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Abstract

A practical active-set method for bound-constrained minimization is introduced. Within
the current face the classical Euclidian trust-region method is employed. Spectral pro-
jected gradient directions are used to abandon faces. Numerical results are presented.
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1 Introduction

The problem of minimizing a continuous function with bounds on the variables has many
practical applications.

In recent papers [2, 3, 8] the efficiency of active-set methods has been emphasized. In an
active-set method, the domain of the problem is divided into disjoint faces. At each iteration,
an appropriate test evaluates whether it is convenient to stay in the current face or to abandon
it. When the decision is to stay in the current face an unconstrained minimization method
(the “inner algorithm”) is applied, regarding only the variables that are free at that face.
Iterations of the unconstrained (inner) algorithm are executed as far as a boundary point is
not encountered or a leaving-face criterion is not satisfied.

Many different inner algorithms can be used. Essentially, every unconstrained minimiza-
tion method defines an inner algorithm, but some technical difficulties must be removed. A
truncated Newton approach is used in [3]. In [8] the authors use a quasi-Newton method and
in [2] an unconstrained algorithm based on negative curvature directions is employed (see
[24]). The leaving-face criteria used in those papers has proved to be extremely efficient in
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‡Departamento de Matemática Aplicada, IMECC-UNICAMP, CP 6065, 13081-970 Campinas SP, Brazil
(martinez@ime.unicamp.br). Sponsored by FAPESP (Grant 01/04597-4), CNPq, FAEP-UNICAMP and
PRONEX-CNPq/FAPERJ E-26/171.164/2003 - APQ1.

1



practice in the sense that, in most cases, the number of leaving-face iterations is small with
respect to the total number of iterations. Therefore, the possibility of improving this type of
active-set algorithms relies essentially on the choice of the inner method.

In this paper the active-set strategy is based on the use of the classical Euclidian trust-
region method within the faces. See [20, 23].

The difficulty in the implementation of the Euclidian trust-region strategy in the presence
of bounds is that the intersection between balls and boxes is not a simple set. So, finding
the minimizer of a quadratic approximation on such a set is not straightforward and the
intersection technique of constrained trust-region algorithms [18, 19] is not easy to apply. It
is usually claimed that trust regions based on the sup-norm are better because they fit the
geometry of the domain of the problem. The reason is that intersection of boxes are boxes.
See [10, 16]. However, to find global minimizers of a (not necessarily convex) quadratic on a
box is not as simple as to find minimizers of arbitrary quadratics on a ball [17, 20, 21].

Some authors employ ellipsoidal trust regions for defining interior point methods for the
box-constrained minimization problem. See [9], the first algorithm of [11] and others. Dennis
and Vicente [11] observed that experimental studies on interior point methods show that it
is important to allow trial steps to be out of the trust ellipsoid as long as they still satisfy the
bound constraints. These authors motivate their “second algorithm” on the fact that there
is no reason to use an ellipsoid to define the shape of the trust region if it is not useful for
enforcing the bounds. In their practical second algorithm the trust regions are spherical and
their experiments show that this algorithm is slightly better than the first.

We go one step further. Even the second “Euclidian trust-region” algorithm of Dennis
and Vicente maintains the interiority of all the iterates. Recent research in box-constrained
trust-region methods show that, with the help of the spectral projected gradient procedure
for escaping from exploited faces, active-set methods can be very effective. Moreover, when
we work on a face of low dimension, the linear algebra work associated with the solution of
the trust-region subproblem is smaller than when one solves interior trust-region problems.
Therefore, the development of an active-set Euclidian trust-region algorithm seems to be
attractive although technical difficulties must be removed.

In this paper we define an active-set method that uses Euclidian trust regions inside the
faces and where some ad hoc techniques are used in order to obtain theoretical convergence
and practical efficiency. The strategy for leaving faces is the one used in [3]. However,
within the current face, the pure trust-region algorithm must be modified if the minimizer
of a trust-region subproblem is infeasible. Moreover, when the current point is very close to
the boundary, solving the trust-region subproblem might not be worthwhile, so a modified
iteration must be used. There is a theoretical prize that must be paid for such modifications.
First-order convergence is always obtained but second-order convergence is obtained only
with respect to points that are not very close to the boundary of the current face. However,
we will show in computational experiments how serious is this inconvenient in practice.

For mathematical precedence reasons, we describe the inner algorithm used within the
faces in Section 2, whereas in Section 3 we define the box-constrained algorithm (BETRA) and
we prove convergence. In spite of this, the reader interested in obtaining a quick overview
about the method should consider the possibility of reading first Section 3. In Section 4
numerical experiments are presented. Conclusions are given in Section 5.
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2 Inner algorithm

The active-set method uses the general scheme described in [3]. The box will be divided
into “open faces”. Within each open face, an inner algorithm is used that modifies only
free variables. This inner algorithm can be described as an interior-point (or unconstrained)
method that, perhaps, hits the boundary of the convex set where the objective function is
defined.

Let A ⊂ IRm be a closed, bounded and convex set with nonempty interior. (A will
be a box in Section 3.) Assume that f̄ : IRm → IR has continuous third-order derivatives
on an open set that contains A. We use the following notation: ‖ · ‖ = ‖ · ‖2, ḡ = ∇f̄ ,
B̄(x, δ) = {z ∈ IRm | ‖z − x‖ ≤ δ}. The set of interior points of A will be denoted Ao. PC(z)
will denote the Euclidian projection of z onto the closed and convex set C.

Let us define the typical procedures that are used in the inner algorithm.

Trust-region subproblem

Given xk ∈ Ao, ∆ > 0, Bk ∈ IR
m×m symmetric, define

ψk(x) =
1

2
(x− xk)TBk(x− x

k) + ḡ(xk)T (x− xk)

and solve
Minimize ψk(x) s.t. ‖x− xk‖ ≤ ∆.

Observe that, although xk is an interior point of A, a solution of the trust-region subproblem
might not belong to A.

Inner Spectral Projected Gradient (SPG) iteration [4, 5, 6]

Given xk ∈ Ao, 0 < λmin < λmax < ∞, λk ∈ [λmin, λmax], α ∈ (0, 1
2 ), and assuming that

ḡ(xk) 6= 0, perform the following steps:

(a) Compute
dk = PA(xk − λkḡ(xk))− xk.

(b) Set t← 1.

(c) If
f̄(xk + t dk) ≤ f̄(xk) + α t ḡ(xk)Tdk (1)

set tk = t and finish the iteration defining yk = xk + tkd
k. If (1) does not hold, choose

tnew ∈ [0.1 t, 0.5 t], set t← tnew and repeat Step (c).

