut is made first and the vertical guillotine cut is made in second place. Figures 2(a–b)
illustrate both situations, named Case A and Case B, respectively, from now on. In any case, a
list containing d ≥ 1 catalogued items with widths w̄1, . . . , w̄d and heights h̄1, . . . , h̄d is assumed
to be given and a leftover is considered a valuable leftover if it can contain at least one item from
the catalogue. Note that the list of catalogued items may coincide with the demanded items (in
this case we have d = n and w̄i = wi and h̄i = hi for i = 1, . . . , n) or it can consist of a single
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Figure 1: Graphs (a) and (b) represent two alternative optimal solutions of a simple instance
with two objects and four items. If leftovers were being considered, optimal solution (b) would
have the potential of producing a leftover from which two extra items like item 4 (with w4 = 5
and h4 = 8) might be cut in the future.

model item representing the minimum width w̄1 and height h̄1 that a leftover must have to be
considered valuable. It is worth noting that the definition of leftover in the present paragraph
exclude any other portion of the objects that will be considered as a trim-loss or waste of the
cutting process.
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Figure 2: Graphs (a) and (b) represent the two possible ways of generating guillotine valuable
leftovers by a vertical and a horizontal guillotine cut. (a) represents the case in which the vertical
guillotine cut is made in the first place, while (b) represents the case in which the horizontal
guillotine cut is made in the first place. It is important to notice that, although the sum of the
leftovers’ areas coincide in both cases, the sum of their values may differ.

Let tj be the variable height of the top leftover of object j and let rj be the variable width of
the right-hand side leftover for j = 1, . . . ,m. Recall that, since unused objects cannot generate
leftovers, we must have tj = rj = 0 whenever uj = 0. In Case A, the top leftover has a variable
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width and height given by Wj − rj and tj , respectively, while the right-hand side leftover has
a variable width given by rj and a fixed height given by Hj . In Case B, the top leftover has
a fixed width given by Wj and a variable height given by tj , while the right-hand side leftover
has variable width and height given by rj and Hj − tj , respectively. We define the value of a
leftover as the value per unit of area of the object times the area of the leftover, whenever the
leftover can hold at least one item from the catalogue, and zero otherwise. Therefore, given
tj , rj , j = 1, . . . ,m, the sum of the leftovers’ values is given by

m
∑

j=1

cj max{αt
j + αr

j , β
t
j + βr

j }, (7)

where

αt
j =

{

(Wj − rj)tj ,
0,

if there exits 1 ≤ s ≤ d such that Wj − rj ≥ w̄s and tj ≥ h̄s,
otherwise,

αr
j =

{

rjHj ,
0,

if there exits 1 ≤ s ≤ d such that rj ≥ w̄s and Hj ≥ h̄s,
otherwise,

βt
j =

{

Wjtj ,
0,

if there exits 1 ≤ s ≤ d such that Wj ≥ w̄s and tj ≥ h̄s,
otherwise,

βr
j =

{

rj(Hj − tj),
0,

if there exits 1 ≤ s ≤ d such that rj ≥ w̄s and Hj − tj ≥ h̄s,
otherwise,

(8)
for j = 1, . . . ,m.

To combine the guillotine leftovers with the non-guillotine cutting problem of the previous
section, it is enough to replace the set of constraints (4), that ensures that each items must be
placed within the object to which it was assigned, by a modified set of constraints that ensures
that each item must be placed within the “Cutting area” of the object to which it was assigned
(see Figure 2). The set of modified constraints is given by

xi − wi/2 ≥ 0, i = 1, . . . , n,
yi − hi/2 ≥ 0, i = 1, . . . , n,

xi + wi/2 ≤ Wj − rj + (Ŵ −Wj)(1− vij), i = 1, . . . , n, j = 1, . . . ,m,

yi + hi/2 ≤ Hj − tj + (Ĥ −Hj)(1− vij), i = 1, . . . , n, j = 1, . . . ,m,

(9)

plus
0 ≤ tj ≤ Hjuj and 0 ≤ rj ≤ Wjuj , j = 1, . . . ,m. (10)

Constraint (10) reflects the fact that the height of the top leftovers and the width of the right-
hand side leftovers are non-negative quantities and that they must be zero when the object is
not being used.

Now, we are able to present our first model of the non-guillotine cutting problem with
guillotine leftovers. It consists of cutting the demanded items using a set of objects of minimum
cost and, among all possible solutions of minimum cost, to choose one that maximizes the value
of the guillotine leftovers. Variables of the problem are: αt

j , α
r
j , β

t
j , β

r
j , tj , rj ∈ R (j = 1, . . . ,m)

to characterize the leftovers; uj ∈ {0, 1} (j = 1, . . . ,m) to determine the used objects; vij ∈
{0, 1} (i = 1, . . . , n, j = 1, . . . ,m) to assign items to objects; and πii′ ∈ {0, 1} (i = 1, . . . , n,
i′ = i + 1, . . . , n) and τii′ ∈ {0, 1} (t = 1, . . . , p, i = oq + 1, . . . , oq + nq, i

′ = i + 1, . . . , nq)
to model the items’ overlapping. The model is given by maximizing (7) on αt

j , αr
j , βt

j , βr
j ,

tj , rj , uj , vij , πii′ , and τii′ subject to (8) and subject to tj , rj , uj , vij , πii′ , and τii′ being a
solution of minimizing (3) subject to (1,2,9,10,5,6). This kind of optimization problem in which
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there is a constraint that requires that a subset of the variables must be a solution of another
optimization problem is known as the bilevel programming problem [12]. The problem that
appears as a constraint is called the lower level problem while the main problem is termed the
upper level problem.

Figures 1(a–b) represent two different feasible solutions of an instance of the bilevel pro-
gramming problem defined above (they are feasible because they are both optimal solutions to
the non-guillotine cutting problem of minimizing the cost of the used objects). If we define the
list of catalogued items as the list of demanded items, we have that the objects of the feasible
solution on Figure 1(a) has no valuable leftovers, while the right-hand side object in Figure 1(b)
has a valuable leftover. In fact, it may not be hard to realise that the solution in Figure 1(b) is
an optimal solution.

