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Abstract

Coordinate descent methods have considerable impact in global optimization because
global (or, at least, almost global) minimization is affordable for low-dimensional problems.
Coordinate descent methods with high-order regularized models for smooth nonconvex box-
constrained minimization are introduced in this work. High-order stationarity asymptotic
convergence and first-order stationarity worst-case evaluation complexity bounds are estab-
lished. The computer work that is necessary for obtaining first-order ε-stationarity with
respect to the variables of each coordinate-descent block is O(ε−(p+1)/p) whereas the com-
puter work for getting first-order ε-stationarity with respect to all the variables simultane-
ously is O(ε−(p+1)). Numerical examples involving multidimensional scaling problems are
presented. The numerical performance of the methods is enhanced by means of coordinate-
descent strategies for choosing initial points.
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1 Introduction

In order to minimize a multivariate function it is natural to keep fixed some of the variables and
to modify the remaining ones trying to decrease the objective function value. Coordinate descent
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(CD) methods proceed systematically in this way and, many times, obtain nice approximations
to minimizers of practical optimization problems. Wright [58] surveyed traditional approaches
and modern advances on the introduction and analysis of CD methods. Although the CD
idea is perhaps the most natural one to optimize functions, it received little attention from
researchers due to poor performance in many cases and lack of challenges in terms of convergence
theory [55]. The situation changed dramatically in the last decades. CD methods proved to
be useful for solving machine learning, deep learning and statistical learning problems in which
the number of variables is big and the accuracy required at the solution is moderate [18, 52].
Many applications arose and, in present days, efficient implementations and insightful theory
for understanding the CD properties are the subject of intense research. See, for example,
[2, 3, 15, 16, 17, 20, 30, 36, 47, 60, 61] among many others.

In this paper we are concerned with complexity issues of CD methods that employ high-
order models to approximate the subproblems that arise at each iteration. The use of high-
order models for unconstrained optimization was defined and analyzed from the point of view
of worst-case complexity in [6] and subsequent papers [5, 24, 39, 40, 48, 62]. In [5] numerical
implementations with quartic regularization were introduced. In [24], [39], [40], and [48], new
high-order regularization methods were introduced with Hölder, instead of Lipschitz, conditions
on the highest-order derivatives employed. In [46], high-order methods were studied as dis-
cretizations of ordinary differential equations. These methods generalize the methods based on
third-order models introduced in [43] and later developed in [22, 23, 33, 35, 53] among many
others. Griewank [43] introduced third-order regularization having in mind affine scaling prop-
erties. Nesterov and Polyak [53] introduced the first cubic regularized Newton methods with
better complexity results than the ones that were known for gradient-like algorithms [41]. In
[21], a multilevel strategy that exploits a hierarchy of problems of decreasing dimension was
introduced in order to reduce the global cost of the step computation. However, high-order
methods remain difficult to implement in the many-variables case due to the necessity of com-
puting high-order derivatives and solving nontrivial model-based subproblems. Nevertheless, if
the number of variables is small, high-order model-based methods are reliable alternatives to
classical methods. This feature can be exploited in the CD framework.

High-order models are interesting from the point of view of global optimization because,
many times, local algorithms get stuck at points that satisfy low-order optimality conditions
from which one is able to escape using high-order resources. The escaping procedure is affordable
if one restricts the search to low-dimensional subspaces, which suggests the employment of CD
procedures.

This paper is organized as follows. In Section 2, we present some background on optimality
conditions, while in Section 3 we survey a high-order algorithmic framework that provides a basis
for the development of CD algorithms. In Section 4, we present block CD methods that, for each
approximate minimization on a group of variables, employ high-order regularized subproblems
and we prove asymptotic convergence. In Section 5 we prove worst-case complexity results.
In Section 6 the obtained theoretical results are discussed. In Section 7, we study a family of
problems for which CD is suitable and we include a CD-strategy that improves convergence to
global solutions. Conclusions are given in Section 8.

Notation. The symbol ‖ · ‖ denotes the Euclidean norm.
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2 Background on high-order optimality conditions

In order to understand the main results of this paper we need to visit the topic of necessary opti-
mality conditions of high order. The main question is: What is the relation between minimizers
of a function and minimizers of its Taylor polynomials? Firstly, we show that, in one variable,
the two concepts are closely related in the sense that local minimizers of a function are local
minimizers of all its Taylor polynomials. Immediately, we show with a simple counterexample
that this property is not true if the number of variables is greater than 1. The third step is to
show that, for an arbitrary number of variables, every minimizer of f is a minimizer of its Taylor
polynomials regularized by a suitable Lipschitz constant. This definition leads us to distinguish
between exclusive and inclusive optimality conditions. Exclusive conditions are the ones that
can be expressed exclusively in terms of the function derivatives. Inclusive ones are related with
a slightly more global behavior and include Lipschitz bounds. Inclusive conditions are stronger
than exclusive ones. In this paper, we show that algorithmic limit points are more related to
inclusive conditions than to exclusive ones.

As it is well known from elementary calculus, if a function f : R→ R possesses derivatives up

to order p at x̄ ∈ R, denoted by f (j) for j = 1, . . . , p, its Taylor polynomial of order p around x̄
is given by

T p(x̄, x) = f(x̄) +

p∑
j=1

1

j!
f (j)(x̄)(x− x̄)j .

If f and its derivatives up to order p are continuous and f (p) satisfies a Lipschitz condition
defined by γ1 > 0 in a neighborhood of x̄, we know that

|f(x)− T p(x̄, x)| ≤ γ1

(p+ 1)!
|x− x̄|p+1 (1)

for all x in a neighborhood of x̄. This fact allows one to prove the necessary optimality condition
given in Theorems 2.1 and 2.2.

Theorem 2.1 Assume that f : R → R, its derivatives up to order p are continuous, and f (p)

satisfies a Lipschitz condition defined by γ1 > 0 in a neighborhood of x∗. Assume, moreover,
that a < b, x∗ is a local minimizer of f subject to x ∈ [a, b], and there exists q ≤ p such that

f (j)(x∗) = 0 for j = 1, . . . , q − 1 and f (q)(x∗) 6= 0. Then,

1. if q is even, then we have that f (q)(x∗) > 0;

2. if a < x < b, then q is even;

3. if x = a and q is odd, then f (q)(x∗) > 0;

4. if x = b and q is odd, then f (q)(x∗) < 0.

Proof: Suppose that q ≤ p is such that all the derivatives of order j < q ≤ p are null and
f (q)(x∗) 6= 0. Then, by (1),∣∣∣∣f(x)− f(x∗)−

[
1

q!
f (q)(x∗)(x− x∗)q + · · ·+ 1

p!
f (p)(x∗)(x− x∗)p

]∣∣∣∣ ≤ γ1

(p+ 1)!
|x− x∗|p+1.
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Then,∣∣∣f(x)− f(x∗)− 1
q!f

(q)(x∗)(x− x∗)q
∣∣∣− ∣∣∣ 1

(q+1)!f
(q+1)(x∗)(x− x∗)q+1 · · ·+ 1

p!f
(p)(x∗)(x− x∗)p

∣∣∣ ≤ γ1
(p+1)! |x− x

∗|p+1.

Thus, if p = q, it follows trivially that∣∣∣∣f(x)− f(x∗)− 1

q!
f (q)(x∗)(x− x∗)q

∣∣∣∣ ≤ c|x− x∗|q+1. (2)

If p > q, for all j = q + 1, . . . , p, the quantities | 1j!f
(j)(x∗)| are bounded by the same constant.

By the boundedness of |x − x∗| in a neighborhood of x∗ and the fact that p + 1 > q + 1, (2)
follows as well. Assume firstly that q is even. Then, dividing (2) by (x− x∗)q > 0, we have that∣∣∣∣f(x)− f(x∗)

(x− x∗)q
− 1

q!
f (q)(x∗)

∣∣∣∣ ≤ c|x− x∗|. (3)

Taking limits for x→ x∗ we deduce that

lim
x→x∗

∣∣∣∣f(x)− f(x∗)

(x− x∗)q
− 1

q!
f (q)(x∗)

∣∣∣∣ = 0. (4)

Thus,

lim
x→x∗

f(x)− f(x∗)

(x− x∗)q
=

1

q!
f (q)(x∗). (5)

Since f(x) ≥ f(x∗) for all x sufficiently close to x∗ and the right-hand side of (5) is different

from zero, we deduce that f (q)(x∗) > 0. Therefore, we proved that if not all the derivatives are
null, the first statement in the thesis is true.

Now consider the case in which all the derivatives of order j < q ≤ p are null, a < x∗ < b, and
f (q)(x∗) 6= 0. Suppose, by contradiction that q is odd. Assume, firstly, that x > x∗. Dividing
(2) by (x− x∗)q > 0, we have that∣∣∣∣f(x)− f(x∗)

(x− x∗)q
− 1

q!
f (q)(x∗)

∣∣∣∣ ≤ c|x− x∗|. (6)

Taking lateral limits for x > x∗ and x→ x∗ we deduce that

lim
x→x∗, x>x∗

∣∣∣∣f(x)− f(x∗)

(x− x∗)q
− 1

q!
f (q)(x∗)

∣∣∣∣ = 0. (7)

Thus,

lim
x→x∗, x>x∗

f(x)− f(x∗)

(x− x̄)q
=

1

q!
f (q)(x∗). (8)

Since f(x) ≥ f(x∗) for all x sufficiently close to x∗, we deduce that f (q)(x∗) ≥ 0. A similar

reasoning for x < x∗ leads to f (q)(x∗) ≤ 0. Therefore, f (q)(x∗) = 0. Therefore, we proved that

if all the derivatives of order j < q ≤ p are null, a < x < b, and f (q)(x∗) 6= 0, then q is even.

4



Let us prove now that, if all the derivatives of order j < q ≤ p are null, f (q)(x∗) 6= 0, x∗ = a

and q is odd, we have that f (q)(x∗) > 0. Dividing (2) by (x − x∗)q > 0, we obtain (6), (7),
and (8) with x∗ = a. Since f(x) ≥ f(x∗) for all x sufficiently close to x∗ and, by assumption,

f (q)(x∗) 6= 0, we have that f (q)(x∗) ≥ 0. The last part of the thesis follows exactly in the same
way. �

Theorem 2.2 Assume that f : R→ R and its derivatives up to order p are continuous and f (p)

satisfies a Lipschitz condition defined by γ1 > 0 in a neighborhood of x∗. Assume, moreover,
that x∗ is a local minimizer of f . Then, x∗ is a local minimizer of the Taylor polynomial
T p(x

∗, x).

Proof: By Theorem 2.1 we have four alternatives for the coefficients of the Taylor polynomial of
order p. The first one is that all its coefficients are null. In this case, x∗ is, trivially, a minimizer
of the polynomial and there is nothing to prove.

In the second case the first nonnull coefficient of the polynomial is positive and its order is
even. Therefore, the Taylor polynomial can be written as

T p(x
∗, x) = f(x∗) +

p∑
j=q

1

j!
f (j)(x∗)(x− x∗)j

for some even q ≤ p and 1
q!f

(j)(x∗) > 0. Then,

T p(x
∗, x)− f(x∗)

(x− x∗)q
=

1

q!
f (q)(x∗) +

p∑
j=q+1

1

j!
f (j)(x∗)(x− x∗)j−q. (9)

This implies that x∗ is a local minimizer of T p(x
∗, x) as we wanted to prove.

In the third case x∗ = a, q is odd and 1
q!f

(j)(x∗) > 0. Then, (9) takes place and a is a local

minimizer. The fourth case, in which x∗ = b and 1
q!f

(j)(x∗) < 0, follows in a similar way. �

We now consider the n-dimensional case. If f : Rn → R admits continuous derivatives up to
order p ∈ {1, 2, 3, . . . }, then the Taylor polynomial of order p of f around x∗ is defined as

T p(x
∗, x) = f(x∗) +

p∑
j=1

P j(x
∗, x), (10)

where P j(x
∗, x) is an homogeneous polynomial of degree j given by

P j(x
∗, x) =

1

j!

(
(x1 − x∗1)

∂

∂x1
+ · · ·+ (xn − x∗n)

∂

∂xn

)j
f(x). (11)

For completeness we define P 0(x∗, x) = f(x∗).
Let us define ϕ(t) = f(x∗ + t(x − x∗)). Obviously, if x∗ is a local minimizer of f over a

nonempty closed and convex set C ⊂ Rn, it turns out that 0 is a local minimizer of ϕ(t) for
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every choice of x ∈ C. Thus, by Theorem 2.2, 0 is a local minimizer of the Taylor polynomial
associated with ϕ subject to the interval defined by the boundary of C. But, by the construction
of (10), this implies that x∗ is a minimizer of T p(x

∗, x) along any line that passes through x∗

over the interval defined by the boundary of C. This fact is stated in Theorem 2.3.

Theorem 2.3 Assume that f : Rn → R and its derivatives up to order p are continuous and
satisfy a Lipschitz condition in a neighborhood of x∗. Assume, moreover, that x∗ is a local
minimizer of f . Let L be a line that passes through x∗. Then, x∗ is a local minimizer of the
Taylor polynomial T p(x

∗, x) subject to L ∩ C.