Now, we are able to define the inner algorithm. Its iterates will be interior points of
A except, perhaps, the last one. The algorithm “terminates” when a first-order stationary
point x is found (ḡ(x) = 0) that is close to the boundary (distance smaller than 2∆min), when
a second-order stationary point x is found (ḡ(x) = 0 and ∇2f̄(x) positive semidefinite) or
when a point on the boundary is reached. If none of these possibilities takes place, the inner
algorithm generates an infinite sequence.
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Inner Algorithm

Given ∆min > 0, ∆ ≥ ∆min, 0 < λmin < λmax <∞, λk ∈ [λmin, λmax] and xk ∈ Ao, a typical
iteration of the inner algorithm is:

Step 1. Compute distance to the boundary.
Compute

∆bound = max{∆̄ ≥ 0 | B̄(xk, ∆̄) ⊂ A}.

Step 2. Close to the boundary, use SPG.
If

∆bound < 2∆min (2)

and ḡ(xk) = 0 terminate the execution of the Inner Algorithm declaring that xk is a “First-
order stationary point close to the boundary”. If (2) holds but ḡ(xk) 6= 0, use an Inner SPG
iteration to compute dk and yk and go to Step 6.

Step 3. Far from the boundary solve the trust-region subproblem.
(Note that this step is executed only if (2) does not hold.)

Step 3.1
Compute Bk = ∇2f̄(xk).

Step 3.2
Compute xtrial, a solution of the trust-region subproblem. If ψk(x

trial) = 0 terminate the
execution of the Inner Algorithm declaring that xk is a “Second-order stationary point”.

If xtrial /∈ Ao, compute

tmax = max{t ∈ [0, 1] | [xk, xk + t (xtrial − xk)] ⊂ A}.

If f̄(xk + tmax(x
trial − xk)) < f̄(xk) define yk = xk + tmax(x

trial − xk) and go to Step 6.
If xtrial /∈ Ao but f̄(xk + tmax(x

trial − xk)) ≥ f̄(xk), choose ∆ ∈ [∆min,∆bound) and repeat
Step 3.2. (Observe that, now, the solution xtrial of the new trust-region subproblem will
necessarily be interior to A.)

Step 4. Acceptance or rejection of the trust-region subproblem solution.
Define

Pred = −ψk(x
trial), Ared = f̄(xk)− f̄(xtrial).

If
Ared ≥ 0.1 Pred (3)

define yk = xtrial. Otherwise, choose

∆ ∈ [0.1 ‖xtrial − xk‖, 0.9 ‖xtrial − xk‖]

and go to Step 3.2.

Step 5. Update the trust radius.
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Choose ∆ ≥ ∆min.

Step 6. Possible additional improving.
Choose xk+1 ∈ A such that f̄(xk+1) ≤ f̄(yk). (Observe that xk+1 = yk is an admissible

choice.) If xk+1 belongs to the boundary of A, terminate the execution of the Inner Algorithm
declaring “Iterate on the boundary”.

Remark. The addition of Step 6, with the possible choice of xk+1 6= yk has, essentially,
theoretical purposes. We will realise the importance of such assumption in the proof of the
convergence theorem of the next section. However, the freedom allowed by the choice of xk+1

can be also used for improving the iteration using extrapolation techniques. We will comment
this feature in the section of Numerical Experiments.

Theorem 1. In the execution of the Inner Algorithm, one, and only one of the following
possibilities takes place:

1. The algorithm terminates in a finite number of iterations at a point xk such that its
distance to the boundary is less than 2∆min and ḡ(xk) = 0;

2. The algorithm terminates in a finite number of iterations at a second-order stationary
point xk such that ∆bound ≥ 2∆min;

3. The algorithm terminates after a finite number of iterations at a point xk+1 on the
boundary of A and

f̄(xk+1) < f̄(xk) < . . . < f̄(x0).

4. The algorithm generates a sequence of infinitely many iterates. In this case: (a) Every
limit point x∗ of the sequence so far generated satisfies ḡ(x∗) = 0. (b) If a limit point x∗

is such that its distance to the boundary is greater than 2∆min then ∇2f̄(x∗) is positive
semidefinite.

Proof. The first three possibilities are considered in the definition of the algorithm, cor-
responding to the three different termination criteria. Suppose that an infinite sequence is
generated and that x∗ is a limit point of that sequence. So, there exists an infinite set K1 ⊂ IN
such that

lim
k∈K1

xk = x∗.

We consider two possibilities:

(a) For infinitely many iterations k ∈ K2 ⊂ K1, x
k+1 is computed at Step 2.

(b) For infinitely many iterations k ∈ K3 ⊂ K1, x
k+1 is computed at Step 3.

In the case (a) the arguments that lead to the proof of the convergence of the SPG method
[4, 6] show that ḡ(x∗) = 0. In fact, if we assume that ḡ(x∗) 6= 0 and that tk is bounded
away from zero we get the contradiction f̄(xk)→ −∞. On the other hand, if the infimum of
{tk} is zero, we have an auxiliary sequence t′k that tends to zero and such that the test (1) is
rejected then t = t′k. This implies, using classical arguments, that ḡ(x∗) = 0.
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In the case (b), after some relabeling, the sequence can be interpreted as a sequence
of trust-region iterates (with the initial trust radius ∆ being not smaller than ∆min > 0)
where each iterate is modified with a further reduction of the objective function. So, classical
arguments of the trust-region literature (see, for example, [18, 19]) imply that ḡ(x∗) = 0 and
∇2f̄(x∗) positive semidefinite.

The arguments above imply that any limit point x∗ satisfies ḡ(x∗) = 0. Moreover, if
the distance of x∗ to the boundary is greater than 2∆min, then for k ∈ K1 large enough,
xk+1 is computed at Step 3. Therefore, the case (b) applies and, so, the Hessian is positive
semidefinite. 2

Remark. Pure Euclidian trust-region methods for bound-constrained minimization are not
admissible. Near the boundary, something different must be done in order to obtain con-
vergence. The strategy chosen in the Inner Algorithm is one of the possible strategies that
lead to suitable convergence properties. In order to understand why the trust-region strategy
alone does not work, consider the problem

Minimize x1 + x2

subject to
−1 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.

The solution of this problem is (−1, 0). Suppose that x0 = (1, 1) and that xtrial is the solution
of the Euclidian trust-region subproblem defined by the distance of xk to the boundary. The
test (3) is obviously satisfied by xtrial for all k so we can define xk+1 = xtrial. However, all
the iterates are in the line x1 = x2, the sequence is infinite and converges to (0, 0) which is
not an interior point and ḡ(0, 0) = (1, 1) 6= (0, 0).