The remainder of the present section focuses on a MIP reformulation of the problem. More-
over, a new feature is added to the model: among the solutions with minimum cost, we would
like to find one with maximum value of the leftovers, and, among them, one with the smallest
possible number of leftovers (in order to include a concern related to stocking the leftovers for
future usage into the model). This addition would give rise to a three-level optimization prob-
lem, but its inclusion is delayed to be presented after the MIP reformulation of the problem to
simplify the presentation. Therefore, in the rest of the present section, we first reformulate the
presented bilevel model into a MIP bilevel problem. Then, a one-level MIP reformulation of the
bilevel MIP problem is given and, finally, the one-level MIP model is modified to include the
concern with the number of leftovers.

3.1 Reformulation as a MIP bilevel problem

To construct a MIP bilevel model of the problem described above we need to eliminate: (i) the
term max{αt

j + αr
j , β

t
j + βr

j } that appears in the objective function (7), (ii) the “if statements”
that appear in the definition of αt

j , α
r
j , β

t
j , and βr

j in (8), and (iii) the nonlinear term rjtj that
appears in the definition of αt

j and βr
j in (8).

By defining continuous variables γj and binary variables ηj ∈ {0, 1}, for j = 1, . . . ,m, and
adding constraints

γj ≤ αt
j + αr

j +WjHjηj , j = 1, . . . ,m,

γj ≤ βt
j + βr

j +WjHj(1− ηj), j = 1, . . . ,m,
(11)

the objective function (7) can be re-written as the linear function

m
∑

j=1

cjγj . (12)

It is easy to see that the binary variable ηj forces γj to be less than or equal to αt
j + αr

j or less
than or equal to βt

j +βr
j , and that the quantity WjHj in (12) plays the role of the large positive

constant of the big-M MIP formulation of this disjunction. Since the objective function (12) is
maximized, we have that γj = max{αt

j +αr
j , β

t
j + βr

j } for j = 1, . . . ,m, at a solution, as desired.
Considering the assumption that the item and object dimensions are positive integers, it

can be proved that rj and tj , for j = 1, . . . ,m, assume integer values at a solution (see, for
example, [5, 6] and the references therein). To model the product rjtj using MIP constraints,
we consider the well-known trick of replacing one of the variables by its binary representation
reducing the product to a sum of products of integer and binary variables, for which a simple
MIP representation exists (see, for example, [15], [27]). Let θℓj ∈ {0, 1}, j = 1, . . . ,m, ℓ =

8



1, . . . , ⌊log2(Hj)⌋ + 1. Note that Hj is an upper limit for the possible values that tj may
assume and that ⌊log2(Hj)⌋ + 1 is an upper limit on the number of bits needed for the binary
representation of tj , j = 1, . . . ,m. Therefore, we have that each tj can be expressed as

tj =

⌊log
2
(Hj)⌋+1
∑

ℓ=1

2ℓ−1θℓj , j = 1, . . . ,m, (13)

and, hence, each product rjtj can be expressed as

rjtj =

⌊log
2
(Hj)⌋+1
∑

ℓ=1

2ℓ−1rjθℓj , j = 1, . . . ,m.

Therefore, the product of two integer variables was reduced to the sum of products of an integer
and a binary variable. The value of each of these products is equal to zero when the binary
variable is equal to zero and coincides with the value of the integer variable when the binary
variable is equal to one. This situation can be modeled using MIP constraints considering
continuous variables ωℓj , j = 1, . . . ,m, ℓ = 1, . . . , ⌊log2(Hj)⌋+ 1, such that

ωℓj =

{

rj , whenever θℓj = 1,
0, otherwise,

which can be achieved by adding the MIP constraints

0 ≤ ωℓj ≤ rj and rj − (1− θℓj)Wj ≤ ωℓj ≤ θℓjWj , j = 1, . . . ,m, ℓ = 1, . . . , ⌊log2(Hj)⌋+1. (14)

Then, we have that variable tj may be dismissed, substituting every appearance of it by its
binary representation (13) and every appearance of the product rjtj (in the definitions (8) of αt

j

and βr
j ) may be replaced by its MIP reformulation given by

rjtj =

⌊log
2
(Hj)⌋+1
∑

ℓ=1

2ℓ−1ωℓj , j = 1, . . . ,m. (15)

To keep the number of auxiliary binary variables θℓj (and continuous variables ωℓj) to its mini-
mum, for each j, tj should be replaced by its binary expansion whenever Hj ≤ Wj and rj should
be replaced by its binary expansion, otherwise. We will ignore this possibility to simplify the
presentation.

To model (8) with MIP constraints, let ᾱt
sj , ᾱ

r
sj , β̄

t
sj , β̄

r
sj ∈ {0, 1}, s = 1, . . . , d, j = 1, . . . ,m,

and consider the constraints:

w̄s ≤ Wj − rj + Ŵ (1− ᾱt
sj) and h̄s ≤ tj + Ĥ(1− ᾱt

sj),

w̄s ≤ rj + Ŵ (1− ᾱr
sj) and h̄s ≤ Hj + Ĥ(1− ᾱr

sj),

w̄s ≤ Wj + Ŵ (1− β̄t
sj) and h̄s ≤ tj + Ĥ(1− β̄t

sj),

w̄s ≤ rj + Ŵ (1− β̄r
sj) and h̄s ≤ Hj − tj + Ĥ(1− β̄r

sj),

s = 1, . . . , d, j = 1, . . . ,m,

(16)

and
0 ≤ αt

j ≤ Wjtj − rjtj and αt
j ≤ WjHj

∑d
s=1 ᾱ

t
sj ,

0 ≤ αr
j ≤ rjHj and αr

j ≤ WjHj

∑d
s=1 ᾱ

r
sj ,

0 ≤ βt
j ≤ Wjtj and βt

j ≤ WjHj

∑d
s=1 β̄

t
sj ,

0 ≤ βr
j ≤ rjHj − rjtj and βr

j ≤ WjHj

∑d
s=1 β̄

r
sj ,

j = 1, . . . ,m.