Proof: Observe that the fact that the derivatives of order p satisfy a Lipschitz condition imply
that the p-th derivative of ϕ exhibits the same property. Then, apply Theorem 2.2. �

Definition 2.1 We say that x∗ is pth-order stationary of f over the closed and convex set C
if, for all x ∈ C, 0 is a local minimizer of the Taylor polynomial of order p that corresponds to
the univariate function ϕ(t) = f(x∗ + t(x− x∗)) restricted to the constraint x∗ + t(x− x∗) ∈ C.

Counterexample. Unfortunately, it is not true that, when x∗ is a local minimizer of f , it is
also a local minimizer of the associated Taylor polynomial. (As we saw in Theorem 2.2, this
property is indeed true when n = 1.) For example, if f(x1, x2) = x2

2 − x2
1x2 + x4

1, we have that
(0, 0) is a global minimizer of f , but it is not a local minimizer of its Taylor polynomial of order
p = 3.

In the following theorem we prove that, although according to the counterexample above, a
minimizer does not need to minimize the Taylor polynomial, such property is true if the Taylor
polynomial is regularized with a Lipschitz term.

Theorem 2.4 Assume that D ⊂ Rn, f : D → R, and x∗ is a local minimizer of f(x) over D
such that, for all x ∈ D,

f(x) ≤ T p(x∗, x) + γ‖x− x∗‖p+1, (12)

where T p is, as defined in (10), the Taylor polynomial of order p of f around x∗. Then, for all
σ ≥ γ, x∗ is a local minimizer of T p(x

∗, x) + σ‖x− x∗‖p+1 over D.

Proof: Suppose that the thesis is not true. Then, x∗ is not a local minimizer of T p(x
∗, x) +

γ‖x− x∗‖p+1 over D. Thus, there exists {xk} ⊂ D such that limk→∞ x
k = x∗ and

T p(x
∗, xk) + γ‖xk − x∗‖p+1 < T p(x

∗, x∗) = f(x∗).

Thus, by (12),
f(xk) < f(x∗)

for all k = 0, 1, 2, . . . This contradicts the fact that x∗ is a local minimizer of f over D. �

The following definition is motivated by Theorem 2.4.
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Definition 2.2 Assume that D ⊂ Rn, f : D → R, x∗ is such that (12) holds for all x ∈ D,
and that σ ≥ γ. Then x∗ ∈ D is said to be pth-order σ-stationary of f over D if x∗ is a local
minimizer of T p(x

∗, x) + σ‖x− x∗‖p+1 over D.

It is trivial to see that, if D is convex and x∗ is pth-order σ-stationary of f over D according
to Definition 2.2, then it is pth-order σ̃-stationary for every σ̃ ≥ σ and it is also pth-order
stationary according to Definition 2.1. However, pth-order σ-stationarity is strictly stronger
than pth-order stationarity. Consider the function f(x1, x2) = x2

2 − x2
1x2 and p = 3. Note that

x∗ = (0, 0) satisfies (12) with γ = 0. Straightforward calculations show that the point (0, 0),
that is not a local minimizer of f , is pth-order stationary according to Definition 2.1. On the
other hand, (0, 0) is not pth-order σ-stationarity if σ < 1/4. See Figure 1.
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Figure 1: Level sets of T p((0, 0), (x1, x2)) + σ‖(x1, x2) − (0, 0)‖p+1 with p = 3 and σ = 0.125,
where T p((0, 0), (x1, x2)) is the pth-order Taylor polynomial of f(x1, x2) = x2

2 − x2
1x2 (that

coincides with f). The graphic shows that Condition C5 with p = 3 and σ = 0.125 does not
hold at (0, 0), since it is not a local minimizer of the regularized pth-order Taylor polynomial.
There are two local minimizers at “the eyes of the cat”.

At this point it is convenient to summarize the properties of candidates to solutions of
Minimize f(x) subject to x ∈ C, where C is closed and convex. Let us consider the following
conditions with respect to x∗ ∈ C:

C1: x∗ is a local minimizer.

C2: x∗ is a local minimizer of the Taylor polynomial over every feasible segment that passes
through x∗.

7



C3: x∗ is a local minimizer of the Taylor polynomial around x∗.

C4: x∗ is a local minimizer of T p(x
∗, x) + γ‖x− x∗‖p+1, where γ is a Lipschitz constant.

C5: x∗ is a local minimizer of T p(x
∗, x) + σ‖x − x∗‖p+1, where σ > γ and γ is a Lipschitz

constant.

C6: x∗ is a local minimizer of T p(x
∗, x) + σ‖x− x∗‖p+1, where 0 < σ < γ and γ is a Lipschitz

constant.

We proved that C1, C2, C4 and C5 are necessary optimality conditions, while C3 and C6 are
not. We also showed that C1 ⇒ C4 ⇒ C5, and C3 ⇒ C6 ⇒ C4 ⇒ C5. However, C1 does
not imply neither C3 nor C6.

Definition 2.3 We say that an optimality condition is exclusive if it can be verified using only
values of the derivatives up to order p at the point under consideration.

Optimality conditions that are not exclusive are said to be inclusive. Only condition C2
above is exclusive. C4 and C5 are inclusive necessary optimality conditions because they use
information on the Lipschitz constant in a neighborhood of x∗. Thus, the information that they
require is not restricted to derivatives of order at most p at a single point. The annihilation of
the gradient at x∗ and the positive semidefiniteness of the Hessian are exclusive first-order and
second-order necessary optimality conditions for unconstrained optimization. The most natural
high-order exclusive optimality condition for convex constrained optimization is C2. In [27],
an exclusive optimality condition based on curves was presented. However, exclusive necessary
optimality conditions are essentially weaker than inclusive ones. In fact, assume that x∗ satisfies
C5 and that C is an arbitrary exclusive necessary optimality condition. Then, x∗ is a local
minimizer of T p(x

∗, x) + σ‖x − x∗‖p+1, where σ > γ and γ is a Lipschitz constant. Then, x∗

satisfies the exclusive condition C for the minimization of T p(x
∗, x) + σ‖x − x∗‖p+1. Then,

since C is a necessary optimality condition, it is satisfied by x∗ for the local minimization of
T p(x

∗, x) +σ‖x−x∗‖p+1. But all the derivatives up to order p of T p(x
∗, x) +σ‖x−x∗‖p+1 exist

at x∗ and coincide with the derivatives up to order p of f . So, x∗ satisfies C for the minimization
of f .

In order to see that C5 is strictly stronger than C (for every exclusive necessary optimality
condition C), consider the functions f(x1, x2) = x2

2−x2
1x2 and F (x1, x2) = x2

2−x2
1x2 +x4

1. The
origin x∗ = (0, 0) is a local (and global) minimizer of F , therefore, it must satisfy the necessary
exclusive optimality condition C of order p = 3. Since, up to order p = 3, the derivatives of
f and F are the same, it turns out that x∗ satisfies the necessary optimality condition C of
order p = 3, applied to the minimization of f . (Note that x∗ is not a local minimizer of f .)
However, x∗ does not satisfy condition C5 if σ < 1/4. In this case, every σ > 0 is bigger than
the Lipschitz constant of f associated with third-order derivatives, thus, we found an example
in which the exclusive condition C holds but the inclusive condition C5 does not.
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3 Regularized high-order minimization with box constraints

In this section, we consider the problem

Minimize f(x) subject to x ∈ Ω, (13)

where Ω ⊂ Rn is given by
Ω = {x ∈ Rn | ` ≤ x ≤ u} (14)

and `, u ∈ Rn are such that ` < u. We assume that f has continuous first derivatives into
Ω. We denote g(x) = ∇f(x) and g

P
(x) = PΩ(x − g(x)) − x, for all x ∈ Ω, where PΩ is the

Euclidean projection operator onto Ω. In the remaining of this section, the results from [8] that
are relevant to the present work are surveyed and a natural extension of the main algorithm
in [8], that makes it possible to consider a wider class of models, is introduced.

Each iteration k of Algorithm 2.1 introduced in [8] computes a new iterate xk+1 satisfy-
ing (p + 1)th-order descent with respect to f(xk) through the approximate minimization of

a (p + 1)th-regularized model of the function f around the iterate xk. For all x̄ ∈ Rn, let
M x̄ : Rn → R be a “model” of f(x) around x̄; and assume that ∇M x̄(x) exists for all x ∈ Ω. We
now present an algorithm that corresponds to a single iteration of the algorithm introduced in [8].

Algorithm 3.1. Assume that p ∈ {1, 2, 3, . . . }, α > 0, σmin > 0, τ2 ≥ τ1 > 1, θ > 0, and x̄ ∈ Ω
are given.

Step 1. Set σ ← 0.

Step 2. Compute xtrial ∈ Ω such that

M x̄(xtrial) + σ‖xtrial − x̄‖p+1 ≤M x̄(x̄) (15)

and ∥∥∥PΩ

[
xtrial − ∇

(
M x̄(x) + σ‖x− x̄‖p+1

)∣∣
x=xtrial

]
− xtrial

∥∥∥ ≤ θ‖xtrial − x̄‖p. (16)

Step 3. If
f(xtrial) ≤ f(x̄)− α‖xtrial − x̄‖p+1, (17)

then define x+ = xtrial and stop returning x+ and σ. Otherwise, update σ ← max{σmin, τσ}
with τ ∈ [τ1, τ2] and go to Step 2.

Remark. The trial point xtrial computed at Step 2 is intended to be an approximate solution
to the subproblem

Minimize M x̄(x) + σ‖x− x̄‖p+1 subject to x ∈ Ω. (18)

Note that conditions (15) and (16) can always be achieved. In fact, by the compactness of Ω,
if xtrial is a global minimizer of (18), then it satisfies the condition∥∥∥PΩ[xtrial −∇(M x̄(x) + σ‖x− x̄‖p+1)

∣∣
x=xtrial

]− xtrial
∥∥∥ = 0;

and so (16) takes place. In addition, if xtrial is a global minimizer, since x̄ is a feasible point,
(15) must hold as well.
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Assumption A1 There exists L > 0 such that, for all xtrial computed by Algorithm 3.1, x =
xtrial satisfies ∥∥g(x)−∇M x̄(x)

∥∥ ≤ L‖x− x̄‖p, (19)

M x̄(x̄) = f(x̄) and f(x) ≤M x̄(x) + L‖x− x̄‖p+1. (20)

If M x̄(x) is the Taylor polynomial of order p of f around x̄ and the pth-order derivatives
of f satisfy a Lipschitz condition with Lipschitz constant L, then Assumption A1 is satisfied.
However, the situations in which Assumption A1 holds are not restricted to the case in which
M x̄(x) = T p(x̄, x). For example, we may choose M x̄(x) = f(x). (Note that, in this case, p may
be arbitrarily large but only first derivatives of f(x) need to exist.) Although the results in [8]
only mention the choice M x̄(x) = T p(x̄, x), these results only depend on Assumption A1. Thus,
they can be trivially extended to the general choice of M x̄(x).

Theorem 3.1 Suppose that Assumption A1 holds. If the regularization parameter σ in (15)
satisfies σ ≥ L + α, then the trial point xtrial satisfies the sufficient descent condition (17).
Moreover, ∥∥∥g

P
(x+)

∥∥∥ ≤ (L+ τ2 (L+ α) (p+ 1) + θ) ‖x+ − x̄‖p (21)

and

f(x+) ≤ f(x̄)− α

(
‖g
P

(x+)‖
L+ τ2 (L+ α) (p+ 1) + θ

)(p+1)/p

. (22)

Proof: This theorem condensates the results in [8, Lemmas 3.2–3.4]. �

Theorem 3.1 justifies the definition of an algorithm for solving (13) based on repetitive
application of Algorithm 3.1 and shows that such algorithm enjoys good properties in terms of
convergence and complexity. On the one hand, each iteration of the algorithm requires O(1)
functional evaluations and finishes satisfying a suitable sufficient descent condition. On the
other hand, that condition implies that infinitely many iterations with gradient-norm bounded
away from zero are not possible if the function is bounded below. Moreover, (22) leads to a
complexity bound on the number of iterations based on the norm of the projected gradient. In
the following sections, we prove that, thanks to Theorem 3.1, similar convergence and evaluation
complexity properties hold for a coordinate descent algorithm.

4 High-order coordinate descent algorithm

In this section, we consider the problem

Minimize f(x) subject to x ∈ Ω, (23)

where Ω ⊂ Rn is given by
Ω = {x ∈ Rn | ` ≤ x ≤ u} (24)

and `, u ∈ Rn are such that ` < u. We assume that f has continuous first derivatives over Ω.
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At each iteration of the coordinate descent method introduced in this section for solving (23),
(i) a nonempty set of indices Ik ⊆ {1, . . . , n} is selected, (ii) coordinates corresponding to indices
that are not in Ik remain fixed, and (iii) Algorithm 3.1 is applied to the minimization of f over Ω
with respect to the free variables, i.e. variables with indices in Ik. From now on, given v ∈ Rn,
we denote by vI ∈ R|I| the vector whose components are the components of v whose indices
belong to I ⊆ {1, . . . , n}. For all x ∈ Ω, we define gP,I(x) ∈ Rn by

[gP,I(x)]i =

{
[gP (x)]i, if i ∈ I,

0, if i /∈ I.