3 Algorithm BETRA

In this section
Ω = {x ∈ IRn | ℓ ≤ x ≤ u}

and f : IRn → IR has continuous third-order derivatives on an open set that contains Ω. We
denote g = ∇f . As in [3, 15] we divide the feasible set Ω into disjoint open faces. For all
I ⊂ {1, 2, . . . , n, n+ 1, n+ 2, . . . 2n} we define

FI = {x ∈ Ω | xi = ℓi if i ∈ I, xi = ui if n+ i ∈ I, ℓi < xi < ui otherwise}.

The box Ω is the union of its open faces. The variables xi such that neither i nor n+ i belong
to I are called free in FI . The Inner Algorithm defined in the previous section modifies only
the free variables. Therefore, the closed convex set A will be identified with the different
closures of the open faces. We define VI the smallest affine subspace that contains FI and SI

the parallel linear subspace to VI . Accordingly, we define the projected gradient:

gP (x) = PΩ(x− g(x)) − x

and, for all x ∈ FI , we define the internal gradient:

gI(x) = PSI
(gP (x)).
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Observe that gI(x) = 0 when the face FI is a vertex since, in that case, SI = {0}.

As in [3], the box-constrained algorithm will combine inner iterations with SPG iterations.
Global SPG iterations are similar to Inner SPG iterations defined in the previous section.
However, the current iterate is not restricted to be interior to Ω.

Global Spectral Projected Gradient (SPG) iteration

Given xk ∈ Ω, 0 < λmin < λmax < ∞, λk ∈ [λmin, λmax], α ∈ (0, 1
2), and assuming that

gP (xk) 6= 0, perform the following steps:

(a) Compute
dk = PΩ(xk − λkg(xk))− xk.

(gP (xk) 6= 0 implies that dk 6= 0.)

(b) Set t← 1.

(c) If
f(xk + t dk) ≤ f(xk) + α t g(xk)Tdk (4)

set tk = t and terminate the iteration defining xk+1 = xk + tkd
k. If (4) does not hold,

choose tnew ∈ [0.1 t, 0.5 t], set t← tnew and repeat Step (c).

Let us now define the box-Euclidian-trust-region algorithm (BETRA).

Algorithm BETRA

Given η ∈ (0, 1), 0 < λmin < λmax < ∞, and xk ∈ Ω, the iteration that defines xk+1 or
terminates the execution of BETRA is as follows:

Step 1.
Let FI be the open face to which xk belongs. Compute gP (xk) and gI(x

k). If FI is a
vertex (the number of elements of I is n) and gP (xk) = 0, terminate the execution of BETRA.

Step 2.
Compute the spectral steplength

λk =

{

min{λmax,max{λmin,
‖xk−xk−1‖2

(xk−xk−1)T (gk−gk−1)
}}, if (xk − xk−1)T (gk − gk−1) > 0,

λmax otherwise.
(5)

The arbitrary initial spectral steplength λ0 ∈ [λmin, λmax] is computed by the spectral
formula (5) just replacing xk−1 by (x0 − tsmall g0), where tsmall is a small number.

Step 3.
If

‖gI(x
k)‖ ≥ η‖gP (xk)‖, (6)
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assume, without loss of generality, that the free variables at FI are x1, . . . , xm, and that the
remaining variables are fixed in x̄m+1, . . . , x̄n. (x̄i ∈ {ℓi, ui} ∀i = m+ 1, . . . , n.) Define

f̄(x1, . . . , xm) = f(x1, . . . , xm, x̄m+1, . . . , x̄n)

for all x1, . . . , xm ∈ IR and

A = {x ∈ IRm | ℓi ≤ xi ≤ ui ∀ i = 1, . . . ,m}.

Perform an Inner Algorithm iteration with λk defined by the spectral formula (5). If the In-
ner Algorithm iteration terminates at the current point xk declaring “First-order stationary
point close to the boundary” or “Second-order stationary point”, terminate the execution of
BETRA with the same declarations. (In both cases, due to (6), gP (xk) = 0.) Else, the Inner
Algorithm iteration computes xk+1 and, on return, the iteration of BETRA finishes.

Step 4.
If (6) does not hold (so, gP (xk) 6= 0), perform an iteration of the Global SPG algorithm

with λk defined by the spectral formula (5) for computing xk+1 and finish the iteration of
BETRA.

Remarks. If the current face is not a vertex, the algorithm BETRA does not necessarily
terminates when, at the beginning of an iteration, gP (xk) = 0. In this case, the test (6) nec-
essarily holds, so an inner iteration is tried. If xk is not close to the boundary, a trust-region
iteration will be tried with the aim of finding a second-order stationary point.

Theorem 2. One of the following possibilities hold:

1. The execution of BETRA terminates at an iteration where the Inner Algorithm termi-
nates with gP (xk) = 0. In this case, if xk ∈ FI and the distance between xk and the
boundary of FI is greater than 2∆min, the matrix ∇2f(xk) is positive semidefinite when
restricted to FI .

2. BETRA generates an infinite sequence of iterates and at least one limit point of this
sequence is a first-order stationary point.

In the second case, if all the limit points are nondegenerate, all the iterates belong, eventu-
ally, to the same open face FI . In this case, if the distance of a limit point x∗ to the boundary
of FI is greater than 2∆min, then ∇2f(x∗) is positive semidefinite when restricted to FI .
Moreover, if this reduced matrix is positive definite, the sequence converges quadratically to
x∗.

Proof. By the definition of BETRA we see that finite termination only occurs when xk is a
vertex and gP (xk) = 0 or when the Inner Algorithm terminates with the declarations “First-
order stationary point close to the boundary” or “Second-order stationary point”. In both
cases, we have that the derivatives corresponding to free variables are null, so gI(x

k) = 0.
Then, by (6), gP (xk) = 0. By Theorem 1, the reduced Hessian is positive semidefinite if the
distance between xk and the boundary of its face is greater than 2∆min.

It remains to consider the case in which infinitely many iterates are generated. We
consider two possibilities:
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(a) There exists K1 ⊂ IN an infinite set of indices such that xk+1 is computed by a global
SPG iteration for all k ∈ K1.

(b) For all k ∈ IN large enough, xk+1 is computed by the Inner Algorithm.