(17)

9



Note that, once again, in (16–17), tj should be replaced by its binary representation (13) and rjtj
should be replaced by its MIP reformulation (15) (their appearances are being preserved with
the only purpose of simplifying the presentation). The set of constraints (16) ensures that
variables ᾱt

sj , ᾱ
r
sj , β̄

t
sj , and β̄r

sj assume value zero when the s-th catalogued item cannot be
held within the top leftover of Case A, the right-hand side leftover of Case A, the top leftover
of Case B, and the right-hand side leftover of Case B, respectively. When the item can be
held within the leftover, the variable is free to assume value zero or one. Therefore, the set of
constraints (17) ensures that variables αt

j , α
r
j , β

t
j , and βr

j must be null, when the corresponding
leftover cannot hold any item in the catalogue. Otherwise, they are free to assume any value
between zero and the area of the corresponding leftover. Since these variables limit the growth
of γj in (11), the objective function (12) is a non-negative linear combination of the γj , and the
upper level problem is a maximization problem, at a solution, variables αt

j , α
r
j , β

t
j , and βr

j will
achieve their maximum possible values that will coincide with the area of the valuable leftovers.

Now, we are ready to present the MIP bilevel model of our problem. Variables of the problem
are: vij ∈ {0, 1} (i = 1, . . . , n, j = 1, . . . ,m) to assign items to object; uj ∈ {0, 1} (j = 1, . . . ,m)
to distinguish used and unused objects; (xi, yi) ∈ R

2 (i = 1, . . . , n) to define the position of
the items within the objects; πii′ ∈ {0, 1} (i = 1, . . . , n, i′ = i + 1, . . . , n) and τii′ ∈ {0, 1}
(q = 1, . . . , p, i = oq + 1, . . . , oq + nq, i

′ = oq + nq + 1, . . . , n) to model the overlapping between
the items; rj ∈ R (j = 1, . . . ,m) to define the unused right-hand side margin of the cutting area of
the objects that limit the maximum width of the leftovers; θℓj ∈ {0, 1} (ℓ = 1, . . . , ⌊log2(Hj)⌋+1,
j = 1, . . . ,m) to consider the binary representation of the top margin of the cutting area of the
objects that limit the maximum height of the leftovers; ωℓj ∈ R (ℓ = 1, . . . , ⌊log2(Hj)⌋ + 1,
j = 1, . . . ,m) to model the product that appears when computing the area of the leftovers;
γj ∈ R and ηj ∈ {0, 1} (j = 1, . . . ,m) to select between Case A or B of the guillotine cuts
that generate the leftovers; αt

j , α
r
j , β

t
j , and βr

j ∈ R (j = 1, . . . ,m) to represent the area of the

valuable leftovers; and ᾱt
sj , ᾱ

r
sj , β̄

t
sj , and β̄r

sj ∈ {0, 1} (s = 1, . . . , d, j = 1, . . . ,m) to represent
whether an item from the catalogue can be placed within a leftover. The problem consists of
maximizing (12) on vij , uj , xi, yi, πii′ , τii′ , rj , θℓj , ωℓj , γj , ηj , α

t
j , α

r
j , β

t
j , β

r
j , ᾱ

t
sj , ᾱ

r
sj , β̄

t
sj , and

β̄r
sj subject to (11,14,16,17) and subject to vij , uj , xi, yi, πii′ , τii′ , rj and θℓj being a solution of

minimizing (3) subject to (1,2,9,10,5,6).

3.2 Reformulating as a MIP problem and adding the minimization of the

number of valuable leftovers

The reformulation of the MIP bilevel problem introduced in the previous subsection as a MIP
problem is based on the fact that the objective functions (12) and (3) of the lower and the
upper level, respectively, assume integer values only and have trivial lower and upper bounds.
Therefore, the objective function of the upper level problem can be used, with the proper
scaling, as a tie break between all possible optimal solutions of the lower level problem. This
reformulation is possible for the presented bilevel problem because, by nature, it is a simple and
particular bilevel programming problem in which the solutions of the lower level problem do not
depend on the values of the variables of the upper level problem.

It is easy to see that the objective function (12) assumes integer values that are greater than
or equal to zero and strictly smaller than

∑m
j=1 cjWjHj . Therefore, the combination of the

objective functions (3) and (12) given by




m
∑

j=1

cjWjHj









m
∑

j=1

cjWjHjuj



−
m
∑

j=1

cjγj , (18)
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plays the desired role. Note that the term related to the objective function (3) appears multiplied
by a strict upper limit of the objective function (12). It implies that each unit in the value of the
term related to the objective function (3) is more important than the whole value of the term
related to objective function (12). Hence, the term related to objective function (12) takes part
in the play-off between the solutions of minimum cost, choosing one with the maximum value
of usable leftovers. Therefore, the MIP reformulation being sought is given by minimizing (18)
on vij , uj , xi, yi, πii′ , τii′ , rj , θℓj , ωℓj , γj , ηj , α

t
j , α

r
j , β

t
j , β

r
j , ᾱ

t
sj , ᾱ

r
sj , β̄

t
sj , and β̄r

sj subject
to (11,14,16,17,1,2,9,10,5,6). (Constraints related to some of the variables being binary are
omitted and are the same as in the previous subsection.)

The total number of valuable leftovers is always less than or equal to twice the number
of objects, therefore, strictly smaller than 2m + 1. The idea for considering the number of
leftovers simply consists of adding binary variables to indicate whether a leftover is valuable
or not, summing them up in order to count the number of leftovers, and then using it as a
tie break to choose a solution with the smallest number of leftovers. Naturally, we are talking
about determining the solutions with a minimum cost of the objects and, among them, selecting
one with the maximum value of the valuable leftovers and, among them, choosing one with the
minimum number of valuable leftovers.