Since Ω is a box, this definition is equivalent to gP,I(x) = PΩ(x− gI(x))− x, where

[gI(x)]i =

{
[g(x)]i, if i ∈ I,

0, if i /∈ I.

This equivalence, that will be used in the theoretical convergence results below, is not true if Ω
is an arbitrary closed and convex set. This is the reason for which we consider CD algorithms
only with box constraints.

Algorithm 4.1. Assume that p ∈ {1, 2, 3, . . . }, α > 0, σmin > 0, τ2 ≥ τ1 > 1, θ > 0, and x0 ∈ Ω
are given. Initialize k ← 0.

Step 1. Choose a nonempty set Ik ⊆ {1, . . . , n}.

Step 2. Consider the problem

Minimize f(x) subject to x ∈ Ω and xi = xki for all i /∈ Ik. (25)

Let x̄ = xkIk . Setting f , Ω, and M x̄ properly, apply Algorithm 3.1 to obtain x+ and σk.

Step 3. Define xk+1 as xk+1
Ik

= x+ and xk+1
i = xki for all i 6∈ Ik, set k ← k+1, and go to Step 1.

Assumption A2 There exists L > 0 such that for all k, x̄, f , and M x̄ set at the kth iteration

of Algorithm 4.1 and for all xtrial computed by Algorithm 3.1 when called at the kth iteration of
Algorithm 4.1, (19) and (20) take place with x = xtrial.

If M x̄(x) is the Taylor polynomial of order p of f around x̄ and the pth-order derivatives
of f satisfy a Lipschitz condition with Lipschitz constant L, then Assumption A2 is satisfied.

Theorem 4.1 Suppose that Assumption A2 holds. Then, there exists c > 0, which only depends
on L, τ2, α, p, and θ such that, for all k = 0, 1, 2, . . . , the point xk+1 computed by Algorithm 4.1
is well defined and satisfies

f(xk+1) ≤ f(xk)− α‖xk+1 − xk‖p+1 (26)

and ∥∥∥gP,Ik(xk+1)
∥∥∥ ≤ c‖xk+1 − xk‖p. (27)

11



Proof: (26) follows from (17), while (27) follows from the application of Theorem 3.1. �

Theorem 4.2 Suppose that Assumption A2 holds. Let {xk} be the sequence generated by Algo-
rithm 4.1. Then,

lim
k→∞

‖xk+1 − xk‖ = 0, (28)

lim
k→∞

∥∥∥gP,Ik(xk+1)
∥∥∥ = 0, (29)

and
lim
k→∞

∥∥∥gP,Ik(xk)
∥∥∥ = 0. (30)

Proof: Since Ω is compact, we have that f is bounded below onto Ω. Thus, (28) follows
from (26) and, in consequence, (29) follows from (28) and (27). Let us prove (30). Assume
that I ⊆ {1, . . . , n} is nonempty and arbitrary. By the continuity of the gradient, the func-
tion ‖gP,I(x)‖ is continuous for all x ∈ Ω and, since Ω is compact, it is uniformly continuous.
Then, given ε > 0, there exists δI > 0 such that, whenever ‖x − y‖ ≤ δI , we have that
‖gP,I(x)− gP,I(y)‖ ≤ ε/2. Since the number of different subsets of {1, . . . , n} is finite, we have
that δ ≡ min{δI | ∅ 6= I ⊆ {1, . . . , n}} > 0. Thus, for all I ⊆ {1, . . . , n}, if ‖x− y‖ ≤ δ, we have
that ‖gP,I(x) − gP,I(y)‖ ≤ ε/2. Now, by (28), there exists k0 such that, whenever k ≥ k0, we
have that ‖xk+1−xk‖ ≤ δ. Then, by the definition of δ, if k ≥ k0, ‖gP,I(xk+1)−gP,I(xk)‖ ≤ ε/2
for all nonempty I ⊆ {1, . . . , n}. In particular, taking I = Ik, if k ≥ k0, we have that
‖gP,Ik(xk+1)− gP,Ik(xk)‖ ≤ ε/2. Finally, by (29), there exists k1 ≥ k0 such that, for all k ≥ k1,
‖gP,Ik(xk+1)‖ ≤ ε/2. By the triangular inequality, adding the last two inequalities we have that
‖gP,Ik(xk)‖ ≤ ε. Since ε > 0 was arbitrary, this completes the proof of (30). �

The following assumption guarantees that all the indices i ∈ {1, . . . , n} belong to some Ik at
least every m̄ iterations. This guarantees that the CD method tries to reduce the function with
respect to each variable xi infinitely many times.

Assumption A3 There exists m̄ < +∞ such that, for all i ∈ {1, . . . , n}:

1. There exists k ≤ m̄ such that i ∈ Ik;

2. For any k ∈ N, if i ∈ Ik, then there exists m ≤ m̄ such that i ∈ Ik+m.

Note that Assumption A3 allows us to use not only cyclic versions, but also random versions
of the CD method. In particular, the block of coordinates chosen at each iteration can be chosen
at random, with the condition that, every m̄ iterations, all blocks are chosen at least once.

Theorem 4.3 Suppose Assumptions A2 and A3 hold. Let {xk} be the sequence generated by
Algorithm 4.1. Then,

lim
k→∞

‖gP (xk)‖ = 0. (31)

Moreover, if x∗ ∈ Ω is a limit point of {xk}, then we have that ‖gP (x∗)‖ = 0.
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Proof: Let i ∈ {1, . . . , n}. By Assumption A3, there exists an infinite set of increasing indices
K = {k1, k2, k3, . . . } such that i ∈ Ik` and k`+1 ≤ k` + m̄ for all ` = 1, 2, 3, . . . Then, by (30) in
Theorem 4.2, since, by definition, given I ⊆ {1, . . . , n}, [gP,I(x)]i = [gP (x)]i for any i ∈ I,

lim
k∈K

[gP (xk)]i = 0. (32)

Let j ∈ {1, 2, . . . } be arbitrary. By (28), the triangular inequality, and the uniform continuity
of gP , we have that

lim
k∈K
|[gP (xk+j)]i − [gP (xk)]i| = 0.

Therefore, by (32),
lim
k∈K

[gP (xk+j)]i = 0. (33)

In particular, (33) holds for all j = 1, . . . , m̄. This implies that

lim
k→∞

[gP (xk)]i = 0. (34)

Thus, the thesis is proved. �

Theorem 4.3 shows that limit points of sequences generated by Algorithm 4.1 are first-order
stationary. The rest of this section is dedicated to prove that, under suitable conditions, pth-
order stationarity with respect to each variable also holds. More precisely, if the same nonempty
set Ik is repeated infinitely many times, p-stationarity holds in the limit for the variables xi with
i ∈ Ik. For this purpose, we need to define different notions of stationarity.

In Theorem 4.3 we proved that Algorithm 4.1 is satisfactory from the point of view of
first-order stationarity. In the CD approach we cannot advocate for full stationarity of high
order because cross derivatives that involve variables that are never optimized together are not
computed at all. However, if optimization with respect to the same group of variables occurs at
infinitely many iterations, it is reasonable to conjecture that high-order optimality with respect
to those variables would, in the limit, take place. For obtaining such result, it is not enough
to satisfy criteria (15) and (16) when solving subproblems. The reason is that condition (16)
is based on a first-order optimality criterion for problem (18). A stronger assumption on the
subproblem solution is made in the following theorem. Namely, it is assumed that, instead of
requesting (15) and (16), a global solution to subproblem (18) is computed. This assumption
could be rather mild in the case that all the subproblems are chosen to be small dimensional.
In this case, it is possible to prove that, in the limit, suitable pth-order optimality conditions
are satisfied. Observe that partial derivatives that are not necessary for computing Taylor
approximations are not assumed to exist at all, let alone to be continuous.

Theorem 4.4 Suppose that Assumption A2 holds and the sequence {xk} is generated by Algo-
rithm 4.1. Suppose that, at iteration k, the function f has as variables xi with i ∈ Ik, Ω is the
box Ω restricted to the variables i ∈ Ik, M x̄(x) is chosen as the pth-order Taylor polynomial of
f defined in (10), the derivatives involved in (10) exist and are continuous for all x ∈ Ω, and
Algorithm 3.1 computes x+ as a global minimizer of (18). Let K be an infinite set of indices
such that I = Ik for all k ∈ K. Let x∗ be a limit point of the sequence {xk}k∈K . Then, for
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all j ≤ p, x∗ is jth-order stationary of problem (13) according to Definition 2.1 and it is also
jth-order σ-stationary for some σ ≤ τ2(L+ α) according to Definition 2.2 of problem (13).

Proof: Consider the problem

Minimize Tp(x
∗, x) + σ‖x− x∗‖p+1 subject to x ∈ Ω and xi = x∗i for all i /∈ I. (35)

By the hypothesis, for all k ∈ K, x+ is obtained as a global minimizer of

Minimize Tp(x
k, x) + σ‖x− xk‖p+1 subject to x ∈ Ω and xi = xki for all i /∈ I, (36)

for some σ > 0. Then, by Theorem 3.1, xk+1 is a global minimizer of (36) with σ = σk ≤
τ2(L+ α). By (28), limk∈K x

k+1 = limk∈K x
k = x∗. Taking a convenient subsequence, assume,

without loss of generality, that limk∈K σk = σ∗ ≤ τ2(L+ α). Let x ∈ Ω be such that xi = x∗i for
all i /∈ I. Let zk ∈ Ω be such that zki = xi for all i ∈ I and zki = xki for all i /∈ I. Then, by the
definition of xk+1, for all k ∈ K,

Tp(x
k, xk+1) + σk‖xk+1 − xk‖p+1 ≤ Tp(xk, zk) + σk‖zk − xk‖p+1. (37)

Taking limits for k ∈ K, by the definition of zk, we have that

Tp(x
∗, x∗) + σ∗‖x∗ − x∗‖p+1 ≤ Tp(x∗, x) + σ∗‖x− x∗‖p+1. (38)

Since x was arbitrary, this implies that x∗ is a global solution of (35). Consequently, x∗ is also
a local solution of (35). Since the Taylor polynomial of order p of Tp(x

∗, x) + σ∗‖x − x∗‖p+1

coincides with the Taylor polynomial of order p of f , the thesis is proved. �

Remark 1. Theorem 4.4 shows that the convergence of our CD method is related to the inclu-
sive optimality condition given in Definition 2.2, which, as stated in the last two paragraphs of
Section 2, is stronger than every possible exclusive optimality condition.

Remark 2. Note that the hypothesis of Theorem 4.4 implies a stronger thesis than the one
stated. In fact, we proved that, in the limit, each partial Taylor polynomial has a global
minimizer. This is interesting because that fact is not a necessary optimality condition, as it
has been shown in the counterexample exhibited in Section 2. However, since C3 implies C4
and C5, it turns out that x∗ certainly satisfies the inclusive optimality condition C5 according
to Definition 2.3.

Corollary 4.1 Consider the assumptions of Theorem 4.4 and assume that, for all k,

Ik = {mod(k, n) + 1}.

If x∗ is a limit point of the sequence generated by Algorithm 4.1, then for all i = 1, . . . , n, x∗i is
a jth-order stationary point of the problem

Minimize f(x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
n) subject to `i ≤ xi ≤ ui (39)

for all j ≤ p.

Proof: The proof is a direct application of Theorem 4.4. �
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5 Complexity

Given a tolerance ε > 0, we wish to know the worst possible computer effort that we need to
obtain an iterate x at which the objective function is smaller than a given target or the projected
gradient norm ‖gP (x)‖ is smaller than ε. We show that the number of iterations that are needed
to obtain |[gP (xk+1)]i| ≤ ε for all i ∈ Ik is, at most, a constant times ε−(p+1)/p as in typical
high-order methods. However, obtaining |[gP (xk+1)]i| ≤ ε for all i /∈ Ik is harder as, for this
purpose, we need that consecutive iterations be close enough. This difficulty is intrinsic to coor-
dinate descent methods. Powell’s example of non-convergence of CD methods [55] satisfies the
requirement |[gP (xk+1)]i| ≤ ε for all i ∈ Ik at every iteration but never satisfies |[gP (xk+1)]i| ≤ ε
for i /∈ Ik. Our method converges even in Powell’s example because we require sufficient descent
based on regularization but it is affected by Powell’s effect because the number of iterations at
which the distance between consecutive iterates is bigger than a fixed distance grows with the
order p. Then, it is not surprising that our worst-case complexity bound is significantly worse
than O(ε−(p+1)/p). These results are rigorously proved in this section and discussed in Section 6.