If (a) takes place, we prove, as in [3], that every limit point of {xk}k∈K1
must be first-order

stationary.
If (b) holds, there exists k0 ∈ IN such that xk+1 is computed by the Inner Algorithm for all

k ≥ k0. Since the number of faces is finite and active constraints are abandoned only at global
SPG iterations, there exists a face FI such that xk ∈ FI for all k large enough. Therefore,
the thesis of Theorem 1 applies and, so, limk→∞ gI(x

k) = 0. So, by (6), limk→∞ gP (xk) = 0.
This implies that all the limit points satisfy gP (x∗) = 0. Also by Theorem 1, if the dis-
tance to the boundary of a limit point is greater than 2∆min, the reduced Hessian is positive
semidefinite. In this case, if the Hessian is positive definite, quadratic convergence follows as
in the classical theory of the Newtonian unconstrained trust-region method (see [23]). The
fact that in the nondegenerate case all the iterates eventually belong to the same face follows
as in Theorem 3.4 of [2]. 2

4 Numerical experiments

In the SPG iterations, the computation of tnew uses one-dimensional quadratic interpolation
and it was safeguarded taking tnew ← t/2 when the minimum of the one-dimensional quadratic
lies outside [0.1, 0.5 t].

The computation of the initial trust radius ∆ depends on a parameter ∆initial in the
following way:

∆ = max{∆min,∆initial max{1, ‖x0‖}}.

At Step 4 of the Inner Algorithm, when (3) does not hold, we choose

∆ =
1

4
‖xtrial − xk‖.

At Step 5 of the Inner Algorithm, the trust radius is updated based on the relation between
the reduction obtained in the objective function and the one predicted by its quadratic model
in the following way (see [13]):

∆̄ =















1
4‖x

trial − xk‖, if Ared
Pred

≤ 1
4 ,

2∆, if Ared
Pred

≥ 1
2 and | ‖xtrial − xk‖ −∆ |≤ 10−5,

∆, otherwise,

and
∆ = max{∆min, ∆̄}.

To solve the trust-region subproblem at Step 3 of the Inner Algorithm, we implemented
the trust-region algorithm of Moré and Sorensen proposed in [21].

Whenever we need to choose ∆ ∈ [∆min,∆bound) at Step 3 of the Inner Algorithm, we
define

∆ = max

{

∆min,∆min + 0.9

((

∆bound

1 + σ

)

−∆min

)}

, (7)
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where σ is a parameter of the Moré-Sorensen trust-region algorithm. Using this algorithm,
the solution xtrial may be outside the trust region bounded by ∆, but the distance from this
solution to the trust region is, at most, σ. The choice (7) of ∆ ensures that, repeating Step
3 of the Inner Algorithm, we will find a solution of the trust-region subproblem that belongs
to Ao.

At Step 6 of the Inner Algorithm, where we can have an additional improvement, we used
the extrapolation technique presented in [3]. We decide to extrapolate when

(dk)T ḡ(xk + dk) < 0.5(dk)T ḡ(xk),

where dk is the direction computed by SPG or dk = xtrial−xk, when we solve the trust-region
subproblem. The extrapolation depends on a parameter N used to multiply the current step.

The computer version of BETRA has the following stopping criteria:

1. First-order stationary vertex (Step 1 of BETRA):

The current face is a vertex and ‖gP (xk)‖∞ ≤ ε;

2. First-order stationary point close to the boundary (Step 2 of the Inner Algorithm):

The inequality (2) holds and ‖ḡ(xk)‖∞ ≤ ε;

3. Second-order stationary point (Step 3 of the Inner Algorithm):

The point xtrial is the solution of the trust-region subproblem, |ψk(x
trial)| < ε and

‖ḡ(xk)‖∞ < ε;

4. First-order stationary point (Step 4 of BETRA):

The test (6) does not hold (the current face should be abandoned) and ‖gP (xk)‖∞ < ε.

In the experiments we used σ1 = σ, σ2 = 0, λ0 = 0, and ǫ = 10−5 for the algorithm of
Moré and Sorensen (See [21] for details on these parameters); α = 10−4, λmin = 10−10, and
λmax = 1010 for SPG; and ε = 10−5.

To set the remaining parameters: η, ∆initial, ∆min, σ, and N ; we tested all the combina-
tions of η ∈ {0.1, 0.9}, ∆initial ∈ {0.1, 1, 10, 100}, ∆min ∈ {10

−5, 10−4, 10−3}, σ ∈ {0.1, 0.2},
and N ∈ {2, 4}, in a reduced set of problems. The combination that provided the best results
was η = 0.1, ∆initial = 100, ∆min = 10−4, σ = 0.2, and N = 4. Extrapolations are done when
Step 6 is reached coming from Steps 3 and 5.

In order to assess the performance of BETRA, we compared it against LANCELOT [10].
In LANCELOT we used true second derivatives, and full-matrix preconditioners. Apart of
this, we used the default options. To perform the numerical experiments, we considered all
the (140) bound-constrained problems of the CUTE collection [7] with up to 120 variables.

All experiments were done in a Pentium I, with 133 MHz, 64 Mb of RAM memory,
running Linux. The codes were written in FORTRAN 77 and compiled with g77 - GNU
project Fortran Compiler (v0.5.24). We used the option -O3 to optimize the code. As the
execution times are very small, we run each pair method/problem “several times” and report
the average CPU time to minimize measurement errors.

Tables 1, 2 and 3 show the performance of both methods in the whole set of problems.
In the tables, the columns mean: Problem (n) is the problem name and the number of
variables between brackets; iTR is the number of trust-regions iterations; nch is the number
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of Cholesky decompositions; iSPGg is the number of global SPG iterations; iSPGi is the
number of inner SPG iterations; iTotal is the total number of iterations; (in these columns, the
numbers in brackets are the numbers of functional evaluations); nfe is the number of functional
evaluations; nge is the number of gradient evaluations; ncg is the number of Conjugate
Gradient iterations (used by LANCELOT); Time is the CPU time in seconds; f(x∗) is the
functional value at the best solution found. The number of Hessian evaluations performed
by LANCELOT is nge - 1. The double lines in the tables divide the problems according to
their objective function type. The objective functions of the problems in the first group are
quadratic, those in the second group are sum of squares, and those in the third group are
nonlinear general functions.
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BETRA LANCELOT
Problem (n) iTR nch iSPGg iSPGi iTotal Time f(x∗) nfe nge ncg Time f(x∗)

BQP1VAR (1) 2 (2) 1 0 0 2 (2) 0.000 0.0000E+00 3 3 0 0.004 0.0000E+00
HS3 (2) 3 (3) 4 0 0 3 (3) 0.001 7.8886E−36 8 8 0 0.009 9.5614E−37
HS3MOD (2) 3 (3) 5 0 0 3 (3) 0.001 7.8886E−31 4 4 3 0.008 4.1591E−32
OSLBQP (8) 2 (2) 2 0 0 2 (2) 0.001 6.2500E+00 3 3 0 0.008 6.2500E+00
SIM2BQP (2) 1 (1) 0 1 (1) 0 2 (2) 0.000 0.0000E+00 3 3 0 0.005 0.0000E+00
SIMBQP (2) 4 (4) 4 1 (1) 0 5 (5) 0.001 2.4074E−34 2 2 0 0.005 1.1132E−30