To count the number of leftovers, let ξtj , ξrj ∈ {0, 1}, j = 1, . . . ,m, be auxiliary binary
variables corresponding to the top and the right-hand side leftovers of object j, respectively.
Recall that ηj = 0 means that leftovers of Case A are being considered on object j and that,
in case the top and right-hand side leftovers are valuable, their areas are given by αt

j and αr
j ,

respectively. Analogously, ηj = 1 means that Case B is considered in object j and, in case the
top and right-hand side leftovers are valuable, their areas are given by βt

j and βr
j , respectively.

Moreover, note that, due to the integrality of tj (given by its binary representation) and rj ,
areas of valuable leftovers are strictly positive integer values. Consider the following constraints

αt
j ≤ WjHjξ

t
j +WjHjηj , and βt

j ≤ WjHjξ
t
j +WjHj(1− ηj), j = 1, . . . ,m,

αr
j ≤ WjHjξ

r
j +WjHjηj , and βr

j ≤ WjHjξ
r
j +WjHj(1− ηj), j = 1, . . . ,m.

(19)

If Case A is chosen (ηj = 0) then ξtj = 1 whenever αt
j > 0, while if Case B is chosen (ηj = 1)

then ξtj > 0 whenever βt
j > 0. It means that ξtj is forced to be 1 whenever the top leftover is

valuable, and it can assume values 0 or 1, otherwise. The same reasoning is also true for ξrj
which is related to the right-hand side leftover. Hence

∑m
j=1(ξ

t
j + ξrj ) is free to vary from the

number of valuable leftovers to 2m, which is strictly smaller than 2m + 1. Therefore, by the
same reasoning applied to the development of the objective function (18), the optimal solutions
to minimizing

(2m+ 1)









m
∑

j=1

cjWjHj









m
∑

j=1

cjWjHjuj



−
m
∑

j=1

cjγj



+
m
∑

j=1

(ξtj + ξrj ), (20)

are also optimal solutions to minimizing (18), and, in case of multiple optimal solutions of
minimizing (18), (20) is such that the smaller its value, the smaller the number of leftovers.

We now summarize the MIP model introduced in the present section for the non-guillotine
cutting problem with guillotined leftovers. It consists of satisfying the items’ demand with
minimum objects’ cost and, among the solutions with minimum cost, it chooses one with the
maximum value of the valuable leftovers and, among them, it chooses one with the smallest
possible number of valuable leftovers. Input data of an instance is given by: the number of
items n; the widths wi and heights hi (i = 1, . . . , n) of the items (it is assumed that identical

11



items are numbered consecutively, so that there are p ≤ n types of items, nq items of each type

q = 1, . . . , p,
∑p

q=1 nq = n, and oq =
∑q−1

q′=1 nq′ (q = 1, . . . , p), i.e. items of the q-th type are

numbered from oq+1 to oq+nq); a catalogue consisting of d items with widths w̄s and heights h̄s
(s = 1, . . . , d); the number of objects m; the widths Wj and heights Hj (j = 1, . . . ,m) of the
objects; and the costs cj (j = 1, . . . ,m) per unit of area of the objects. All dimensions are
assumed to be positive integers and costs are assumed to be non-negative integers.

Variables of the model are: vij ∈ {0, 1} (i = 1, . . . , n, j = 1, . . . ,m) to assign items to objects;
uj ∈ {0, 1} (j = 1, . . . ,m) to distinguish used and unused objects; (xi, yi) ∈ R

2 (i = 1, . . . , n) to
define the position of the items within the objects; πii′ ∈ {0, 1} (i = 1, . . . , n, i′ = i + 1, . . . , n)
and τii′ ∈ {0, 1} (q = 1, . . . , p, i = oq + 1, . . . , oq + nq, i

′ = i + 1, . . . , oq + nq) to model the
overlapping between the items; rj ∈ R (j = 1, . . . ,m) to define the unused right-hand side
margin of the cutting area of the objects; θℓj ∈ {0, 1} (ℓ = 1, . . . , ⌊log2(Hj)⌋ + 1, j = 1, . . . ,m)
to construct the binary expansion of the unused top margin of the cutting area of the objects;
ωℓj ∈ R (ℓ = 1, . . . , ⌊log2(Hj)⌋ + 1, j = 1, . . . ,m) to model the product of the top and the
right-hand side margins of the cutting area of the objects; ηj ∈ {0, 1} (j = 1, . . . ,m) to select
between Case A or B of the guillotine cuts that generate the leftovers; γj ∈ R (j = 1, . . . ,m) to
represent the sum of the areas of the top and the right-hand side valuable leftovers of an object;
αt
j , α

r
j , β

t
j , and βr

j ∈ R (j = 1, . . . ,m) to represent the area of the possible valuable leftovers of

an object; ᾱt
sj , ᾱ

r
sj , β̄

t
sj , and β̄r

sj ∈ {0, 1} (s = 1, . . . , d, j = 1, . . . ,m) to represent whether an
item from the catalogue can be placed within a leftover; and ξtj and ξrj ∈ {0, 1} (j = 1, . . . ,m)
to count the number of valuable leftovers.

The model consists of minimizing (20) subject to (11,14,16,17,1,2,9,10,5,6,19), noting that
appearances of tj must be replaced by its binary expansion (13) and appearances of the prod-
uct rjtj must be replaced by its MIP formulation (15). For future references (in the numerical
experiments), this model is simply named MGL that stands for two-dimensional non-guillotine
cutting with guillotine leftovers. There are nm + 4m + dm + n(n − 1) −

∑p
q=1 nq(nq − 1)/2 +

∑m
j=1(⌊log2(Hj)⌋ + 1) binary variables, 2n + 6m +

∑m
j=1(⌊log2(Hj)⌋ + 1) continuous variables,

and 22m+8dm+3nm+3n+3
∑m

j=1(⌊log2(Hj)⌋+1)+2m
∑p

q=1 nq(nq−1)/2+4m[n(n−1)/2−
∑p

q=1 nq(nq − 1)/2] constraints. Recall that, every time the quantity
∑m

j=1(⌊log2(Hj)⌋+ 1) ap-
pears in the number of variables or constraints, it would be replaced by

