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Abstract. The problem of covering a region of the plane with a fixed number of minimum-radius
identical balls is studied in the present work. An explicit construction of bi-Lipschitz mappings is
provided to model small perturbations of the union of balls. This allows us to obtain analytical
expressions for first- and second-order derivatives of the cost functional using nonsmooth shape
optimization techniques under appropriate regularity assumptions. For regions defined as the union
of disjoint convex polygons, algorithms based on Voronoi diagrams that do not rely on approximations
are given to compute the derivatives. Extensive numerical experiments illustrate the capabilities and
limitations of the introduced approach.
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1. Introduction. The problem of covering a region of the plane with a fixed
number of minimum-radius identical balls is studied in the present work by expanding
the nonsmooth shape optimization approach introduced in [7]. The main challenge in
this previous work was the the first-order shape sensitivity analysis with respect to
perturbations of the balls' centers and radii. Therefore, investigating the second-order
shape sensitivity is a natural, albeit challenging, extension of [7].

Shape optimization is the study of optimization problems where the variable is
a geometric object; see [14, 19, 36]. One of the key concepts in this discipline is the
notion of shape derivative, which measures the sensitivity of functions with respect to
perturbations of the geometry. The theoretical study of second-order shape derivatives
is a difficult topic in shape optimization. There exists an abundant literature on the
shape Hessian in the smooth setting [11, 12, 14, 36]; while in the nonsmooth setting
it is still an active research topic [26, 27]. Numerical methods based on second-order
shape derivative are rarely used in shape optimization due to several obstacles. First,
the second-order shape derivative is often difficult to compute and costly to implement
numerically, especially when partial differential equations are involved. Second, the
shape Hessian presents several theoretical issues, such as the two norms-discrepancy
and lack of coercivity, which have been extensively studied in control problems; see
[1, 11, 16] and the references therein. There exist only few attempts at defining
numerical methods based on second-order information in shape optimization. In [15],
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a regularized shape-Newton method is introduced to solve an inverse problem for star-
shaped geometries. Second-order preconditioning of the shape gradient has been used
in [21] for image segmentation and in [3, 34] for aerodynamic optimization. Automatic
shape differentiation has also been successfully employed to compute first- and second-
order shape derivatives [18, 33]. We also observe that the numerical investigations
using Newton-type algorithms [15, 21] are set in a relatively smooth setting. In [27],
the shape Hessian was calculated for nonsmooth geometries and polygons in a form
that was convenient for numerical experiments, but no numerical investigations were
performed. To the best of our knowledge, the present paper is the first attempt at
designing and analyzing a shape-Newton algorithm in a genuinely nonsmooth setting.

From a theoretical perspective, the main achievement of [7] was to build bi-
Lipschitz transformations to model the geometry perturbations corresponding to cov-
ering with identical balls. In the present work, these transformations are key elements
for the calculation of the second-order shape derivative, which, unlike the first-order
shape derivative, differs from the expression that would be obtained in a smooth set-
ting. Indeed, for the piecewise smooth shapes considered in the covering problem,
various terms with a support at singular boundary points, typically circles intersec-
tion, appear in the shape Hessian.

Due to the generality of the regions to be covered considered in [7], in the presented
numerical experiments, the function that measures the covering and its first-order
derivatives were approximated with discretization strategies that may be very time
consuming if high precision is required. In the present work, by restricting the region
to be covered to be the union of disjoint convex polygons, algorithms based on Voronoi
diagrams to compute the covering function and its first- and second-order derivatives
without relying on approximations are given.

The problem of covering a two-dimensional region with identical balls has al-
ready been considered in the literature. Covering equilateral triangles and squares
was considered in [31, 32], respectively, while covering the union and difference of
polygons was considered in [37]. The covering of rectangles, triangles, squares and
arbitrary regions was considered in [20, 29, 30, 40], respectively. However, the prob-
lem addressed in [40] actually consists of covering an arbitrary set of points, which
is substantially different from the problem of covering an entire region. All of these
papers approach the problem as an optimization problem. In [20, 29, 30] a simulated
annealing approach with local search in which the centers of the balls are chosen as
points on an adaptive mesh is considered. In [31, 32], a discrete rule is used to de-
fine the radius; while a Broyden--Fletcher--Goldfarb--Shanno (BFGS) method is used
to solve subproblems in which the radius is fixed. A feasible direction method that
requires solving a linear programming problem at each iteration was proposed in [37].
None of the mentioned works addresses the problem in a unified way as a continuous
optimization problem, nor do they present first- or second-order derivatives of the
functions that define the problem. In [5], the problem of covering an arbitrary region
is modeled as a nonlinear semidefinite programming problem using convex algebraic
geometry tools. The introduced model describes the covering problem without resort-
ing to discretizations, but it depends on some polynomials of unknown degrees whose
coefficients are difficult to compute, limiting the applicability of the method.