HATFLDA (4) 13 (13) 16 1 (8) 0 14 (21) 0.005 1.8367E−14 28 28 22 0.037 2.7495E−14
HATFLDB (4) 10 (10) 13 1 (8) 0 11 (18) 0.004 5.5728E−03 25 25 20 0.033 5.5728E−03
HS1 (2) 25 (29) 39 0 0 25 (29) 0.005 4.3945E−15 33 28 23 0.033 1.2242E−12
HS2 (2) 6 (6) 6 0 0 6 (6) 0.001 4.9412E+00 7 7 2 0.010 4.9412E+00
HS25 (3) 1 (1) 1 0 0 1 (1) 0.013 3.2835E+01 1 1 0 0.013 3.2835E+01
PALMER1 (4) 28 (34) 67 0 0 28 (34) 0.069 1.1755E+04 26 22 14 0.080 1.1755E+04
PALMER1A (6) 80 (87) 136 0 0 80 (87) 0.255 8.9883E−02 78 68 61 0.308 8.9883E−02
PALMER1B (4) 71 (79) 116 0 0 71 (79) 0.165 3.4473E+00 44 38 25 0.119 3.4473E+00
PALMER1E (8) 80 (86) 132 1 (16) 0 81 (102) 0.441 8.3523E−04 5 5 5 0.034 3.1103E+00
PALMER2 (4) 16 (21) 34 0 0 16 (21) 0.033 3.6511E+03 28 23 12 0.068 3.6511E+03
PALMER2A (6) 47 (50) 84 0 0 47 (50) 0.109 1.7110E−02 100 86 94 0.316 1.7110E−02
PALMER2B (4) 51 (58) 95 0 0 51 (58) 0.081 6.2327E−01 25 22 15 0.060 6.2327E−01
PALMER2E (8) 76 (81) 116 0 0 76 (81) 0.282 2.0650E−04 315 261 320 1.357 2.0650E−04
PALMER3A (6) 89 (95) 143 0 0 89 (95) 0.209 2.0431E−02 89 76 86 0.286 2.0431E−02
PALMER3B (4) 41 (47) 67 0 0 41 (47) 0.068 4.2276E+00 28 23 22 0.067 4.2276E+00
PALMER3E (8) 48 (53) 92 0 0 48 (53) 0.182 5.0741E−05 57 47 57 0.251 5.0741E−05
PALMER4 (4) 16 (18) 33 2 (6) 0 18 (24) 0.030 2.2854E+03 47 38 22 0.117 2.2854E+03
PALMER4A (6) 38 (42) 82 0 0 38 (42) 0.085 4.0606E−02 67 56 65 0.211 4.0606E−02
PALMER4B (4) 50 (55) 84 0 0 50 (55) 0.086 6.8351E+00 26 22 18 0.063 6.8351E+00
PALMER4E (8) 48 (50) 80 0 0 48 (50) 0.171 1.4800E−04 40 32 40 0.176 1.4800E−04
PALMER5A (8) 10000 (10029) 10474 0 0 10000 (10029) 20.280 4.0560E−02 10001 8402 9975 27.250 3.1022E−02
PALMER5B (9) 627 (646) 886 0 0 627 (646) 1.326 9.7524E−03 123 101 114 0.377 9.7524E−03
PALMER5D (8) 3 (3) 5 0 0 3 (3) 0.002 8.7339E+01 2 2 1 0.010 8.7339E+01
PALMER5E (8) 1428 (1437) 1511 0 0 1428 (1437) 3.015 2.2937E−02 8763 7212 8762 24.970 2.0716E−02
PALMER6A (6) 117 (124) 188 0 0 117 (124) 0.171 5.5949E−02 141 120 134 0.317 5.5949E−02
PALMER6E (8) 80 (82) 111 0 0 80 (82) 0.185 2.2395E−04 61 50 62 0.189 2.2395E−04
PALMER7A (6) 10000 (10008) 10116 0 0 10000 (10008) 15.220 1.0345E+01 4007 3569 4008 8.910 1.0335E+01
PALMER7E (8) 6 (6) 17 0 0 6 (6) 0.013 1.0154E+01 10001 8065 9930 29.120 6.5607E+00
PALMER8A (6) 36 (38) 68 0 0 36 (38) 0.049 7.4010E−02 52 45 55 0.119 7.4010E−02
PALMER8E (8) 26 (27) 52 0 0 26 (27) 0.058 6.3393E−03 41 34 41 0.124 6.3393E−03
PSPDOC (4) 6 (8) 11 0 0 6 (8) 0.002 2.4142E+00 10 10 9 0.015 2.4142E+00
WEEDS (3) 5 (5) 10 2 (18) 0 7 (23) 0.007 9.2054E+03 25 22 27 0.050 2.5873E+00
YFIT (3) 50 (60) 93 0 0 50 (60) 0.086 6.6697E−13 51 42 50 0.112 6.6698E−13

ALLINIT (4) 10 (11) 13 1 (1) 0 11 (12) 0.007 1.6706E+01 12 10 6 0.017 1.6706E+01
CAMEL6 (2) 30 (37) 49 0 0 30 (37) 0.010 -1.0316E+00 19 11 12 0.020 -1.0316E+00
HART6 (6) 13 (14) 22 1 (1) 0 14 (15) 0.013 -3.3229E+00 9 7 7 0.019 -3.3229E+00
HIMMELP1 (2) 6 (6) 8 1 (3) 0 7 (9) 0.002 -6.2054E+01 16 15 5 0.014 -6.2054E+01
HS38 (4) 49 (55) 91 0 0 49 (55) 0.023 1.9971E−20 54 46 56 0.069 5.2378E−20
HS4 (2) 2 (2) 2 0 0 2 (2) 0.000 2.6667E+00 2 2 0 0.004 2.6667E+00
HS45 (5) 2 (2) 13 0 0 2 (2) 0.001 1.0000E+00 9 9 0 0.009 1.0000E+00
HS5 (2) 8 (9) 16 1 (1) 0 9 (10) 0.002 -1.9132E+00 6 6 3 0.009 -1.9132E+00
LOGROS (2) 54 (60) 127 2 (13) 0 56 (73) 0.018 0.0000E+00 56 45 35 0.054 0.0000E+00
MAXLIKA (8) 35 (36) 61 4 (20) 0 39 (56) 4.017 1.1363E+03 9 8 19 0.659 1.1493E+03
MDHOLE (2) 37 (39) 65 0 0 37 (39) 0.010 4.8148E−33 61 51 52 0.058 3.0080E−37
S368 (8) 6 (6) 8 0 0 6 (6) 0.026 -9.3750E−01 6 6 3 0.029 -9.3750E−01
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BETRA LANCELOT
Problem (n) iTR nch iSPGg iSPGi iTotal Time f(x∗) nfe nge ncg Time f(x∗)