∑m
j=1(⌊log2(min{Wj , Hj})⌋+

1).
We conclude this section with an illustrative example of the different models introduced in

the present section. Consider a simple instance with n = 2 identical items with w1 = w2 = 5
and h1 = h2 = 8 and a single object (m = 1) with W1 = 10 and H1 = 24. (The object’s cost
per unit of area is not relevant in this case.) Assume that the catalogue coincides with the
demanded items without repetitions, i.e. d = 1, w̄1 = w1, and h̄1 = h1. Figures 3(a–c) represent
three different optimal solutions to the cutting problem, without considering leftovers, since all
of them use only one object. The solutions of Figures 3(b–c) are also optimal when guillotine
leftovers are added to the model, since both have leftovers with an identical value (identical sum
of areas) and the whole area of the object is used with items or valuable leftovers. However,
only the solution of Figure 3(c) is optimal when the concern regarding the number of leftovers
is added to the model, since the leftovers are concentrated into a single piece.

4 An extension for considering arbitrary valuable leftovers

In the previous section, valuable leftovers were arbitrary restricted to be generated by two
guillotine cuts and were located on the right and the top of the objects. In the present section,
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Figure 3: Three different optimal solutions to the cutting problem without considering leftovers.
Solutions represented by (b) and (c) are also optimal when the value of the leftovers is added to
the model, while only (c) is optimal when the number of leftovers is also taken into consideration.

those constraints are relaxed and valuable leftovers are free to be situated anywhere within the
object. The arbitrary constraint of being two rectangular-shaped pieces per object remains. Of
course, this new definition of leftovers includes the previous one as a particular case. In this
section, we present the necessary modifications to the model presented in the previous section,
in order to incorporate this more general definition of leftovers.

Let ẇ1
j and ḣ1j ∈ R be the width and height of leftover 1 of object j and let ẇ2

j and ḣ2j ∈ R

be the width and height of leftover 2 of object j, for j = 1, . . . ,m. Constraints

0 ≤ ẇk
j ≤ Wjuj and 0 ≤ ḣkj ≤ Hjuj , k = 1, 2, j = 1, . . . ,m, (21)

ensure that the dimensions of the leftovers must be within the limits of the corresponding object
and must be null whenever the object is not being used. As before, we consider variables α̇1

j

and α̇2
j ∈ R to represent the area of the valuable leftovers, i.e.

α̇k
j =

{

ẇk
j ḣkj , if there exits 1 ≤ s ≤ d such that ẇk

j ≥ w̄s and ḣkj ≥ h̄s,

0, otherwise,
k = 1, 2, j = 1, . . . ,m.

(22)

To model (22) with MIP constraints, consider variables θ̇1ℓj , θ̇
2
ℓj ∈ {0, 1}, ℓ = 1, . . . , ⌊log2(Hj)⌋+1,

j = 1, . . . ,m, for the binary representation of ḣ1j and ḣ2j , respectively, and ω̇1
ℓj , ω̇

2
ℓj ∈ R, with

the same indices range, to represent the product between ẇ1
j and the binary representation of

ḣ1j , and the product between ẇ2
j and the binary representation of ḣ2j , respectively. Therefore,

the binary representations of ḣ1j and ḣ2j are given by

ḣkj =

⌊log2(Hj)⌋+1
∑

ℓ=1

2ℓ−1θ̇kℓj k = 1, 2, j = 1, . . . ,m. (23)
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As in the previous section, ḣ1j and ḣ2j are not variables of the model. They are kept in the
formulation to simplify the presentation, but any appearance of them should be replaced by the
corresponding binary representation given by (23). The following constraints

0 ≤ ω̇k
ℓj ≤ ẇk

j and ẇk
j−(1−θ̇kℓj)Wj ≤ ω̇k

ℓj ≤ θ̇kℓjWj , k = 1, 2, j = 1, . . . ,m, ℓ = 1, . . . , ⌊log2(Hj)⌋+1,
(24)

allow us to write the MIP representation of the products ẇ1
j ḣ1j and ẇ2

j ḣ2j as

ẇk
j ḣkj =

⌊log
2
(Hj)⌋+1
∑

ℓ=1

2ℓ−1ω̇k
ℓj k = 1, 2, j = 1, . . . ,m. (25)

Once again, the products ẇ1
j ḣ1j and ẇ2

j ḣ2j are preserved in the model to simplify the presenta-
tion, but any appearance of them should be replaced by the corresponding MIP representation
in (25).

Consider variables ˙̄α
1
sj , ˙̄α

2
sj ∈ {0, 1}, s = 1, . . . , d, j = 1, . . . ,m, to represent whether the s-th

catalogued item can be held by leftovers 1 and 2 of object j, respectively. The MIP constraints
to achieve this goal are given by

w̄s ≤ ẇk
j + Ŵ (1− ˙̄α

k
sj) and h̄s ≤ ḣkj + Ĥ(1− ˙̄α

k
sj), k = 1, 2, s = 1, . . . , d, j = 1, . . . ,m, (26)

and, using those variables, the following constraints ensure that α̇1
j and α̇2

j represent the area of
the valuable leftovers 1 and 2 of object j, respectively,

0 ≤ α̇k
j ≤ ẇk

j ḣ
k
j and α̇k

j ≤ WjHj

d
∑

s=1

˙̄α
k
sj , j = 1, . . . ,m. (27)

To avoid symmetric solutions related to interchanging the roles of leftovers 1 and 2 of any
object, the overlapping between the leftovers themselves is modeled requiring leftover 2 to be
to the right or above leftover 1, with the necessary distance to avoid the overlapping. Defining
variables (ẋkj , ẏ

k
j ) to represent the center’s coordinates of the leftover k of object j, k = 1, 2,

j = 1, . . . ,m, and variables ṗj ∈ {0, 1}, j = 1, . . . ,m, the non-overlapping constraints are given
by