Theorem 5.1 Suppose that Assumption A2 holds. Let ftarget ≤ f(x0) and ε > 0 be given.
Then, the quantity of iterations k such that

(i) f(xk+1) > ftarget and

(ii) |[gP (xk+1)]i| > ε for some i ∈ Ik

is bounded by
f(x0)− ftarget

c ε(p+1)/p
, (40)

where c only depends on α, τ2, L, p, and θ.

Proof: By (22) in Theorem 3.1,

f(xk+1) ≤ f(xk)− c‖gP,Ik(xk+1)‖(p+1)/p,

where c = (α/(L+ τ2(L+ α)(p+ 1) + θ))(p+1)/p. Therefore, if i ∈ Ik,

f(xk+1) ≤ f(xk)− c
∣∣∣[gP (xk+1)]i

∣∣∣(p+1)/p
.

So, if
∣∣[gP (xk+1)]i

∣∣ > ε,

f(xk+1) ≤ f(xk)− cε(p+1)/p. (41)

Since the sequence {f(xk)} decreases monotonically, the number of iterations at which (41)
occurs together with f(xk+1) > ftarget cannot exceed (f(x0)−ftarget)/(cε

(p+1)/p). This completes
the proof. �

Theorem 5.2 Suppose that Assumption A2 holds. Let ftarget ≤ f(x0) and δ > 0 be given.
Then, the quantity of iterations k such that f(xk) > ftarget and ‖xk+1 − xk‖ > δ is bounded by

f(x0)− ftarget

α δp+1
. (42)
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Proof: The proof follows directly from (26) in Theorem 4.1. �

Theorem 5.3 Suppose that Assumption A2 holds. Let ftarget ≤ f(x0), ε > 0, and δ > 0 be
given. Then, the quantity of iterations k such that

(i) f(xk+1) > ftarget and

(ii) ‖xk+1 − xk‖ > δ or |[gP (xk+1)]i| > ε for some i ∈ Ik

is bounded by
f(x0)− ftarget

c ε(p+1)/p
+
f(x0)− ftarget

α δp+1
, (43)

where c only depends on α, τ2, L, p, and θ.

Proof: The proof follows directly from Theorems 5.1 and 5.2. �

We now divide the iterations of Algorithm 4.1 in cycles. Each cycle is composed by m̄
iterations, where m̄ is the one assumed to exist in Assumption A3. Therefore, the successive
cycles start at iterations x0, xm̄, x2m̄, . . . , x`m̄, . . . The iterates x`m̄+1, . . . , x`m̄+m̄ are said to be
produced at cycle `. Iterations k = `m̄, . . . , `m̄+ m̄− 1, at which these iterates were produced,
are said to be internal iterations of cycle `. Each iteration k is associated with a set of indices Ik.
Due to Assumption A3, for every coordinate i = 1, . . . , n and every cycle ` ≥ 0, there is at least
an iteration k internal to cycle ` such that i ∈ Ik. In other words, all coordinates are considered
in at least an iteration of every cycle. With the notion of cycle at hand, we can now restate
Theorems 5.1, 5.2, and 5.3 as follows.

Theorem 5.4 Suppose that Assumptions A2 and A3 hold. Let ftarget ≤ f(x0) and ε > 0 be
given. Then, the quantity of cycles ` that contain an internal iteration k such that

(i) f(xk+1) > ftarget and

(ii) |[gP (xk+1)]i| > ε for some i ∈ Ik

is not bigger than
f(x0)− ftarget

c ε(p+1)/p
, (44)

where c only depends on α, τ2, L, p, and θ.

Proof: Let ` be a cycle that contains an internal iteration k satisfying (i) and (ii). By Theo-
rem 5.1, the quantity of this type of iteration is bounded by (44); and so the same bound applies
to the quantity of cycles containing an iteration with these properties. This completes the proof.
�

Theorem 5.5 Suppose that Assumptions A2 and A3 hold. Let ftarget ≤ f(x0) and ε > 0 be
given. Then, the quantity of cycles ` that contain an internal iteration k such that f(xk) > ftarget

and ‖xk+1 − xk‖ > δ is bounded by
f(x0)− ftarget

α δp+1
. (45)
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Proof: Let ` be a cycle that contains an internal iteration k such that f(xk) > ftarget and
‖xk+1−xk‖ > δ. By Theorem 5.2, the quantity of this type of iteration is bounded by (45); and
so the same bound applies to the quantity of cycles containing an iteration with these properties.
This completes the proof. �

Theorem 5.6 Suppose that Assumptions A2 and A3 hold. Let ftarget ≤ f(x0), ε > 0, and δ > 0
be given. Then, the quantity of cycles ` that contain an internal iteration k such that

(i) f(xk+1) > ftarget and

(ii) ‖xk+1 − xk‖ > δ or |[gP (xk+1)]i| > ε for some i ∈ Ik

is bounded by
f(x0)− ftarget

c ε(p+1)/p
+
f(x0)− ftarget

α δp+1
, (46)

where c only depends on α, τ2, L, p, and θ.

Proof: The proof follows directly from Theorems 5.4 and 5.5. �

The following assumption guarantees that small increments cause small differences on the
projected gradients.

Assumption A4 There exists Lg > 0 such that for all i = 1, . . . , n and x, z ∈ Ω,

|[gP (x)]i − [gP (z)]i| ≤ Lg‖x− z‖. (47)

By the non-expansiveness property of projections, Assumption A4 is satisfied if the gradient
of f satisfies a Lipschitz condition with constant Lg.

With the tools given by Assumption A4 and Theorem 5.6, we are now able to establish a
bound on the number of cycles at which the whole projected gradient is bigger than a given
tolerance.

Theorem 5.7 Suppose that Assumptions A2, A3, and A4 hold. Let ftarget ≤ f(x0), ε > 0, and
δ > 0 be given. Then, there exists a cycle `, with ` exceeding (46) by one in the worst case, such
that either

(i) for some iteration k internal to cycle `, we have that f(xk) ≤ ftarget or

(ii) for all the iterations k internal to cycle ` we have that∣∣∣[gP (xk+1)]i

∣∣∣ ≤ ε+ m̄Lgδ for all i = 1, . . . , n. (48)

Proof: By Theorem 5.6, there exists a cycle ` that does not exceeds (46) by more than one such
that, for each iterations k internal to cycle `, either f(xk+1) ≤ ftarget or

‖xk+1 − xk‖ ≤ δ and |[gP (xk+1)]i| ≤ ε for all i ∈ Ik. (49)
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If there exists an iteration k internal to cycle ` such that f(xk+1) ≤ ftarget, then we are done. So,
we assume that, for all iterations k internal to cycle `, (49) holds. Let i ∈ {1, . . . , n} be arbitrary.
Assumption A3 implies that there is an iteration k internal to cycle ` such that i ∈ Ik and, thus,
by (49), |[gP (xk+1)]i| ≤ ε. For any other iterate z produced at cycle `, by Assumption A4, the
triangle inequality, and the first inequality in (49), we have that

|[gP (z)]i − [gP (xk+1)]i| ≤ Lg‖z − xk+1‖ ≤ m̄Lgδ.

Thus,
|[gP (z)]i| ≤ ε+ m̄Lgδ,

as we wanted to prove. �

Theorem 5.8 Suppose that Assumptions A2, A3, and A4 hold. Let ftarget ≤ f(x0), ε > 0, and
δ > 0 be given. Then, there exists a cycle ` of index not larger than

f(x0)− ftarget

c (ε/2)(p+1)/p
+

f(x0)− ftarget

α (ε/(2m̄Lg))p+1
+ 1, (50)

where c only depends on α, τ2, L, p, and θ, such that, in its first internal iteration k, either
f(xk) ≤ ftarget or ∣∣∣[gP (xk+1)]i

∣∣∣ ≤ ε for all i = 1, . . . , n. (51)

Proof: The proof follows from Theorem 5.7 replacing ε with ε/2 and defining δ = ε/(2m̄Lg).
Note that the thesis holds for the first iteration of the cycle because, in fact, due to Theorem 5.7,
it holds for all its iterations. �

The impact of m̄ on the complexity limit is expressed in formula (50). Note that the second
term of (50) grows proportionally to m̄p+1. If n increases and the size of the subproblems
remains bounded, then m̄ grows proportionately to n. Under these conditions, an increase in
the number of iterations proportional to np+1 is expected. Theorems 5.1–5.8 give upper bounds
on the number of iterations of Algorithm 4.1. (Bounds on the number of cycles translate into
bounds on the number of iterations if multiplied by m̄.) The first term of the sequence of
regularization parameters used in Algorithm 3.1 is 0. If the corresponding trial point is rejected,
the second term is σmin. Then, each time that σ needs to be increased, it is multiplied by
a number larger than or equal to τ1. Therefore, by definition, the sequence of σ’s generated
by Algorithm 3.1 is bounded from below by the sequence 0, τ0

1σmin, τ
1
1σmin, τ

2
1σmin, τ

3
1σmin, . . .

Thus, by Theorem 3.1, the number of functional evaluations per call to Algorithm 3.1 at Step 2
of Algorithm 4.1 is bounded by

logτ1((L+ α)/σmin) + 2.

This establishes analogous bounds on the number of functional evaluations of Algorithm 4.1.
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6 Discussion

Theorems 5.4 and 5.5 are complementary for showing that, eventually, Algorithm 4.1 computes
an iterate xk such that ‖g

P
(xk)‖ is smaller than a given tolerance; and that this task employs an

amount of computer time that depends on tolerances and problem parameters. In Theorem 5.4,
we proved that within O(ε−(p+1)/p) iterations Algorithm 4.1 computes a sequence (cycle) of m̄
iterates such that, for each i = 1, . . . , n, there is at least one k such that |[gP (xk+1)]i| ≤ ε. The
number of required iterations for this purpose decreases with p and tends to O(1/ε) when p tends
to infinity. However, this result does not guarantee that the projected gradient norm is smaller
than ε at a single iterate. For this purpose, we need the different iterates within a cycle to be
clustered in a ball of small size. Unfortunately, in order to guarantee that this happens with
tolerance δ, we need, according to Theorem 5.5, O(1/δp+1) iterations. This quantity increases
with p, which seems to indicate that, in the worst case, high-order coordinate descent is less
efficient than low-order coordinate descent.

Examples given by Powell in [55] indicate that, in fact, this may be the case. In these
examples, if coordinate descent is employed with exact coordinate minimization and cyclic coor-
dinate descent, the generated sequence has more than one limit point. So, the distance between
consecutive iterations does not tend to zero. This behavior is not observed if Algorithm 4.1 is
applied because the descent condition (17) implies that lim ‖xk+1 − xk‖ = 0. However, exact
minimization at each iteration evokes the case p =∞ of Algorithm 4.1 in the sense that the trial
point computed as an exact minimizer satisfies the conditions for accepting the trial steps for
any p. So, the conjecture arises that if one applies Algorithm 4.1 to Powell’s examples with dif-
ferent values of p, the resulting sequence, although convergent to a solution, stays an increasing
number of iterations oscillating around Powell’s limiting cycle.

This conjecture is not easy to verify because, except one, Powell’s examples are unstable in
the sense that small perturbations cause convergence to the true minimizers far from the limit
spurious cycle. In any case, we can emulate the application of Algorithm 4.1 to the most famous
of Powell’s examples (slightly modified here):

Minimize f(x1, x2, x3) ≡ −(x1x2 + x1x3 + x2x3) +
3∑
i=1

(|xi| − 0.1)2
+. (52)

If coordinate descent method employing exact coordinate minimization and cyclic coordinate
descent is applied to problem (52) starting from

x0 = (−0.1− ε, 0.1 + ε/2,−0.1− ε/4),

it generates, after six iterations, an iterate x6 that corresponds to x0 with ε substituted with
ε/64, i.e.

x6 = (−0.1− ε/64, 0.1 + ε/128,−0.1− ε/256);

and, in general, for all k,

x6k = (−0.1− ε/64k, 0.1 + ε/(2× 64k),−0.1− ε/(4× 64k)).

In the intermediate iterations, that are not multiples of 6, one has that

x6k+j = (±0.1± ε/νk,j ,±0.1± ε/× νk,j ,±0.1± ε/νk,j)
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where νk,j ≤ 4× 64k+1 for all k, j.
Now, we wish to show that this sequence could be generated by Algorithm 4.1. Moreover, for

any given p, we wish to know how many iterations are necessary to obtain consecutive iterations
such that ‖xk+1 − xk‖ ≤ 0.01. Let

x0 = (−0.1− ε, 0.1 + ε/2,−0.1− ε/4).

The global minimizer of f(x1, x2, x3) subject to x2 = x0
2 and x3 = x0

3 is

z0 = (0.1 + ε/8, 0.1 + ε/2,−0.1− ε/4).

(The iterate x1 in the Powell’s sequence is given by x1 = z0, but we preserve the notation z0 for
the sake of simplicity.) On the one hand,

f(x0) = −(x0
1x

0
2 + x0

1x
0
3 + x0

2x
0
3) +

3∑
i=1

(|x0
i | − 0.1)2

+.

On the other hand, since z0
2 = x0

2 and z0
3 = x0

3,

f(z0) = −(z0
1x

0
2 + z0

1x
0
3 + x0

2x
0
3) + (|z0

1 | − 0.1)2
+ +

3∑
i=2

(|x0
i | − 0.1)2

+.