BIGGSB1 (25) 15 (15) 15 12 (27) 0 27 (42) 0.026 1.5000E−02 15 15 14 0.041 1.5000E−02
BQPGABIM (50) 1 (1) 1 (2) 43 (57) 45 (60) 0.053 -3.7903E−05 3 3 4 0.042 -3.7903E−05
BQPGASIM (50) 1 (1) 1 (1) 42 (54) 44 (56) 0.054 -5.5198E−05 3 3 3 0.040 -5.5198E−05
CHENHARK (10) 5 (5) 5 2 (3) 0 7 (8) 0.004 -2.0000E+00 2 2 5 0.011 -2.0000E+00
CVXBQP1 (10) 2 (2) 3 0 1 (1) 3 (3) 0.001 2.4750E+00 2 2 0 0.009 2.4750E+00
HARKERP2 (10) 9 (9) 9 0 0 9 (9) 0.011 -5.0000E−01 3 3 1 0.011 -5.0000E−01
JNLBRNG1 (16) 2 (2) 2 0 0 2 (2) 0.002 -2.2474E−01 2 2 2 0.012 -2.2474E−01
JNLBRNG2 (16) 2 (2) 2 0 0 2 (2) 0.002 -4.7640E+00 2 2 0 0.011 -4.7640E+00
JNLBRNGA (16) 2 (2) 2 1 (1) 0 3 (3) 0.002 -5.0967E−01 5 5 0 0.013 -5.0967E−01
JNLBRNGB (16) 2 (2) 2 1 (1) 0 3 (3) 0.002 -1.8551E+01 5 5 1 0.013 -1.8551E+01
NCVXBQP1 (10) 2 (2) 1 0 0 2 (2) 0.001 -2.2050E+04 3 3 0 0.010 -2.2050E+04
NCVXBQP2 (10) 2 (2) 1 0 0 2 (2) 0.001 -1.4382E+04 3 3 0 0.010 -1.4382E+04
NCVXBQP3 (10) 2 (2) 1 1 (1) 0 3 (3) 0.001 -1.1958E+04 3 3 0 0.010 -1.1958E+04
NOBNDTOR (16) 2 (2) 2 0 0 2 (2) 0.001 -5.4321E−01 3 3 0 0.011 -5.4321E−01
OBSTCLAE (16) 2 (2) 1 0 0 2 (2) 0.001 7.5366E−01 3 3 0 0.010 7.5366E−01
OBSTCLAL (16) 1 (1) 0 0 1 (1) 0.000 7.5366E−01 1 1 0 0.008 7.5366E−01
OBSTCLBL (16) 1 (1) 1 (1) 0 2 (2) 0.000 -8.1108E−03 2 2 0 0.009 -8.1108E−03
OBSTCLBM (16) 2 (2) 1 0 0 2 (2) 0.001 -8.1108E−03 2 2 0 0.010 -8.1108E−03
OBSTCLBU (16) 1 (1) 0 0 1 (1) 0.000 -8.1108E−03 1 1 0 0.009 -8.1108E−03
PENTDI (50) 2 (2) 2 1 (1) 0 3 (3) 0.007 -7.5000E−01 2 2 0 0.023 -7.5000E−01
QUDLIN (12) 1 (1) 1 (1) 0 2 (2) 0.000 -7.2000E+03 2 2 0 0.011 -7.2000E+03
TORSION1 (16) 1 (1) 0 0 1 (1) 0.000 -5.1852E−01 1 1 0 0.009 -5.1852E−01
TORSION2 (16) 2 (2) 1 0 0 2 (2) 0.001 -5.1852E−01 3 3 0 0.010 -5.1852E−01
TORSION3 (16) 1 (1) 0 0 1 (1) 0.000 -1.2593E+00 1 1 0 0.008 -1.2593E+00
TORSION4 (16) 2 (2) 1 0 0 2 (2) 0.001 -1.2593E+00 3 3 0 0.010 -1.2593E+00
TORSION5 (16) 1 (1) 0 0 1 (1) 0.000 -2.7407E+00 1 1 0 0.008 -2.7407E+00
TORSION6 (16) 2 (2) 1 0 0 2 (2) 0.001 -2.7407E+00 2 2 0 0.009 -2.7407E+00
TORSIONA (16) 2 (2) 2 1 (1) 0 3 (3) 0.003 -3.0864E−01 2 2 0 0.011 -3.0864E−01
TORSIONB (16) 2 (2) 2 0 0 2 (2) 0.003 -3.0864E−01 3 3 0 0.012 -3.0864E−01
TORSIONC (16) 1 (1) 0 0 1 (1) 0.000 -1.0370E+00 1 1 0 0.008 -1.0370E+00
TORSIOND (16) 2 (2) 1 0 0 2 (2) 0.002 -1.0370E+00 3 3 0 0.011 -1.0370E+00
TORSIONE (16) 1 (1) 0 0 1 (1) 0.000 -2.5185E+00 1 1 0 0.009 -2.5185E+00
TORSIONF (16) 2 (2) 1 0 0 2 (2) 0.002 -2.5185E+00 2 2 0 0.010 -2.5185E+00

CHEBYQAD (50) 22 (27) 103 0 0 22 (27) 11.300 5.3863E−03 106 87 108 43.310 5.3863E−03
DECONVB (61) 23 (24) 52 6 (21) 7771 (11961) 7800 (12006) 29.894 5.3548E−08 20 16 128 0.852 5.6636E−03
HATFLDC (25) 5 (5) 5 0 0 5 (5) 0.013 8.2639E−14 5 5 3 0.026 7.7700E−19
HS110 (10) 6 (7) 8 0 0 6 (7) 0.009 -4.5778E+01 5 5 0 0.016 -4.5778E+01
LINVERSE (19) 6 (6) 9 0 0 6 (6) 0.017 7.0000E+00 10 8 16 0.055 7.0000E+00
NONSCOMP (50) 8 (8) 7 0 15 (31) 23 (39) 0.078 1.1916E−11 9 9 8 0.065 1.1212E−16
QR3DLS (40) 20 (23) 43 0 0 20 (23) 0.324 5.5383E−16 29 24 28 0.477 1.2807E−13