ẋ2j − ẇ2
j/2 ≥ ẋ1j + ẇ1

j/2− Ŵ ṗj and ẏ2j − ḣ2j/2 ≥ ẏ1j + ḣ1j/2− Ĥ(1− ṗj), j = 1, . . . ,m, (28)

while the constraints

ẇk
j /2 ≤ ẋkj ≤ Wj − ẇk

j /2 and ḣkj /2 ≤ ẏkj ≤ Hj − ḣkj /2, k = 1, 2, j = 1, . . . ,m, (29)

ensure that each leftover must be located within its corresponding object. The non-overlapping
between the leftovers and the items requires variables ṗkij , q̇kij ∈ {0, 1}, k = 1, 2, i = 1, . . . , n,
j = 1, . . . ,m, and is given by

ẋkj + ẇk
j /2 ≤ xi − wi/2 + Ŵ (1− vij) + Ŵ ṗkij + Ŵ q̇kij ,

ẋkj − ẇk
j /2 ≥ xi + wi/2− Ŵ (1− vij)− Ŵ ṗkij − Ŵ (1− q̇kij),

ẏkj + ḣkj /2 ≤ yi − hi/2 + Ĥ(1− vij) + Ĥ(1− ṗkij) + Ĥq̇kij ,

ẏkj − ḣkj /2 ≥ yi + hi/2− Ĥ(1− vij)− Ĥ(1− ṗkij)− Ĥ(1− q̇kij),

k = 1, 2, i = 1, . . . , n, j = 1, . . . ,m.

(30)
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Defining variables ξ̇1j , ξ̇
2
j ∈ {0, 1}, j = 1, . . . ,m, to count the number of valuable leftovers,

and including the constraints

α̇k
j ≤ WjHj ξ̇

k
j , k = 1, 2, j = 1, . . . ,m, (31)

we are able to define the objective function of the model as

(2m+ 1)









m
∑

j=1

cjWjHj









m
∑

j=1

cjWjHjuj



−
m
∑

j=1

cj(α̇
1
j + α̇2

j )



+
m
∑

j=1

(ξ̇1j + ξ̇2j ). (32)

Therefore, the model is given by minimizing (32) on uj ∈ {0, 1} (j = 1, . . . ,m), vij ∈ {0, 1}
(i = 1, . . . , n, j = 1, . . . ,m), xi, yi ∈ R (i = 1, . . . , n), πii′ ∈ {0, 1} (i = 1, . . . , n, i′ = i+1, . . . , n),
τii′ ∈ {0, 1} (q = 1, . . . , p, i = oq, . . . , oq + nq, i′ = i + 1, . . . , oq + nq), ẇk

j ∈ R (k = 1, 2,

j = 1, . . . ,m), θ̇kℓj ∈ {0, 1}, ω̇k
ℓj ∈ R (k = 1, 2, j = 1, . . . ,m, ℓ = 1, . . . , ⌊log2(Hj)⌋ + 1),

α̇k
j ∈ R (k = 1, 2, j = 1, . . . ,m), ˙̄α

k
sj (k = 1, 2, j = 1, . . . ,m, s = 1, . . . , d), ẋkj , ẏ

k
j ∈ R, and

ξ̇kj ∈ {0, 1} (k = 1, 2, j = 1, . . . ,m) subject to (1,2,4,5,6,21,24,26,27,28,29,30,31). For future

references (in the numerical experiments), this model is simply named MNGL that stands for
two-dimensional non-guillotine cutting with non-guillotine leftovers. We finish this section with
an illustrative simple example that highlights the advantages of defining arbitrary leftovers,
instead of guillotine leftovers as before. Consider an instance with n = 5 items (of p = 3
different types), w1 = w2 = 15, h1 = h2 = 5, w3 = w4 = 5, h3 = h4 = 15, w5 = 5 and h5 = 10,
and a single object (m = 1) with W1 = H1 = 20. Once again, since there is only one object, its
value per unit of area is not relevant. Assume that the items’ catalogue used to define valuable
leftovers coincides with the list of demanded items without repetitions (i.e. d = p = 3, w̄1 = w1,
h̄1 = h1, w̄2 = w3, h̄2 = h3, w̄3 = w5, and h̄3 = h5). Figures 4(a–b) illustrate two different
optimal solutions to the non-guillotine cutting problem with guillotine leftovers. In both cases
the value of the leftovers is zero. However, when arbitrary leftovers are considered, Figure 4(b)
shows an optimal solution with a non-null valuable leftover. Clearly, since the total area of
the object is occupied by items or the leftover, it is an optimal solution, while the solution of
Figure 4(a) with no valuable leftovers is not.

5 Illustrative numerical examples

In this section, we illustrate the introduced MIP models MGL and MNGL with numerical ex-
periments. Ten arbitrary small instances were considered to illustrate both models as described
in Table 1. In all instances, we considered cj = 1 for all j and assumed that the catalogue of
items that defines the leftovers corresponds to the list of demanded items. There is no need to
include duplicated items in this catalogue, as there is also no need to include an item that is at
least as wide and at least as high as another item in the catalogue. Items in the catalogue are
the underlined items in Table 1. Recall that m is the number of objects, and n, p, and d are
the number of items, the number of types of items, and the number of items in the catalogue,
respectively. Inequality n ≥ p always holds by definition and inequality p ≥ d holds by the way
the catalogue was generated in our instances test set.

MIP models MGL and MNGL were implemented in C/C++ using the ILOG Concert Tech-
nology 2.9 and compiled with g++ from gcc version 4.6.1 (GNU compiler collection). Numerical
experiments were conducted using a machine with two 2.67GHz Intel Xeon CPU X5650 pro-
cessors, 8GB of RAM memory, and running GNU/Linux operating system (Ubuntu 12.04 LTS,
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Figure 4: Two different optimal solutions, with no leftovers, to the non-guillotine cutting problem
with guillotine leftovers. Only (b) represents also an optimal solution to the non-guillotine
cutting problem with arbitrary leftovers. Moreover, when arbitrary leftovers are considered, the
solution in (b) presents a non-null leftover.