Therefore,

f(x0)− f(z0) = (z0
1 − x0

1)(x2
0 + x3

0) + (|x0
1| − 0.1)2

+ − (|z0
1 | − 0.1)2

+.

Thus,

f(x0)− f(z0) = ((0.1 + ε/8)− (−0.1− ε))(ε/2− ε/4) + (| − 0.1− ε| − 0.1)2
+ − (|0.1 + ε/8| − 0.1)2

+

= (0.2 + 9ε/8)ε/4 + ε2 − ε2/64 = 0.2ε/4 + 9ε2/32 + ε2 − ε2/64

= 0.2ε/4 + 9ε2/32 + ε2 − ε2/64 = 0.2ε/4 + 81ε2/64 ≥ ε/20.

Consider Algorithm 4.1 using f(x) as the model of the objective function. We must verify
whether (15), (16), and (17) are satisfied with xtrial = z0. Trivially, for σ = 0, (15) and (16)
hold by the definition of the model and the fact that z0 is a global minimizer. In order to show
that (17) also holds, let as assume that ε < 0.1 and 2p+1 ≥ 20α/ε, i.e. α/2p+1 ≤ ε/20. So, by
the calculations above,

f(x0)− f(xtrial) ≥ α/2p+1.

Since ε < 0.1, we have that ‖xtrial − x0‖ ≤ 0.5. Thus,

f(x0)− f(xtrial) ≥ α‖xtrial − x0‖p+1.

This implies (17). Therefore, a sufficient condition for the acceptance of x1 = z0 as an iterate
of Algorithm 4.1 is

α/2p+1 ≤ ε

20× 4× 64k
.
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In other words,
20× 4× 64kα ≤ ε2p+1.

Taking logarithms, this condition is

log2 80 + 6k + log2 α ≤ p+ 1.

That is, if
k0 ≤ (p+ 1− log2 80− log2 α)/6,

the first k0 iterations of Algorithm 4.1 will reproduce the cycling example of Powell. In all these
iterations we have that ‖xk+1 − xk‖ ≥ 0.1. Note that k0 tends to infinity as p tends to infinite,
as we wanted to show. In addition, note also that k0 tends to infinity as α tends to zero, which
reflects the obvious fact that, if we are more tolerant with the acceptance of the trial point, the
probability of staying around Powell’s six-points cycle increases.

It is not sensible to decide about usefulness of algorithms based only on theoretical con-
vergence or complexity results. Since these results deal with worst-case behavior the possibility
exists that a class of problems in which practitioners are interested always exhibit characteristics
that exclude extreme unfortunate cases. However, it is pertinent to examine pure mathematical
properties in order to foster unexpected good or bad computer behaviors.

1. Many optimization users believe that if a smooth function has a minimizer at a point x∗,
then this point is a local minimizer of all its Taylor polynomials. This is true only if the
dimension n is equal to 1. For arbitrary n, it is true only up to second order polynomials.
Examples that illustrates this phenomenon have been given in this paper with the purpose
of justifying adequate high-order optimality conditions (for example, f(x1, x2) = x2

2 −
x2

1x2 + x4
1). This fact implies that, in the vicinity of a global minimizer, a high-order

algorithm may try to find improvements far from the current point, being subject to a
painful sequence of “backtrackings” before obtaining descent. Does this imply that only
quadratic approximations are useful in the minimization context? It is too soon to give a
definite response to this question.

2. Our regularization approach for CD-algorithms makes it impossible to exhibit the cyclic
behavior of Powell’s examples [55]. The reason is that, under regularization descent algo-
rithms, the difference between consecutive iterates tends to zero. However, it seems to be
possible that convergence to zero of consecutive iterates could be very slow, as predicted
by complexity results. Is this an argument for discarding high-order CD algorithms? We
believe that the answer is no, as far as the use of CD algorithms is, in general, moti-
vated by the structure of the problems, which in some sense should evoke some degree
of separability. Moreover, since high-order models are also low-order models one can use
high-order associated with a small p in (15), (16), and (17). In other words, if 1 ≤ q < p,
then the conditions that define a model of order q are satisfied by models of order p.
Therefore, we may use models of order p associated with the regularization required by
models of order q. For example, we may use a second-order model associated to quadratic
regularization preserving first-order convergence results and the corresponding complexity.
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3. It is interesting to consider the case in which we use f(x) as a model for f(x). In this case,
high-order analysis makes a lot of sense. In fact, efficient algorithms for finding global
minimizers of functions of one variable exist, a possibility that decreases very fast as
the number of variables grow. Moreover high-order one-dimensional models are certainly
affordable and many numerical analysis papers handle efficiently the problem of minimizing
or finding roots of univariate polynomials [54]. Recall that, in this case, the model satisfies
the approximation requirements for every value of p. Therefore we may choose the value
of p that promises better efficiency, which, according to Theorem 5.8, should be p = 1
giving complexity O(ε−2) as gradient-like methods.

4. In most practical situations one is interested in finding global minimizers or, at least,
feasible points at which the objective function value is smaller than a given ftarget. Com-
plexity and convergence analyses in the nonconvex world concern only the approximation
to stationary points although every practical algorithm must be devised taking into ac-
count the global implicit goal. It turns out that low coordinate global strategies for finding
initial points are available in many real-life problems. These strategies fit well with CD
algorithms as we will illustrate in Section 7.

5. The reader will observe that in our experiments we used p = 2, in spite that, according
to the complexity results, the optimal p should be 1. The reason is that, as we stated in
the convergence section, the employment of p = 2 guarantees convergence to points that
satisfy second order conditions that are not guaranteed by p = 1. Moreover, subproblems
with p = 2 are computationally affordable in the applications considered. Summing up,
we could say that making an informal balance regarding theoretical results, using p = 2
should be the default choice for practical applications.

7 Implementation and experiments

This section illustrates with numerical experiments the applicability of Algorithm 4.1. The
Multidimensional Scaling (MS) problem [32, 51, 57] adopted for the experiments is described
in Section 7.1. Implementation details of Algorithms 3.1 and 4.1 are described in Section 7.2.
Problem-dependent strategies for generating an initial point and for generating a sequence of
improved initial points are described in Section 7.3. The computational results are shown in
Section 7.4.

7.1 Multidimensional Scaling problem

Multidimensional Scaling methods emerged as statistical tools in Psychophysics and sensory
analysis. The MS problem considered in this section may be described in the following way: Let
x1, . . . , xnp ∈ Rd be a set of unknown points. LetD = (dij) ∈ Rnp×np be such that dij = ‖xi−xj‖;
and assume that only entries {dij | (i, j) ∈ S} for a given S ⊂ {1, . . . , np} × {1, . . . , np} are
known. (Of course, D is symmetric, dii = 0, and (i, j) ∈ S if and only if (j, i) ∈ S.) Then the
MS problem consists of finding x1, . . . , xnp such that ‖xi − xj‖ = dij for all (i, j) ∈ S. Glunt,
Hayden, and Raydan [38] were the first to apply unconstrained continuous optimization tools to
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the nowadays called Molecular Distance Geometry Problem (MDGP), as defined in [44, 45] in a
Multidimensional Scaling context. This problem appears when points x1, . . . , xnp correspond to
the positions of atoms in a molecule and distances not larger than 6 Angstroms (i.e. 6× 10−10

meters) are obtained via nuclear magnetic resonance (NMR) [1]. This problem can be modeled
as the following unconstrained nonlinear optimization problem

Minimize
x1,...,xnp∈Rd

f(x1, . . . , xnp) :=
1

|S|
∑

(i,j)∈S

(
‖xi − xj‖22 − d2

ij

)2
. (53)

7.2 Implementation details

If we wish to apply Algorithm 4.1 to the MDGP problem, it arises quite naturally to associate
at iteration k the set Ik with the components of a point x`(k) ∈ Rd for some `(k) between 1 and

np. Specifically, if we define x = (xT1 , . . . , x
T
np

)T ∈ Rn with n := dnp, then at iteration k we can
define

Ik = {(`(k)− 1)d+ 1, . . . , (`(k)− 1)d+ d} with `(k) = mod(k, np) + 1, (54)

or any alternative choice of `(k) ∈ {1, . . . , np}. This is equivalent to say that, at iteration k, the
subproblem considered at Step 2 of Algorithm 4.1 is given by

Minimize
z∈Rd

f(z), (55)

where f : Rd → R is defined as

f(z) :=
1

|S|

 ∑
(i,j)∈S\S(`(k))

(
‖xi − xj‖22 − d2

ij

)2
+ 2

∑
(i,`(k))∈S

(
‖xi − z‖22 − d2

i,`(k)

)2

 , (56)

S(`(k)) := {(i, j) ∈ S | i = `(k) or j = `(k)}, and `(k) is given by (54). Note that the time
complexity for evaluating f is O(d|S|); while, since the first summation in (56) does not depend
on z, the time complexity for evaluating f is, in average O(d|S|/np).

For approximately solving (55) in Algorithm 3.1, we consider a second-order Taylor expansion
of f at x̄ = xk`(k) ∈ Rd, i.e.

Mx̄(z) := f(x̄) +∇f(x̄)T (z − x̄) + (z − x̄)T∇2f(x̄)T (z − x̄). (57)

This means that the underlying model-based subproblem, when Algorithm 3.1 is used at Step 2
of the kth iteration of Algorithm 4.1 is given by

Minimize
z∈Rd

Mx̄(z) + σ‖z − x̄‖3. (58)

Since problem (53) is unconstrained, i.e. Ω = Rn, subproblems (55) and model-based subprob-
lems (58) are unconstrained as well. Thus, if in (58) and, in consequence, in (17), for x ∈ Rd, we
consider ‖x‖ as ‖x‖3 := (

∑d
i=1 |xi|3)1/3, then the global minimizer of (58) can be easily obtained

at the expense of a single factorization of ∇2f(x̄) ∈ Rd×d, see [9, 19, 49, 50]. (When σ = 0,
(58) may have no solution. This case can be detected with the same cost as well.) Since the
exact global minimizer xtrial of (58) is being computed at Step 2 of Algorithm 3.1, (15) and (16)
always hold, for any θ > 0; thus, in the implementation, their verification can be ignored.
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7.3 Initial guess and multistart strategy

As shown in Section 4, Algorithm 4.1 has convergence properties towards stationary points
which, probably, are local minimizers. Obviously, as we are interested in finding global mini-
mizers of MDGP, we need suitable strategies for choosing initial approximations. We employed
the combination of two different strategies for this purpose. On the one hand, an initial guess
suggested in [37] was adopted. On the other hand, we devised a new coordinate descent pro-
cedure based on the structure of MDGP. The Fang-O’Leary strategy [37], based on shortest
paths over an underlying graph, is a strategy for computing a single initial solution. Starting
from that solution, our new coordinate descent procedure is used iteratively to make successive
improvements on the Fang-O’Leary initial point. At each improvement, Algorithm 4.1 is run
to find a local solution.

In order to describe the Fang-O’Leary strategy [37], consider the weighted graph G =
({1, . . . , np}, S) in which the weight of an edge (i, j) is given by dij . We assume this graph
is connected. Otherwise, the molecule’s structure can not be recovered; and problem (53) can
be decomposed in as many independent problems as connected components of the graph G in
order to recover partial structures. Let S̄ = {1, . . . , np} × {1, . . . , np} \ S, i.e. S̄ corresponds to
the missing arcs in G or, equivalently, the unknown entries of D. For each (i, j) ∈ S, define
d̃ij = dij ; and for each (i, j) ∈ S̄, define d̃ij as the weight of the shortest path between i and j
in G. Matrix D̃ = (d̃ij) is a distance matrix that completes D; but with high probability it is
not an Euclidean distance matrix. Computing D̃ requires O(n2

p) space and has time complex-
ity O(n3

p) (using the Floyd-Warshall algorithm as suggested in [37]), which can be an issue for

instances with large np. Obtaining points x0
1, . . . , x

0
np
∈ Rd from D̃ requires to compute the d

largest positive eigenvalues of the matrix T (D̃) given by T (D̃) := −1
2JD̃J , where J := I− 1

nee
T

and e = (1, . . . , 1)T . If the truncated spectral decomposition of T (D̃) is given by U∆dU
T then

the initial point x0 = ((x0
1)T , . . . , (x0

np
)T )T is given by X = (x0

1, . . . , x
0
np

) = U∆
1/2
d . If the matrix

T (D̃) has only d < d positive eigenvalues, then computed points are in Rd and their last d− d
components can be completed with zeros. In [37], alternative initial guesses are obtained by
perturbations of matrix D̃ and/or by stretching the computed points x0

1, . . . , x
0
np

.
Our coordinate-descent strategy for choosing the initial approximation to the solution of

MDGP is inspired on the structure of local solutions. Consider a point p ∈ R3 and three other
points q1, q2, q3 ∈ R3 such that the distances from p to qi, i = 1, 2, 3, are known, i.e., (p, qi) ∈ S
for i = 1, 2, 3. Assume, in addition, that the required distances are satisfied, i.e., that ‖p− qi‖ is
equal to the corresponding value in matrix D for i = 1, 2, 3. Assume that there is an additional
point q4 for which its known distance d(p, q4) to p is not satisfied. Assume, in addition, that
(‖r(p) − q4‖22 − d(p, q4)2)2 < (‖p − q4‖22 − d(p, q4)2)2, where r(p) is the reflection of p on the
plane determined by qi, i = 1, 2, 3. If there were no more points in the problem, replacing p by
r(p), would produce a reduction in the objective function. Our coordinate descent algorithm
with a coordinate-descent strategy for choosing initial points is described in Algorithm 7.1. The
coordinate-descent strategy for initial approximations, based on this intuition, is described at
Step 4 of Algorithm 7.1.