EXPLIN (12) 9 (9) 14 1 (2) 0 10 (11) 0.006 -6.8500E+03 13 11 13 0.024 -6.8500E+03
EXPLIN2 (12) 9 (9) 16 2 (4) 0 11 (13) 0.007 -7.0925E+03 14 13 16 0.027 -7.0925E+03
EXPQUAD (12) 10 (10) 45 1 (1) 0 11 (11) 0.019 -4.2011E+03 13 11 20 0.033 -4.2011E+03
HADAMALS (16) 17 (17) 22 0 0 17 (17) 0.045 0.0000E+00 8 8 37 0.046 0.0000E+00
MCCORMCK (10) 7 (7) 11 0 0 7 (7) 0.008 -9.5980E+00 5 5 4 0.016 -9.5980E+00
PROBPENL (10) 19 (27) 62 0 2 (7) 21 (34) 0.030 -3.1787E+05 5 3 13 0.020 1.5235E−05
QRTQUAD (12) 20 (22) 30 2 (13) 0 22 (35) 0.020 -3.6077E+03 71 56 64 0.117 -3.6077E+03
SINEALI (20) 10000 (10221) 11627 0 0 10000 (10221) 23.720 -1.9010E+03 10001 8887 9994 26.070 -1.9010E+03
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BETRA LANCELOT
Problem (n) iTR nch iSPGg iSPGi iTotal Time f(x∗) nfe nge ncg Time f(x∗)

BIGGSB1 (100) 52 (52) 52 50 (231) 1 (1) 103 (284) 0.950 1.5000E−02 52 52 50 0.323 1.5000E−02
CHENHARK (100) 3 (3) 6 0 0 3 (3) 0.145 -2.0000E+00 25 25 61 0.279 -2.0000E+00
CVXBQP1 (100) 2 (2) 3 0 1 (1) 3 (3) 0.104 2.2725E+02 2 2 0 0.055 2.2725E+02
HARKERP2 (100) 7 (7) 7 0 0 7 (7) 12.570 -5.0000E−01 2 2 2 0.223 -5.0000E−01
JNLBRNG1 (100) 3 (3) 3 1 (2) 0 4 (5) 0.050 -1.7896E−01 2 2 1 0.056 -1.7896E−01
JNLBRNG2 (100) 3 (3) 3 1 (1) 0 4 (4) 0.046 -3.9528E+00 3 3 2 0.066 -3.9528E+00
JNLBRNGA (100) 3 (3) 3 2 (3) 0 5 (6) 0.044 -3.6116E−01 3 3 2 0.061 -3.6116E−01
JNLBRNGB (100) 2 (2) 2 1 (1) 0 3 (3) 0.026 -7.2552E+00 4 4 3 0.069 -7.2552E+00
NCVXBQP1 (100) 2 (2) 1 0 0 2 (2) 0.045 -1.9956E+06 2 2 0 0.057 -1.9956E+06
NCVXBQP2 (100) 4 (4) 6 1 (2) 0 5 (6) 0.058 -1.3330E+06 3 3 4 0.061 -1.3330E+06
NCVXBQP3 (100) 5 (5) 6 2 (2) 0 7 (7) 0.066 -6.7085E+05 4 4 4 0.064 -6.7085E+05
NOBNDTOR (100) 4 (4) 4 2 (4) 0 6 (8) 0.060 -5.5211E−01 3 3 2 0.067 -5.5211E−01
OBSTCLAE (100) 5 (5) 5 3 (4) 0 8 (9) 0.079 1.3979E+00 3 3 29 0.138 1.3979E+00
OBSTCLAL (100) 4 (4) 4 3 (5) 0 7 (9) 0.060 1.3979E+00 4 4 3 0.071 1.3979E+00
OBSTCLBL (100) 5 (5) 5 2 (2) 0 7 (7) 0.056 2.8750E+00 3 3 6 0.067 2.8750E+00
OBSTCLBM (100) 3 (3) 3 0 0 3 (3) 0.043 2.8750E+00 2 2 3 0.060 2.8750E+00
OBSTCLBU (100) 3 (3) 3 1 (1) 0 4 (4) 0.036 2.8750E+00 2 2 1 0.053 2.8750E+00
TORSION1 (100) 3 (3) 3 2 (2) 0 5 (5) 0.040 -4.9234E−01 3 3 2 0.059 -4.9234E−01
TORSION2 (100) 4 (4) 4 2 (5) 0 6 (9) 0.061 -4.9234E−01 4 4 2 0.073 -4.9234E−01
TORSION3 (100) 2 (2) 2 1 (1) 0 3 (3) 0.022 -1.2705E+00 2 2 1 0.051 -1.2705E+00
TORSION4 (100) 3 (3) 3 1 (4) 0 4 (7) 0.046 -1.2705E+00 4 4 2 0.066 -1.2705E+00
TORSION5 (100) 1 (1) 0 0 0 1 (1) 0.002 -2.8971E+00 1 1 0 0.044 -2.8971E+00
TORSION6 (100) 2 (2) 1 0 0 2 (2) 0.025 -2.8971E+00 3 3 0 0.056 -2.8971E+00
TORSIONA (100) 3 (3) 3 2 (2) 0 5 (5) 0.050 -4.0570E−01 3 3 2 0.066 -4.0570E−01
TORSIONB (100) 5 (5) 5 0 0 5 (5) 0.095 -4.0570E−01 5 5 6 0.114 -4.0570E−01
TORSIONC (100) 2 (2) 2 1 (1) 0 3 (3) 0.027 -1.1766E+00 2 2 1 0.054 -1.1766E+00
TORSIOND (100) 3 (3) 3 1 (4) 0 4 (7) 0.054 -1.1766E+00 4 4 3 0.076 -1.1766E+00
TORSIONE (100) 1 (1) 0 0 0 1 (1) 0.002 -2.7984E+00 1 1 0 0.045 -2.7984E+00
TORSIONF (100) 2 (2) 1 0 0 2 (2) 0.029 -2.7984E+00 3 3 0 0.059 -2.7984E+00

HS110 (100) 2 (2) 2 0 0 2 (2) 0.109 -9.9800E+19 2 2 0 0.054 -9.9800E+19
NONSCOMP (100) 8 (8) 7 0 17 (39) 25 (47) 0.337 8.0101E−12 9 9 8 0.130 2.6015E−16