Instance
Objects Items

m Wj ×Hj n p d wi × hi

1 2 22× 17, 14× 30 5 2 2 3(2× 11), 2(5× 5)
2 2 17× 29, 24× 10 2 1 1 2(4× 10)
3 2 18× 19, 26× 22 3 1 1 3(5× 4)
4 3 24× 12, 15× 18, 17× 13 7 3 3 4(3× 3), 4× 2, 2(7× 1)
5 2 20× 10, 29× 12 5 2 1 4(7× 1), 11× 1
6 2 22× 17, 14× 30 7 3 2 2(11× 11), 3(2× 11), 2(5× 5)
7 5 27× 23, 2(19× 17), 2(19× 19) 9 2 1 5(9× 6), 4(5× 3)
8 2 19× 17, 16× 11 9 2 1 5(3× 2), 4(3× 1)
9 2 18× 20, 13× 10 10 2 1 4(3× 4), 6(1× 1)

10 2 22× 14, 18× 22 10 2 2 7(4× 5), 3(5× 2)

Table 1: Description of the problem instances. Dimensions are given in the format width ×
height. Notation a(b× c) means that there are a objects or items with dimension b× c. When a
is omitted it means that there is a single copy of the object or item.

kernel 3.2.0-33). Instances were solved using IBM ILOG CPLEX 12.1.0. By default, a solution
is reported as optimal by the solver when

absolute gap = best feasible solution− best lower bound ≤ εabs

or

relative gap =
| best feasible solution− best lower bound |

1e−10 + | best feasible solution |
≤ εrel,

with εabs = 10−6 and εrel = 10−4, where “best feasible solution” means the smallest value of the
objective function related to a feasible solution generated by the method. As mentioned before,
the objective functions (20) and (32) of the two models have the particular property of assuming
integer values at feasible points. Moreover, since they represent a weighted combination of the
used object costs, the leftover values and the number of leftovers, they assume relatively “large”
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integer values (between 105 and 107 for the considered instances). Hence, a stopping criterion
based on a relative error less than or equal to 10−4 may have the undesired effect of stopping the
method prematurely. On the other hand, due to the integrality of the objective function values,
an absolute error strictly smaller than 1 is enough to prove the optimality of the incumbent
solution. Therefore, in the numerical experiments we considered εabs = 1 − 10−6 and εrel = 0.
All other parameters of the solver were used with their default values unless otherwise stated.

Table 2 describes the solutions to the ten instances associated with model MGL. For each
solution, the table shows the cost of the used objects, the value of the leftovers, and the number
of leftovers. The objective function value shown in the table corresponds to the objective func-
tion (20) and it is the composition of the other three values. Figures in the table show that all
instances were solved to optimality in a few seconds. Figures 5–7 complete the description of
the solutions by presenting their graphical representation. It is easy to see that, in instances 2,
3, 8, and 9, the leftover value cannot be improved by considering non-guillotine leftovers, since
the whole area of the used objects is covered by items or valuable leftovers. In the remaining
six instances, there is space for potential improvement of the leftovers value when considering
model MNGL instead of model MGL. Instance 7 is the only one in which the solution contains
no usable leftovers.

Inst.
Optimal Solutions description Effort measurements
value Objects cost Leftovers value # leftovers MIP Iterations B&B Nodes CPU Time

1 1,483,517 374 253 2 1,788 459 0.14
2 878,801 240 160 1 55 3 0.04
3 1,561,532 342 282 2 187 29 0.04
4 1,203,988 221 161 2 17,467 4,021 0.64
5 623,912 220 178 2 1,213 355 0.12
6 3,150,029 794 431 4 1,246,789 380,775 26.14
7 7,898,319 361 0 0 83,286 7,319 1.84
8 438,452 176 134 2 333,791 77,952 12.35
9 318,122 130 76 2 68,051 13,318 6.22
10 1,083,557 308 121 2 654,578 163,069 16.98

Table 2: Numerical results for the ten instances of the two-dimensional non-guillotine cutting
problem with guillotine leftovers named MGL.

To solve instances 1–10 associated with model MNGL, in addition to εabs = 1 − 10−6 and
εrel = 0, a CPU time limit of 2 hours was also imposed. Table 3 describes the solutions to
the ten instances associated with model MNGL. Figures in the table show that instances 1–5
were rapidly solved to optimality and that instances 8–10 required, approximately, 0:10, 0:46,
and 1:43 hours of CPU time, respectively, to be solved to optimality. The stopping criterion
related to the absolute gap was not satisfied within the imposed CPU time limit in instances 6
and 7. In these two cases, the best lower bound and the value of the best feasible solution found
are reported in the table. Figures 8–10 complete the description of the solutions by presenting
their cutting patterns’ representation. As expected, the cost of the used objects in a solution
to an instance of model MNGL coincides with the cost of the used objects in a solution to the
corresponding instance of model MGL. Improvements in the value of the leftovers were obtained
for instances 4 and 10, that were increased in 2 and 15 units, respectively.

It can be shown that the best feasible solution to instance 7 of model MNGL reported in
Table 3 is an optimal solution. Optimality comes from the facts that: (a) the cost of the used
objects coincides with the one obtained for instance 7 of model MGL (see Table 2), and (b)
the problem of packing an additional 5× 3 items within the used object is infeasible (the solver
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was able to show it in only 3.44 seconds). Since this problem is infeasible, the problem with an
additional 9× 6 item (wider and higher than a 5× 3 item) is also infeasible. Hence, as a leftover
must hold at least an item, no valuable leftover can be placed and the solution with no leftovers
is optimal. On the other hand, the best feasible solution for instance 6 reported in Table 3 is
not optimal and a better solution is reported below.