Algorithm 7.1. Assume x̂ is a given arbitrary initial point (that might be obtained using the
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Fang-O’Leary technique described above).

Step 1. Using x̂ as initial guess, run Algorithm 4.1 until the obtention of an iterate x̃ such
that f(x̃) ≤ ftarget or such that its projected gradient is small enough according to criteria
given below.

Step 2. If f(x̃) ≤ ftarget then stop declaring that x̃ is a global minimizer up to the precision
given by ftarget. Otherwise, update x̂ by means of the coordinate-descent strategy in Step 3
below.

Step 3. For j = 1, . . . , np execute Steps 3.1–3.2.

Step 3.1. Let f̂j :=
∑

(i,j)∈S(‖x̂i − x̂j‖22 − d2
ij)

2.

Step 3.2. For every triplet (i1, i2, i3) such that (i1, j), (i2, j), (i3, j) ∈ S, in an arbitrary order,
if ∑

(i,j)∈S

(‖x̂i − r(x̂j)‖22 − d2
ij)

2 < f̂j ,

where r(x̂j) is the reflection of x̂j on the plane determined by x̂i1 , x̂i2 , and x̂i3 , then update

x̂j ← r(x̂j). (Note that f̂j is not updated at this point. This means that a sequence of
reflections can be applied to x̂j , with a non-monotone behavior of f , provided it improves

the “reference value” f̂j .)

Step 4. If x̂ was not updated at Step 3, then stop returning x̃. (Note that ftarget was not
reached in this case.) Otherwise, go to Step 1.

At Step 1 of Algorithm 7.1, we consider that “the projected gradient is small enough” if,
during np consecutive iterations of Algorithm 4.1, we have that “the final σ” of Algorithm 3.1 is
larger than 1020 or f(xk+1) 6≤ f(xk)− 10−8 min{1, |f(xk)|}. By (26), (27) and the boundedness
of σ, these are practical symptoms of stationarity.

7.4 Computational results

We implemented Algorithms 3.1, 4.1, and 7.1 in Fortran. In the numerical experiments, we
considered, α = 10−8, σmin = 10−8, and τ1 = τ2 = 100, and ftarget = 10−10. All tests were con-
ducted on a computer with a 3.5 GHz Intel Core i7 processor and 16GB 1600 MHz DDR3 RAM
memory, running macOS High Sierra (version 10.13.6). Code was compiled by the GFortran
compiler of GCC (version 8.2.0) with the -O3 optimization directive enabled.

The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank [59] is
an open access repository that provides access to 3D structure data for large biological molecules
(proteins, DNA, and RNA). There are more than 167,000 molecules available. In [37], where
Newton and quasi-Newton methods are applied to problem (53), six protein molecules are con-
sidered, namely, 2IGG, 1RML, 1AK6, 1A24, 3MSP, and 3EZA (see [37, Table 6.9, p.20]); while
in [1], where the Douglas–Rachford method is applied, other six protein molecules are consid-
ered, namely, 1PTQ, 1HOE, 1LFB, 1PHT, 1POA, and 1AX8 (see [1, Table 1, p.313]). In the
first work, only protein atoms (identified with ATOM in the molecule file) were considered;
while in the second work there were considered protein atoms plus atoms in small molecules
(identified with HETATM in the protein molecule file). In the current work, both options were
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considered. Following [37], for each protein molecule, when multiple structures are available,
only the first one was considered. Each molecule is given as the set of 3D coordinates of its
atoms. An instance of problem (53) is built by computing a complete Euclidean distance matrix
and then eliminating distances larger than 6 Angstroms. Since not all molecules have atoms in
small molecules, we arrived to eighteen different instances. Table 1 shows, for each instance, the
number of variables n of the optimization problem (53), the number of atoms np, the number
of distances considered to be known |S|, and the CPU time in seconds required to construct the
initial guess x0 using the Fang-O’Leary strategy [37].

Molecule n np |S| Time x0
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1ptq 1,206 402 14,176 (8.79%) 0.21
1hoe 1,674 558 20,356 (6.55%) 0.49
1lfb 1,923 641 22,870 (5.57%) 0.70
1pht 2,433 811 35,268 (5.37%) 1.41
1poa 2,742 914 33,966 (4.07%) 2.03
2igg 2,919 973 62,574 (6.62%) 2.54
1ax8 3,009 1,003 37,590 (3.74%) 2.76
1rml 6,192 2,064 153,660 (3.61%) 24.14
1ak6 8,214 2,738 224,568 (3.00%) 52.04
1a24 8,856 2,952 212,364 (2.44%) 64.90
3msp 11,940 3,980 262,876 (1.66%) 157.90
3eza 15,441 5,147 356,544 (1.35%) 335.84

A
T

O
M

+
H

E
T

A
T

M 1ptq 1,212 404 14,370 (8.83%) 0.21
1hoe 1,743 581 21,422 (6.36%) 0.55
1pht 2,964 988 44,542 (4.57%) 2.59
1poa 3,201 1,067 41,034 (3.61%) 3.23
1ax8 3,222 1,074 40,866 (3.55%) 3.29
1rml 6,273 2,091 156,550 (3.58%) 23.90

Table 1: Description of the instances built with the molecules considered in [1] or [37].

Note that considered instances are gedanken in the sense that points x̄1, . . . , x̄np ∈ R3 such
that f(x̄) = 0 with x̄T = (x̄T1 , . . . , x̄

T
np

)T are known. Thus, given x∗ such that f(x∗) ≈ 0,
we may wonder whether x∗ is close to x̄. The answer to this question is “Not necessarily.”
since any rotation or translation of x̄ also annihilates f . So the question would be “How close
is x∗ to x̄ after performing the appropriate rotations and translations?”. The answer to this
question is obtained by solving an orthogonal Procrustes problem. Let X̄ = (x̄1, . . . , x̄np) and
X∗ = (x∗1, . . . , x

∗
np

) ∈ R3×np . It is easy to see that matrices X̄J and X∗J have their centroid

at the origin, since X̄Je = X∗Je = 0. (Recall that J = I − 1
np
eeT and e = (1, . . . , 1)T .) The

orthogonal Procrustes problem consists in finding an orthogonal matrix Q ∈ R3×3 which most
closely maps X∗J to X̄J , i.e.

Q = argmin
R∈R3×3

‖RX∗J − X̄J‖2F subject to RRT = I.
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This problem has a closed form solution given by Q = V UT , where UΣV T is the singular value
decomposition of the matrix C := X∗J(X̄J)T . Thus, the measure we were looking for is given
by

E(x∗) := max
{j=1,...,np}

{
E(x∗j )

}
,

where

E(x∗j ) :=
‖[QX∗J − X̄J ]j‖∞
max{1, ‖[X̄J ]j‖∞}

, (59)

and [A]j denotes the jth column of matrix A.
Table 2 shows the performance of Coordinate Descent, the Spectral Projected Gradient

(SPG) method [11, 12, 13, 14], and Gencan [7, 10]. In all cases, the initial point given by
the Fang-O’Leary technique was used. Since problem (53) is unconstrained, applying SPG
corresponds to applying the Spectral Gradient methods as proposed in [38]; while applying
Gencan corresponds to applying a line search Newton’s method as considered in [37]. All three
methods used as stopping criterion f(xk) ≤ ftarget := 10−10. In addition, SPG and Gencan also
stopped if ‖∇f(xk)‖∞ ≤ εopt := 10−8. For all three methods the table shows the number of
iterations (#iter), the CPU time in seconds (Time), the value of the objective function at the
final iterate (f(x∗)), and the error with respect to the known solution (E(x∗)). In addition, the
table shows, for the coordinate descent method the number of evaluations of f ; while it shows for
the other two methods, the number of evaluations of f and ‖∇f(x∗)‖∞. In the table, highlighted
figures in column f(x∗) are the ones that correspond to local minimizers. Highlighted figures
in column E(x∗) correspond to final iterates that are far from the known solution. In most
cases, this fact is associated with having found a local minimizer. However, in some cases, it
corresponds to an alternative global minimizer. We may observe that coordinate descent stands
out as the only method to have found a global minimizer in all the eighteen considered instances.
Figures 2 and 3 illustrate three molecules in which the coordinate descent method found a global
solution while SPG and Gencan found local non-global minimizers. It is worth mentioning that
the numerical experiments reported in [1] show that the Douglas-Rachford method, that requires
an SVD decomposition of a np × np matrix per iteration, with a limit of 5,000 iterations, was
able to reconstruct the two smallest molecules (1PTQ and 1HOE) only. As reported in [1],
the reconstruction of molecules 1LFB and 1PHT was “satisfactory”; while the reconstruction of
molecules 1POA and 1AX8 was “poor”.

At this point the following question arises: how does solving the subproblems with cubically-
regularized second-order models affect the performance of the CD method? To answer this ques-
tion, we solved the same 18 problems tackling the subproblems with quadratically-regularized
linear models. This means that, to approximately solve (55) with Algorithm 3.1, we considered
p = 1. In other words, instead of (57,58), (a) we considered the first-order Taylor expansion
of f at x̄ = xk`(k) ∈ Rd given by Mx̄(z) := f(x̄) +∇f(x̄)T (z − x̄), and (b) we computed xtrial as
the global minimizer of

Minimize
z∈Rd

Mx̄(z) + σ‖z − x̄‖2. (60)

Since (60) has no solution when ∇f(x̄) 6= 0 and σ = 0, we skip the case σ = 0 by substituting
σ ← 0 with σ ← σmin at Step 1 of Algorithm 3.1. Apart from this, the settings for the case
p = 1 were identical to those already described for the case p = 2. Table 3 shows the results.
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Molecule
Coordinate descent Spectral Projected Gradient Gencan

#iter #f Time f(x∗) E(x∗) #iter #f Time f(x∗) ‖∇f(x∗)‖∞ E(x∗) #iter #f Time f(x∗) ‖∇f(x∗)‖∞ E(x∗)
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1ptq 57,671 57,686 0.13 9.99e-11 1.66e-06 333 334 0.05 1.12e-11 3.32e-07 2.60e-06 9 13 0.42 5.82e-13 1.45e-07 2.58e-06
1hoe 135,886 135,907 0.30 9.99e-11 2.36e-06 126 128 0.03 8.52e-11 4.39e-07 3.62e-06 7 10 0.62 5.49e-11 1.26e-06 7.25e-06
1lfb 811,486 811,613 1.79 9.99e-11 7.56e-06 738 755 0.19 1.77e-11 5.19e-07 1.11e-06 13 20 1.15 5.96e-11 1.05e-06 4.27e-06
1pht 786,655 786,831 1.99 9.99e-11 1.79e-05 5,945 6,856 2.50 2.85e-02 5.04e-09 2.08e-01 127 340 28.67 2.85e-02 9.10e-07 2.08e-01
1poa 704,652 704,762 1.59 9.99e-11 9.79e-06 7,367 8,716 3.00 9.95e-11 3.00e-08 5.84e-04 18 19 2.71 1.79e-11 3.68e-07 2.32e-04
2igg 484,388 484,473 1.56 9.99e-11 9.12e-06 304 305 0.21 8.79e-11 3.18e-07 3.43e-06 11 22 4.58 2.45e-13 1.24e-08 2.58e-07
1ax8 353,820 353,895 0.80 9.99e-11 2.54e-06 325 326 0.14 8.11e-11 1.74e-07 2.02e-05 14 20 3.59 7.98e-13 1.97e-08 2.14e-06
1rml 340,528 340,586 1.24 9.99e-11 4.07e-06 236 238 0.39 1.21e-12 9.05e-08 1.46e-06 9 10 30.48 3.77e-13 6.47e-08 1.23e-06
1ak6 15,138,479 15,138,810 229.85 9.99e-11 1.35e-05 1,662 1,755 4.06 5.18e-02 9.92e-09 1.97e-01 166 421 953.67 5.18e-02 7.47e-09 1.97e-01
1a24 2,840,577 2,840,834 9.87 9.99e-11 1.39e-05 322 325 0.74 8.10e-11 5.88e-08 1.15e-05 19 48 74.23 8.76e-12 1.76e-07 7.89e-06
3msp 12,873,352 12,874,426 42.40 9.99e-11 1.61e-05 672 688 1.93 1.41e-10 8.47e-09 1.86e-05 31 55 138.70 1.24e-11 1.56e-08 5.46e-06
3eza 17,122,466 17,123,479 58.89 9.99e-11 1.03e-05 580 586 2.26 4.43e-10 9.66e-09 2.11e-05 23 51 224.11 1.24e-10 3.08e-09 1.18e-05
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M 1ptq 57,640 57,659 0.13 9.99e-11 1.61e-06 334 335 0.05 8.45e-11 2.81e-07 3.60e-05 10 15 0.45 3.83e-17 9.27e-10 2.24e-08
1hoe 129,571 129,590 0.31 9.99e-11 2.25e-06 143 144 0.04 3.48e-11 3.47e-07 2.82e-06 8 11 0.76 8.61e-18 4.80e-10 3.14e-09
1pht 946,496 946,610 8.26 9.99e-11 1.60e-05 1,541 1,608 0.78 1.61e-05 9.85e-09 1.04e-01 21 31 8.48 1.61e-05 1.49e-09 1.04e-01
1poa 409,610 409,655 0.93 9.99e-11 5.20e-05 12,996 15,710 6.43 1.84e-10 9.99e-09 1.57e-02 15 18 4.31 1.93e-11 4.49e-07 1.38e-02
1ax8 308,962 309,026 0.70 9.99e-11 2.18e-06 148 149 0.07 9.43e-11 2.25e-07 1.04e-05 8 11 3.18 1.54e-12 2.35e-07 6.49e-07
1rml 344,977 345,021 1.28 9.99e-11 4.01e-06 305 307 0.52 9.48e-11 1.55e-07 4.36e-05 10 11 36.41 9.82e-17 5.53e-10 4.35e-08

Table 2: Performance of Coordinate Descent, SPG, and Gencan applied to the instances of
problem (53) built with the molecules considered in [1] or [37].