BDEXP (100) 12 (13) 16 0 0 12 (13) 0.696 1.3497E−05 11 11 10 0.192 3.9646E−05
EXPLIN (120) 25 (26) 31 3 (3) 0 28 (29) 0.107 -7.2376E+05 14 14 61 0.113 -7.2324E+05
EXPLIN2 (120) 13 (13) 61 4 (4) 0 17 (17) 0.056 -7.2446E+05 12 12 30 0.093 -7.2446E+05
EXPQUAD (120) 17 (18) 32 2 (4) 0 19 (22) 1.642 -3.6260E+06 18 15 49 0.354 -3.6260E+06
HADAMALS (100) 26 (26) 49 1 (3) 0 27 (29) 2.904 2.5316E+01 14 14 370 2.610 2.5316E+01
MCCORMCK (100) 7 (8) 12 0 0 7 (8) 0.472 -9.1788E+01 7 6 5 0.117 -9.1788E+01
PROBPENL (100) 4 (4) 13 0 0 4 (4) 0.673 -4.9571E−06 91 52 268 4.923 -2.8726E+05
QRTQUAD (120) 42 (44) 66 2 (12) 0 44 (56) 3.783 -3.6246E+06 205 168 195 2.469 -3.6242E+06
S368 (100) 7 (7) 10 0 0 7 (7) 6.630 -1.4869E+02 9 7 9 7.007 -1.3369E+02
SINEALI (100) 10 (11) 24 0 0 10 (11) 0.890 -9.9010E+03 13 9 6 0.138 -9.9010E+03
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On average, 12.48% of the functional evaluations were done by the global SPG, 3.87%
were done by the inner SPG and 83.65% were done by the trust-region Inner Algorithm. Out
of the 140 tested problems, 33 problems (23.57%) satisfied criterion 1, 5 problems (3.57%)
satisfied criterion 2, 98 (70.71%) satisfied criterion 3, and none satisfied criterion 4. The
3 remaining problems stopped because BETRA reached the maximum allowed number of
iterations (10000). These problems were: PALMER5A that stopped with ‖gP (xk)‖∞ =
1.8088E+00; PALMER7A, that stopped with ‖gP (xk)‖∞ = 4.0094E−01; and SINEALI (20)
that stopped with ‖gP (xk)‖∞ = 2.6944E−03.

LANCELOT has only one successful stopping criterion: sup-norm of the projected gra-
dient smaller than 10−5. In 137 out of the 140 tested problems, this criteria was satisfied.
In the 3 remaining problems, LANCELOT stopped because it reached the maximum allowed
number of function evaluations (10000). These problems were: PALMER5A that stopped
with ‖gP (xk)‖∞ = 1.5959E−01; PALMER7E that stopped with ‖gP (xk)‖∞ = 5.9967E+00;
and SINEALI (20) that stopped with ‖gP (xk)‖∞ = 7.9770E−04.

To have a better overview of the comparison between BETRA and LANCELOT, we used
the CPU time as a performance measurement and constructed a performance profile graphic
(see Figure 1). To construct this graphic, we took into account not only the CPU time spent
by each method, but also the solution that each method provided. When both BETRA and
LANCELOT provide a solution with the same functional value, we compare the CPU times.
When they provide different solutions, we assume that the method that came up with the
worst solution took “infinite” time. We consider that two functional values f1 and f2 are
equivalent if

| f1 − f2 |≤ max(10−10, 10−6 min(| f1 |, | f2 |)).

Figure 2 shows the performance profile curve just considering the problems in which both
methods stopped by a successful criteria and found solutions with the same functional value
(127 over the total of 140 problems).

In Figure 1, it can be seen that BETRA is faster than LANCELOT in 82.14% of the
problems whereas LANCELOT is faster than BETRA in 19.28%. It can also be seen that
BETRA successfully solved 96.43% of the problems whereas LANCELOT solved 95.71% of
the problems. (“to be faster” and “to solve” a problem means what we explained above.)
For the problems considered in Figure 2, BETRA is faster than LANCELOT in 85.04% of
the cases and LANCELOT is faster than BETRA in 16.53% of the cases.

It is important to notice that, whenever the value of η is increased, the number of global
SPG iterations tends to increase; and, whenever the value of ∆min is increased, the number
of inner SPG iterations tends to increase too. Nevertheless, when the value of these two
parameters are increased, BETRA stopped reaching a solution that satisfies the second-order
necessary condition in just a few less problems. As an example, we tested the 140 problems
changing the values of η and ∆min. For η = 0.01 and ∆min = 10−5, the number of problems in
which BETRA stopped satisfying criterion 1, 2, 3, 4 or did not satisfy any of them were, 33,
5, 97, 0, and 5, respectively. For η = 0.99 and ∆min = 10−3, the numbers were 33, 5, 96, 2,
and 4, respectively. So, although these parameters are not so easy to choose, the robustness
of BETRA does not strongly depend on them.

15



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140

BETRA
LANCELOT

Figure 1: Performance profile curve comparing BETRA vs. Lancelot in the whole set of
problems.

5 Conclusions

We presented a practical active-set method for solving bound-constrained smooth minimiza-
tion problems, where the inner algorithm is the classical Euclidian trust-region method and
the iterations for leaving faces are of spectral projected gradient type. Spectral projected
gradient steps are also used when some inactive constraints at the current point are almost
active. We prove convergence to first-order stationary points and, under suitable assump-
tions, to second-order stationary points. In the last case, the order of convergence results of
second-order trust-region methods is maintained.

We compared the method against a well established algorithm that uses full Hessians and
full preconditioners (so, Cholesky factorizations) for solving box-constrained problems. The
results were encouraging. Probably, the new method is one of the most adequate ways of
using trust-region strategies for bound-constrained problems, at least when the problems are
not very large. For very large problems, the trust-region solution of the subproblem must be
modified, for example, as in [22].

Euclidian and ellipsoidal trust regions have the advantage over box trust regions that
global minimizers of the corresponding subproblems can be obtained using stable and effi-
cient algorithms. On the other hand, balls and ellipsoids do not fit the shape of a box as
well as trust-region boxes do. Therefore, the relative usefulness of both approaches in prac-
tical computations is a matter of controversy and, very likely, the correct decision is highly
problem-dependent.

If one decides to use ellipsoidal trust regions the question about the shape of the ellipsoids
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Figure 2: Performance profile curve comparing BETRA vs. Lancelot considering the problems
in which both methods stopped satisfying a successful criteria and found the same functional
value.
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arises. Basically, there are two possibilities: either the shape of the ellipsoids depends on the
constraint set or it depends only on the size of the variables. If the problem is badly scaled
in the sense that independent variables are of very different magnitudes, it is probably better
to pre-process the function so that the bad-scaling effect disappears as much as possible.
Therefore, the choice is between constraint-shape ellipsoids and Euclidian balls.

In this paper, as in [11], we make our option for Euclidian balls-subproblems, but we
also observed that there are no reasons for maintaining interiority of the iterates, as far as
efficient leaving-face and extrapolation procedures for gaining and abandoning constraints
exist. It seems that the numerical results confirm that this is a valid approach for general
box-constrained minimization.

The extensions of the strategy presented in this paper are in two directions: first, we
aim to consider large problems using large-scale trust-region solvers [22]. Second, we plan to
extend the strategy to general polytopes.
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