Inst.
Optimal Solutions description Effort measurements
value Objects cost Leftovers value # leftovers MIP Iterations B&B Nodes CPU Time

1 1,483,517 374 253 2 97,191 27,695 6.67
2 878,801 240 160 1 484 83 0.05
3 1,561,532 342 282 2 6,962 2,051 0.49
4 1,203,974 221 163 2 690,507 225,627 21.15
5 623,912 220 178 2 79,450 22,927 8.60
6 3,150,028∗ 794 431 3 542,446,442 75,274,696 ≥7,200.00
7 7,898,319∗ 361 0 0 261,653,326 38,044,049 ≥7,200.00
8 438,452 176 134 2 27,208,549 7,474,203 584.47
9 318,122 130 76 2 104,199,205 34,030,526 2,746.57
10 1,083,482 308 136 2 74,299,550 20,064,829 6,154.87

Table 3: Numerical results for the ten instances of the two-dimensional non-guillotine cutting
problem with non-guillotine leftovers named MNGL. ∗Optimal values reported for instances 6
and 7 are in fact the best values found associated with a feasible solution reported by the solver.
The best lower bounds found are 3, 147, 296.22 and 7, 896, 471.47, respectively.

The analysis of the reported optimal solutions calls the attention to a redundant linear
constraint that may enhance the quality of the lower bounds obtained from the linear relaxation
of the introduced models and, therefore, improve the overall performance of an exact MIP solver
based on branch-and-bound when applied to both models. This constraint ensures that, given a
used object, “the sum of the areas of the usable leftovers of the object plus the sum of the areas
of the items assigned to the object cannot be greater than the area of the object”. For model
MGL, constraints are given by

γj +

(

n
∑

i=1

wihivij

)

≤ WjHjuj , j = 1, . . . ,m, (33)

while, for model MNGL, constraints are given by

α̇1
j + α̇2

j +

(

n
∑

i=1

wihivij

)

≤ WjHjuj , j = 1, . . . ,m. (34)

We called model MGL with the addition of the redundant constraint (33) as MGL
+ , and

model MNGL with the addition of the redundant constraint (34) as MNGL
+ . Since models MGL

+

and MNGL
+ are equivalent to models MGL and MNGL, respectively, only an improvement in the

efficiency of the considered solver would be expected. However, numerical experiments revealed
a similar performance of the solver when applied to models MGL

+ and MNGL
+ in comparison to its

performance when applied to models MGL and MNGL. The highlight was that a better solution
was found, within the time limit of 2 hours, for instance 6 of model MNGL

+ (or MNGL). The
new best lower bound is 3, 150, 001.05 (the former was 3, 147, 296.22) and the new best objective
function value associated with a feasible solution is 3, 150, 004 (the former was 3, 150, 028), which
corresponds to a cost of the used objects equal to 794, a value of leftovers equal to 436, and 4
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residual pieces. The solver achieved the maximum allowed CPU time performing 262, 355, 954
MIP iterations and generating 15, 561, 377 branch-and-bound nodes. Figure 11 illustrates this
new solution. Optimality of the solution cannot be easily proved. Optimality of the cost of
the used objects comes from the fact that it coincides with the one obtained for instance 6 of
model MGL that was solved to optimality (see Table 2). Optimality of the leftover value comes
from the fact that the whole area of the used objects is covered by items or valuable leftovers
(see Figure 11). These two facts imply that the reported solution is a feasible solution of the
implicitly introduced three-level MIP problem. However, there is no trivial way to determine
whether a solution with (the same cost of the used objects, the same leftovers value, and) a
smaller number of leftovers exists. The reported feasible solution has four leftovers. The value
of the reported lower bound prevents the existence of a solution with a single leftover, but
solutions with exactly two or three leftovers may exist.

6 Concluding remarks

In this study, we introduced MIP models for two-dimensional non-guillotine cutting/packing
problems with usable object remainders. We considered non-guillotine cutting patterns with
both guillotine and non-guillotine types of leftovers. The MIP models are based on bilevel
and three-level mathematical formulations for the problems, but because of special character-
istics of these multilevel models, they can be reformulated as one-level MIP models. To the
best of our knowledge, there are no other studies in the literature dealing with non-guillotine
cutting/packing problems with usable leftovers involving two or more dimensions. Therefore,
the presented models state members of a class of residual bin-packing problems that were not
formally defined in the literature up to now. Numerical experiments illustrate the models and
their scope and limitations. The contribution of the presented approach is mainly in method-
ology. The scale of the test instances is much smaller than those of practical instances. It is
not wise to try the model in applications to obtain optimal solutions for practical bin packing
instances, at least in the near future. However, the formal definition of these variants of two-
dimensional cutting problems with residual pieces opens up interesting possibilities to develop
dedicated exact and heuristic methods for the resolution and practical application of these and
other cutting/packing problems of two and more dimensions. Another interesting line of research
would be to develop optimization procedures based on the multilevel MIP models to analyse the
trade-offs between the cost of the used objects and the value and number of the usable leftovers
generated in cutting/packing with residual pieces.
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Figure 5: Graphs (a–e) illustrate the solutions to instances 1–5 of the two-dimensional non-
guillotine cutting problem with guillotine leftovers (named MGL), respectively (each solution
uses a single object).
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Figure 6: Graphical representation of the solution for instances 6 of the two-dimensional non-
guillotine cutting problem with guillotine leftovers (namedMGL). The solution uses two objects.
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Figure 7: Graphs (a–d) illustrate the solutions to instances 7–10 of the two-dimensional non-
guillotine cutting problem with guillotine leftovers (named MGL), respectively (each solution
uses a single object). Small items in graph (c) with no explicit dimensions correspond to 1× 1
items.
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Figure 8: Graphs (a–e) illustrate, respectively, the solutions (cutting patterns) to instances 1–
5 of the two-dimensional non-guillotine cutting problem with non-guillotine leftovers (named
MNGL), respectively.
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Figure 9: Graphical representation of the solution (cutting patterns) to instance 6 of the two-
dimensional non-guillotine cutting problem with non-guillotine leftovers (named MNGL).
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Figure 10: Graphs (a–d) illustrate the solutions to instances 7–10 of the two-dimensional non-
guillotine cutting problem with non-guillotine leftovers (named MNGL), respectively. Small
items in graph (c) with no explicit dimensions correspond to 1× 1 items.
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Figure 11: Graphical representation of the best feasible solution found for instance 6 of
model MNGL

+ .

28