1AK6 1PHT 1POA

Figure 2: Representation of molecules 1AK6, 1PHT, and 1POA for which Coordinate Descent
found a global minimizer; while SPG and Gencan found a local minimizer.

The numbers in the table show that the method found a global solution in all instances, a
feature shared with its counterpart with p = 2. (Only in one instance an alternative global
minimizer was found.) The numbers in the table also show that, on average, the method does
1.0001 function evaluations per iteration when p = 2, while that same amount is 1.5000 when
p = 1. This means that, on the one hand, in the case p = 1, half of the times the solution of the
regularized model is discarded for not satisfying the descent condition and the regularization
parameter must be increased. On the other hand, this situation is extremely rare (once every
ten thousand iterations) when p = 2. Moreover, the method with p = 1 uses, on average, 26
times more iterations, 39 times more function evaluations and 22 times more time than the case
p = 2. The conclusion is that using quadratic models with cubic regularization whose global
solution can be calculated using the method introduced in [9], greatly improves the performance
of the proposed method.

Another natural question that arises is whether the tendency of the coordinate descent
method in finding global minimizers could be observed in a larger set of instances. To check
this hypothesis, we downloaded 64 additional random molecules with no more than 6,000 atoms
from the ones that were uploaded in 2020; 56 of which have, other than protein atoms, atoms in
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Figure 3: Molecules 1AK6, 1PHT, and 1POA for which Coordinate Descent found a global
minimizer; while SPG and Gencan found a local minimizer. To the naked eye, solutions would
appear to be indistinguishable. Therefore, the figures show, for each point x∗1, . . . , x

∗
np

, the value
of E(x∗j ) as defined in (59).

small molecules. However there were 19 molecules for which, considering protein atoms only or
protein atoms plus atoms in small molecules, the graph associated with the incomplete Euclidean
matrix obtained by eliminating distances larger than 6 Angstroms is disconnected. Therefore,
we were left with 45 and 37 molecules in each set, totalizing 82 new instances. Table 4 shows
the performance of Coordinate Descent and SPG when applied to the 45 instances that consider
protein atoms only; while Table 5 shows the performance of both methods when applied to the
37 instances that consider protein atoms plus atoms in small molecules. In the 45 instances in
Table 4, Coordinate Descent found 37 global minimizers; while SPG found 30 global minimizers.
In the 37 instances in Table 5, Coordinate Descent found 30 global minimizers; while SPG found
26 global minimizers.
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Molecule
Coordinate descent with p = 1

#iter #f Time f(x∗) E(x∗)

A
T
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ly

1ptq 1,115,103 1,672,658 1.97 9.99e-11 3.98e-05
1hoe 1,862,919 2,794,382 3.10 9.99e-11 2.04e-06
1lfb 7,059,295 10,588,949 9.50 9.99e-11 7.52e-06
1pht 21,056,147 31,584,233 38.52 9.99e-11 2.73e-04
1poa 107,284,920 160,927,383 105.32 9.99e-11 5.85e-04
2igg 3,602,906 5,404,362 30.38 9.99e-11 8.43e-06
1ax8 2,059,932 3,089,901 4.56 9.99e-11 4.05e-06
1rml 9,186,681 13,780,025 98.21 9.99e-11 3.23e-06
1ak6 160,256,027 240,384,044 465.43 9.99e-11 1.62e-05
1a24 79,008,635 118,512,956 238.59 9.99e-11 1.40e-05
3msp 236,434,288 354,651,435 458.60 9.99e-11 1.61e-05
3eza 34,134,889 51,202,336 216.98 9.99e-11 1.07e-05
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+
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M 1ptq 1,466,069 2199,107 2.30 9.97e-11 4.26e-05
1hoe 683,645 1025,474 3.53 9.99e-11 1.98e-06
1pht 16,112,116 24168,177 23.29 9.99e-11 3.38e-05
1poa 32,496,533 48744,802 34.40 9.99e-11 1.46e-02
1ax8 6,829,569 10244,357 9.37 9.99e-11 2.47e-06
1rml 2,302,956 3454,437 87.64 9.99e-11 1.99e-06

Table 3: Performance of Coordinate Descent with p = 1, i.e. considering quadratically-
regularized linear models for solving subproblems, applied to the same instances already shown
in Table 2.

8 Conclusions

Methods based on high-order models for optimization are difficult to implement due to the
necessity of computing and storing high-order derivatives and the complexity of solving the
subproblems. These difficulties are not so serious if the subproblems are low-dimensional, which
is the most frequent situation in the case of CD methods. In the extreme case, in which one solves
only univariate problems, the number of high-order partial derivatives that are necessary is a
small multiple of the number of variables. Therefore, the theory that shows that CD algorithms
with high-order models enjoy good convergence and complexity properties seems to be useful
to support the efficiency of practical implementations. In this context, higher-order techniques
allow to escape from attraction points that tend to satisfy lower-order optimality conditions; see
[49].

Sometimes the fulfillment of a necessary high-order optimality condition can be expressed
as fulfillment of Φ(x) = 0, where Φ is a continuous nonnegative function. In this case, it makes
sense to say that Φ(x) ≤ ε is an approximate high-order optimality condition. Moreover, instead
of requiring globality for the solution to the regularized model-based subproblem (18), we may
require only that Φ(xk+1)→ 0 when k → +∞, where Φ corresponds to the high-order optimality
condition of (18). Careful choices of Φ and the subproblems’ stopping criterion may give rise
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Molecule n np |S| Time x0 Coordinate descent Spectral Projected Gradient
#iter #f Time f(x∗) E(x∗) #iter #f Time f(x∗) ‖∇f(x∗)‖∞ E(x∗)

6kbq 7,554 2,518 98,650 1.56 40.49 10,543,341 10,543,995 36.22 9.99e-11 2.65e-05 810 911 0.96 2.65e-02 7.65e-09 1.87e-01
6kc2 7,530 2,510 98,480 1.56 39.97 7,682,589 7,683,021 20.93 9.99e-11 2.62e-05 954 984 1.11 4.48e-12 3.43e-08 1.29e-05
6khu 3,147 1,049 39,372 3.58 3.09 ,316,876 316,959 0.83 9.99e-11 6.12e-06 411 413 0.19 5.66e-11 1.05e-06 7.83e-06
6kir 3,861 1,287 48,596 2.94 5.58 7,574,444 7,574,767 54.37 1.60e-03 1.50e-01 871 895 0.49 5.27e-11 1.01e-07 3.82e-05
6kk9 17,538 5,846 218,662 0.64 479.82 215,549,505 215,561,546 712.59 9.29e-01 1.19e+00 6,262 7,030 17.33 9.09e-01 9.83e-09 1.15e+00
6kki 8,193 2,731 109,472 1.47 53.06 2,113,286 2,113,472 5.68 9.99e-11 5.04e-06 432 434 0.56 9.34e-11 1.33e-07 2.99e-05
6kkj 7,866 2,622 105,642 1.54 47.70 4,068,836 4,070,082 10.88 9.99e-11 5.18e-06 5,868 6,787 7.70 3.24e-10 9.99e-09 1.58e-03
6kkl 8,262 2,754 112,646 1.49 54.76 6,064263 6,064,648 16.61 9.99e-11 5.68e-06 592 604 0.78 9.47e-11 5.99e-08 6.48e-06
6kkv 14,607 4,869 357,016 1.51 290.74 31,543,917 31,545,196 128.60 9.99e-11 1.86e-05 1,095 1,140 4.65 2.88e-11 6.93e-08 2.00e-06
6kx0 9,885 3,295 128,930 1.19 91.69 38,237,232 38,239,417 196.30 1.57e-01 1.02e+00 1,428 1,546 2.26 1.57e-01 9.87e-09 1.02e+00
6kys 5,442 1,814 70,296 2.14 16.13 984,382 984,559 2.49 9.99e-11 4.00e-06 359 360 0.29 8.44e-11 1.22e-07 2.95e-05
6l29 5,427 1,809 70,480 2.15 16.68 965,426 965,620 2.49 9.99e-11 4.51e-06 433 436 0.36 8.43e-11 7.93e-07 8.26e-06
6l2a 2,463 821 29,876 4.44 1.55 411,298 411,381 1.04 9.99e-11 5.55e-06 1,612 1,699 0.59 9.95e-11 7.47e-08 6.46e-05
6laf 8,442 2,814 105,164 1.33 58.06 31,413,895 31,418,665 104.66 9.99e-11 2.51e-05 7,706 9,068 10.22 1.53e-02 9.76e-09 2.74e-01
6li7 7,515 2,505 98,374 1.57 40.21 10,533,446 10,534,072 37.27 9.99e-11 2.64e-05 698 713 0.83 8.73e-11 4.32e-07 1.54e-05
6lik 7,515 2,505 97,354 1.55 39.67 7,579,646 7,580,087 19.88 9.99e-11 2.63e-05 727 749 0.85 8.89e-11 2.61e-07 6.42e-05
6lty 5,964 1,988 73,296 1.86 19.95 3,800,264 3,800,792 9.82 9.99e-11 7.86e-06 672 683 0.58 9.76e-11 9.54e-08 1.78e-05
6ltz 3,432 1,144 41,230 3.15 3.97 ,975,177 975,323 2.48 9.99e-11 3.13e-06 8,025 9,404 4.08 1.27e-10 9.94e-09 9.66e-04