The rest of this paper is organized as follows. Section 2 presents a formal def-
inition of the problem, the formula for the first-order derivative introduced in [7],
and the formula for the second-order derivative being introduced in the present work.
Section 3 presents the derivation of the second-order derivatives for nondegenerate
cases. Algorithms based on Voronoi diagrams for the exact calculation of the cover-
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ing function and its first- and second-order derivatives are introduced in section 4.
Extensive numerical experiments are given in section 5. Final considerations are given
in section 6.

Notation. \| \cdot \| denotes the Euclidean norm. Given x, y \in \BbbR n, x \cdot y = x\top y \in \BbbR ,
while x\otimes y = xy\top \in \BbbR n\times n. The divergence of a vector field \BbbR 2 \ni (x, y) \mapsto \rightarrow V (x, y) =
(V1(x, y), V2(x, y)) \in \BbbR 2 is defined by div V := \partial V1

\partial x + \partial V2

\partial y , and its Jacobian matrix

is denoted DV . Given an open set S \in \BbbR n, S denotes its closure, \partial S = S \setminus S its
boundary, and Vol(S) its volume. Let B(xi, r) denote an open ball with center xi \in \BbbR 2

and radius r. For a sufficiently smooth set S \subset \BbbR 2, \nu S(z) denotes the unitary-norm
outwards normal vector to S at z and \tau S(z) the unitary-norm tangent vector to \partial S
at z (pointing counterclockwise). In the particular case S = B(xi, r), we use the
simpler notation \nu i := \nu B(xi,r) and \tau i := \tau B(xi,r), and we have \nu i(z) = (cos \theta z, sin \theta z)

\top 

and \tau i(z) = ( - sin \theta z, cos \theta z)
\top , where \theta z is the angular coordinate of z  - xi. For

intersection points z \in \partial S \cap B(xi, r), we also use the notation \nu  - i(z) := \nu S(z).

2. The shape optimization problem. Let A \subset \BbbR 2 and \Omega (\bfitx , r) = \cup mi=1B(xi, r)
with \bfitx := \{ xi\} mi=1. We consider the problem of covering A using a fixed number m of
identical balls B(xi, r) with minimum radius r, i.e., we are looking for (\bfitx , r) \in \BbbR 2m+1

such that A \subset \Omega (\bfitx , r) with minimum r. The problem can be formulated as

(2.1) Minimize
(\bfitx ,r)\in \BbbR 2m+1

r subject to G(\bfitx , r) = 0,

where

G(\bfitx , r) := Vol(A) - Vol(A \cap \Omega (\bfitx , r)).(2.2)

Note that G(\bfitx , r) = 0 if and only if A \subset \Omega (\bfitx , r) up to a set of zero measure, i.e.,
when \Omega (\bfitx , r) covers A.

The derivatives of G can be computed using techniques of shape calculus [14, 19,
27, 28, 36]. In particular, it was shown in [7] that, under suitable assumptions,

\nabla G(\bfitx , r) =  - 
\biggl( \int 

\scrA 1

\nu 1(z) dz, . . . ,

\int 
\scrA m

\nu m(z) dz,

\int 
\partial \Omega (\bfitx ,r)\cap A

dz

\biggr) \top 

,(2.3)

where

(2.4) \scrA i = \partial B(xi, r) \cap \partial \Omega (\bfitx , r) \cap A for i = 1, . . . ,m.

In the present work, we show that

(2.5) \nabla 2G(\bfitx , r) =

\biggl( 
\nabla 2

\bfitx G(\bfitx , r) \nabla 2
\bfitx ,rG(\bfitx , r)

\nabla 2
\bfitx ,rG(\bfitx , r)

\top \nabla 2
rG(\bfitx , r)

\biggr) 
,

where \nabla 2
\bfitx G(\bfitx , r) \in \BbbR 2m\times 2m, \nabla 2

\bfitx ,rG(\bfitx , r) \in \BbbR 2m, and \nabla 2
rG(\bfitx , r) = \partial 2rG(\bfitx , r) \in \BbbR 

are described below. Their description is based on the fact that each set \scrA i can be
represented by a finite number mi \geq 0 of arcs of the circle \partial B(xi, r), under suitable
regularity assumptions on \bfitx and A (see Assumptions 1 and 2 in section 3). Note that,
since (\cup mi=1\partial B(xi, r)) \cap \partial \Omega (\bfitx , r) = \partial \Omega (\bfitx , r), by (2.4),