6m37 9,999 3,333 125,394 1.13 91.51 130,035,728 130,040,179 422.49 5.07e-02 4.33e-01 4,936 5,479 7.63 5.06e-02 9.99e-09 4.30e-01
6m5n 5,781 1,927 73,890 1.99 18.48 8,183,149 8,183,657 27.54 9.99e-11 6.22e-06 6,419 7,461 5.81 3.06e-03 9.98e-09 2.74e-01
6m6j 759 253 13,914 21.82 0.07 13,076 13,076 0.04 9.99e-11 1.84e-06 59 61 0.01 3.99e-12 1.99e-07 6.82e-07
6m6k 747 249 13,672 22.14 0.07 11,376 11,376 0.04 9.97e-11 1.29e-06 53 55 0.01 2.83e-11 5.59e-07 1.41e-06
6pq0 6,087 2 029 84,104 2.04 22.54 2,346,681 2,346,842 31.31 9.99e-11 3.83e-06 440 442 0.43 2.39e-04 8.43e-09 1.83e-01
6pup 4,035 1,345 50,372 2.79 6.57 544,519 544,617 1.42 9.99e-11 4.87e-06 409 410 0.24 2.52e-11 7.99e-08 2.38e-05
6pxf 4,944 1,648 64,944 2.39 11.70 811,879 812,002 2.13 9.99e-11 2.77e-05 4,907 5,583 3.88 1.81e-10 9.41e-09 2.91e-03
6q08 741 247 13,232 21.78 0.07 22,723 22,744 0.07 9.99e-11 7.19e-06 173 176 0.03 5.75e-11 1.85e-06 3.82e-06
6sx6 2,340 780 44,862 7.38 1.28 143,230 143,260 0.49 9.99e-11 2.50e-06 136 137 0.07 5.51e-12 1.80e-07 2.60e-07
6syk 2,718 906 54,052 6.59 1.99 156,648 156,707 0.55 9.99e-11 2.50e-06 585 592 0.36 9.41e-12 2.34e-07 1.42e-05
6t1z 8,943 2,981 119,580 1.35 65.75 14,818,888 14,819,492 40.30 9.99e-11 8.88e-06 3,247 3,539 4.71 9.94e-11 1.37e-08 2.70e-04
6tad 4,362 1,454 58,736 2.78 8.07 2,385,243 2,385,423 6.35 9.99e-11 6.84e-06 632 643 0.44 7.87e-11 3.81e-07 5.70e-06
6twe 7,902 2,634 163,598 2.36 0.18 5,773,930 5,774,426 20.85 9.99e-11 8.20e-06 598 612 1.16 7.04e-11 1.66e-07 6.93e-06
6ubh 9,009 3,003 113,766 1.26 69.74 8,782,138 8,782,736 22.99 9.99e-11 1.64e-05 3,565 4,019 4.95 1.23e-10 9.86e-09 1.63e-03
6ucd 8,199 2,733 97,910 1.31 52.10 86,618,396 86,621,926 278.99 1.35e+00 1.88e+00 9,391 11,180 11.51 9.92e-01 9.29e-09 1.10e+00
6veh 7,431 2,477 182,676 2.98 42.54 4,087,012 4,087,391 16.46 9.99e-11 1.43e-05 658 662 1.37 3.50e-11 1.38e-07 5.83e-06
6vk2 4,704 1,568 108,520 4.42 11.94 463,141 463,360 1.79 9.99e-11 9.46e-06 3,069 3,419 3.95 1.40e-10 9.62e-09 2.22e-03
6vnz 1,392 464 25,364 11.81 0.32 88,484 88,530 0.29 9.99e-11 3.40e-06 206 208 0.06 6.02e-11 2.16e-07 4.36e-06
6vv6 7,464 2,488 92,878 1.50 45.42 7,583,602 7,584,292 33.37 9.99e-11 4.04e-06 1,846 1,943 2.05 6.23e-02 1.00e-08 2.23e-01
6vv7 7,452 2,484 93,102 1.51 44.46 7,692,189 7,692,886 41.06 9.99e-11 3.80e-06 1,981 2,233 2.26 1.07e-01 7.39e-09 2.23e-01
6vv9 7,452 2,484 92,506 1.50 44.29 6,251,096 6,251,759 29.79 9.99e-11 3.11e-06 1,022 1,040 1.14 7.95e-02 1.25e-09 2.17e-01
6wcr 11,766 3,922 151,164 0.98 158.07 118,185,068 118,209,777 421.33 1.67e-01 3.74e-01 7,460 8,498 13.92 1.99e-01 9.96e-09 2.38e-01
6yuc 8,637 2,879 107,258 1.29 60.03 17,737,727 17,738,988 117.20 3.77e-01 6.86e-01 1,450 1,668 1.91 1.09e-04 9.93e-09 1.19e-01
6z4c 5,838 1,946 72,838 1.92 18.87 1,951,179 1,951,337 5.00 9.99e-11 2.72e-06 369 370 0.31 6.24e-11 2.43e-07 2.91e-06
6zcm 7,899 2,633 102,030 1.47 46.05 12,338,443 12,339,335 40.78 9.99e-11 2.53e-05 7,445 8,812 9.41 1.38e-10 9.93e-09 9.87e-04
7ckj 4,731 1,577 59,608 2.40 10.24 2,681,962 2,682,163 11.61 9.99e-11 3.27e-06 768 784 0.54 6.51e-07 5.85e-09 2.03e-01
7jjl 9,690 3,230 125,976 1.21 83.34 77,851,519 77,854,837 303.65 4.82e-01 4.52e-01 4,830 5,451 7.49 7.94e-01 8.12e-09 4.73e-01

Table 4: Performance of Coordinate Descent and SPG methods in the 46 instances that consider
protein atoms only.

to complexity results associated with the attainment of these high-order optimality conditions,
see [27, 28, 29]. This will be the subject of future research.

In this paper the defined algorithms were applied to the identification of proteins under
NMR data. Moreover, we extended the CD approach to the computation of a suitable initial
approximation that avoids, in many cases, the convergence to local non-global minimizers. Our
choice of the most adequate parameter p, that defines the approximating models, and the strat-
egy for choosing the groups of variables were dictated by theoretical considerations discussed
in Section 6 and by the specific characteristics of the problem. Our computing results are fully
reproducible and the codes are available in http://www.ime.usp.br/~egbirgin/.

In future works we will apply the new CD techniques to the case in which data uncertainty
is present and outliers are likely to occur. Possible improvements also include the choice of
different models at each iteration or at each group of variables with the aim of making a better
use of current information.
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Molecule n np |S| Time x0 Coordinate descent Spectral Projected Gradient
#iter #f Time f(x∗) E(x∗) #iter #f Time f(x∗) ‖∇f(x∗)‖∞ E(x∗)

6kbq 8,106 2,702 108,066 ( 1.48%) 50.64 6,476,123 6,476,435 17.57 9.99D-11 2.35D-05 571 580 0.71 9.97D-11 6.32D-08 1.85D-05
6kc2 8,397 2,799 111,198 ( 1.42%) 56.89 15,115,487 15,118,534 50.50 9.99D-11 2.15D-01 1,102 1,121 1.42 4.03D-10 9.36D-09 2.19D-01
6khu 3,465 1,155 44,672 ( 3.35%) 4.24 334,415 334,473 0.87 9.99D-11 6.35D-06 490 500 0.25 6.20D-11 1.63D-06 7.45D-06
6kir 4,203 1,401 54,634 ( 2.79%) 7.42 560,278 560,406 1.49 9.99D-11 4.20D-06 450 454 0.28 9.28D-11 4.63D-07 6.28D-05
6kk9 17,895 5,965 225,776 ( 0.63%) 515.33 202,467,161 202,477,953 691.77 4.00D-01 3.09D-01 5,084 5,637 13.87 3.82D-01 9.95D-09 3.70D-01
6kki 8,364 2,788 111,596 ( 1.44%) 56.23 2,049,210 2,049,408 5.51 9.99D-11 3.93D-06 592 594 0.76 9.92D-11 1.13D-07 5.68D-05
6kkj 7,992 2,664 106,472 ( 1.50%) 49.62 17,809,921 17,816,613 132.85 9.54D-04 2.81D-01 2,921 3,188 3.67 9.54D-04 9.12D-09 2.81D-01
6kkl 8,421 2,807 114,184 ( 1.45%) 58.35 6,082,607 6,082,924 16.57 9.99D-11 5.67D-06 521 537 0.70 6.88D-11 2.32D-07 6.82D-06
6kkv 14,820 4,940 364,756 ( 1.49%) 304.81 27,357,834 27,358,998 113.43 9.99D-11 1.80D-05 1,193 1,220 5.01 7.35D-10 7.99D-09 4.74D-05
6kx0 10,044 3,348 131,624 ( 1.17%) 94.64 45,983,700 45,985,561 226.68 7.16D-02 2.47D-01 1,044 1,096 1.61 1.78D-01 9.27D-09 1.01D+00
6kys 5,886 1,962 77,926 ( 2.03%) 20.28 816,852 816,930 2.19 9.99D-11 3.60D-06 2,389 2,688 2.22 9.98D-11 3.11D-08 1.72D-04
6l29 5,841 1,947 77,602 ( 2.05%) 19.25 1,807,474 1,807,572 18.75 9.99D-11 1.26D-01 589 592 0.52 5.31D-04 4.39D-09 1.60D-01
6l2a 2,643 881 32,644 ( 4.21%) 1.82 787,753 787,881 4.57 9.99D-11 5.77D-06 1,769 1,892 0.67 1.79D-10 9.03D-09 1.24D-01
6laf 8,535 2,845 106,084 ( 1.31%) 57.40 38,880,745 38,890,853 174.71 1.57D-02 3.40D-01 10,824 12,773 13.95 1.71D-02 9.71D-09 3.41D-01
6li7 8,520 2,840 114,120 ( 1.42%) 57.40 6,141,620 6,141,906 16.33 9.99D-11 2.29D-05 443 453 0.58 9.37D-11 5.62D-08 1.50D-05
6lik 8,208 2,736 108,364 ( 1.45%) 51.66 12,686,358 12,686,897 52.81 9.99D-11 2.48D-05 7,235 8,363 9.40 2.99D-03 9.91D-09 1.81D-01
6ltz 3,798 1,266 47,246 ( 2.95%) 5.62 767,531 767,612 1.93 9.99D-11 7.56D-06 985 1,002 0.54 9.73D-11 5.68D-08 1.28D-04

6m5n 6,687 2,229 88,996 ( 1.79%) 29.41 2,380,904 2,381,175 6.33 9.99D-11 1.41D-01 14,921 17,730 15.90 6.98D-10 9.55D-09 1.42D-01
6m6j 840 280 15,602 (19.97%) 0.09 18,319 18,319 0.06 9.99D-11 1.86D-06 76 78 0.01 9.94D-11 3.25D-07 2.06D-06
6m6k 828 276 15,388 (20.27%) 0.09 15,964 15,964 0.05 9.99D-11 1.63D-06 74 76 0.01 1.00D-11 3.36D-07 7.45D-07
6pq0 6,360 2,120 89,018 ( 1.98%) 0.12 1,086,898 1,086,994 12.19 9.99D-11 3.98D-06 3,540 4,285 3.81 9.00D-11 1.21D-07 6.60D-05
6pup 4,272 1,424 55,442 ( 2.74%) 7.63 593,071 593,135 1.55 9.99D-11 3.60D-06 363 372 0.23 3.28D-11 6.55D-07 2.12D-06
6pxf 5,661 1,887 76,154 ( 2.14%) 17.47 6,753,157 6,775,873 25.50 9.97D-11 1.10D-01 4,541 5,069 4.07 1.04D-05 9.49D-09 1.16D-01
6t1z 9,492 3,164 127,488 ( 1.27%) 79.93 3,427,330 3,427,847 9.17 9.99D-11 1.14D-02 7,688 9,017 11.70 2.94D-10 9.82D-09 1.23D-02
6tad 5,172 1,724 71,178 ( 2.40%) 13.52 1,050,635 1,050,702 2.89 9.99D-11 3.64D-06 273 275 0.22 9.83D-11 3.61D-08 3.95D-06
6twe 7,905 2,635 163,694 ( 2.36%) 45.84 5,768,235 5,768,740 20.83 9.99D-11 8.19D-06 637 643 1.17 9.14D-11 1.78D-07 8.01D-06
6ubh 9,999 3,333 130,348 ( 1.17%) 91.62 22,598,823 22,602,027 107.35 9.99D-11 3.60D-01 1,234 1,279 1.90 6.89D-11 3.25D-07 3.63D-01
6veh 7,566 2,522 186,586 ( 2.93%) 42.40 4,241,879 4,242,258 17.14 9.99D-11 1.52D-05 381 384 0.80 8.74D-11 2.80D-07 4.54D-05
6vv6 8,169 2,723 107,072 ( 1.44%) 52.54 2,824,276 2,824,520 7.62 9.99D-11 9.75D-06 391 395 0.49 7.43D-11 8.50D-08 3.05D-06
6vv7 8,247 2,749 109,326 ( 1.45%) 52.54 3,807,178 3,807,395 10.23 9.99D-11 2.33D-06 4,434 5,002 5.83 5.68D-11 3.59D-07 2.89D-04
6vv9 8,250 2,750 108,784 ( 1.44%) 52.41 3,494,562 3,494,812 9.30 9.99D-11 8.41D-06 404 409 0.51 6.69D-11 2.00D-07 7.49D-06
6wcr 12,225 4,075 157,032 ( 0.95%) 167.40 229,852,446 229,885,273 721.26 9.77D-05 8.68D-02 6,972 7,906 13.17 8.93D-02 9.97D-09 1.97D-01
6yuc 8,640 2,880 107,366 ( 1.29%) 59.34 50,987,720 50,988,983 203.00 1.09D-04 1.19D-01 1,879 1,942 2.37 1.09D-04 7.65D-09 1.19D-01
6z4c 5,994 1,998 76,300 ( 1.91%) 20.35 1,697,728 1,697,882 4.45 9.99D-11 2.95D-06 270 271 0.24 9.71D-11 2.20D-07 3.12D-06
6zcm 9,696 3,232 135,448 ( 1.30%) 83.59 6,978,627 6,978,943 19.30 9.99D-11 7.42D-06 2,131 2,288 3.43 9.67D-11 5.81D-08 1.55D-04
7ckj 5,199 1,733 68,624 ( 2.29%) 13.55 1,630,610 1,630,694 10.52 9.99D-11 4.11D-06 541 549 0.43 2.14D-05 9.60D-09 1.96D-01
7jjl 9,693 3,231 126,082 ( 1.21%) 83.84 102,233,476 102,237,339 369.96 2.46D-01 3.25D-01 5,332 6,097 8.12 7.94D-01 8.91D-09 4.73D-01

Table 5: Performance of Coordinate Descent and SPG methods in the 37 instances that consider
protein atoms plus atoms in small molecules.

Data availability: The datasets generated during and/or analyzed during the current study
are available in the corresponding author web page, http://www.ime.usp.br/~egbirgin/.
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