(2.6)

m\bigcup 
i=1

\scrA i = \partial \Omega (\bfitx , r) \cap A;
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see Figure 1. (This means that, under a regularity assumption, namely, Assumption 1
stated in section 3, the union of all \scrA i represents a partition of \partial \Omega (\bfitx , r) \cap A.) Each
arc in \scrA i can be represented by a pair of points (v, w), named starting and ending
points, in counterclockwise direction, i.e., such that the angular coordinates \theta v and
\theta w of v  - xi and w  - xi, respectively, satisfy \theta v \in [0, 2\pi ) and \theta w \in (\theta v, \theta v + 2\pi ]; see
Figure 2. If \scrA i is not a full circle, we denote by \BbbA i the set of pairs (v, w) that represent
the arcs in \scrA i; otherwise, we define \BbbA i = \emptyset . In addition, if \scrA i is a full circle, then
we set Circle(\BbbA i) equal to true; otherwise, we set Circle(\BbbA i) equal to false. We say
a configuration (\bfitx , r) is nondegenerate if, for every i = 1, . . . ,m, every (v, w) \in \BbbA i,
and every z \in \{ v, w\} , there exists one and only one \nu  - i(z) and \nu  - i(z) \cdot \tau i(z) \not = 0. A
characterization of nondegenerate configurations, which satisfy Assumptions 1 and 2,
is given in the next section.

(a) (b)

Fig. 1. Figure (a) represents a region A to be covered and an arbitrary configuration of balls
\Omega (\bfitx , r). Figure (b) represents, in red, \partial \Omega (\bfitx , r) \cap A. Each \scrA i corresponds to the red arcs that
intersect \partial B(xi, r). Note that in this example, most sets \scrA i contain two or three maximal arcs; and
there is only one set \scrA i with four maximal arcs. (Figure in color online.)

Assuming (\bfitx , r) is nondegenerate, we have that \nabla 2
rG(\bfitx , r) in (2.5) is given by

(2.7) \nabla 2
rG(\bfitx , r) =  - 

Per(\partial \Omega (\bfitx , r) \cap A)
r

 - 
m\sum 
i=1

\sum 
(v,w)\in \BbbA i

s
| L(z)|  - \nu  - i(z) \cdot \nu i(z)

\nu  - i(z) \cdot \tau i(z)

{w

v

,

where, for an arbitrary expression \Phi (z), J\Phi (z)Kwv := \Phi (w)  - \Phi (v), Per(S) denotes
the perimeter of the set S, for an extreme z of an arc represented by (v, w) \in \BbbA i,
L(z) = \{ \ell \in \{ 1, . . . ,m\} \setminus \{ i\} | z \in \partial B(x\ell , r)\} , and | L(z)| denotes the cardinality
of L(z).

Matrix \nabla 2
\bfitx G(\bfitx , r) in (2.5) is given by the 2\times 2 diagonal blocks

(2.8) \partial 2xixi
G(\bfitx , r) =

1

r

\int 
\scrA i

 - \nu i(z)\otimes \nu i(z) + \tau i(z)\otimes \tau i(z) dz +
\sum 

(v,w)\in \BbbA i

s
\nu  - i(z) \cdot \nu i(z)
\nu  - i(z) \cdot \tau i(z)

\nu i(z)\otimes \nu i(z)
{w

v

and the 2\times 2 off-diagonal blocks

(2.9) \partial 2xix\ell 
G(\bfitx , r) =

\sum 
v\in \scrI i\ell 

\nu i(v)\otimes \nu \ell (v)
\nu \ell (v) \cdot \tau i(v)

 - 
\sum 

w\in \scrO i\ell 

\nu i(w)\otimes \nu \ell (w)
\nu \ell (w) \cdot \tau i(w)

,

where \scrI i\ell = \{ v \in \partial B(x\ell , r) | (v, \cdot ) \in \BbbA i\} and \scrO i\ell = \{ w \in \partial B(x\ell , r) | (\cdot , w) \in \BbbA i\} .
(Note that \scrI i\ell = \scrO i\ell = \emptyset for all \ell \not = i if \BbbA i = \emptyset .) Finally, array \nabla 2

\bfitx ,rG(\bfitx , r) in (2.5)
is given by the two-dimensional arrays

(2.10) \partial 2xirG(\bfitx , r) =  - 
1

r

\int 
\scrA i

\nu i(z) dz +
\sum 

(v,w)\in \BbbA i

u

v \nu  - i(z) \cdot \nu i(z)
\nu  - i(z) \cdot \tau i(z)

\nu i(z) - 
\sum 

\ell \in L(z)

\nu i(z)

\tau i(z) \cdot \nu \ell (z)

}

~

w

v

.
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xi

x\ell 

u

v

w

A

\nu \ell (u)

\nu  - \ell (u) = \nu A(u)

\nu i(v)

\nu i(w)

\nu  - i(w) = \nu \ell (w)

\nu  - i(v) = \nu A(v)

Fig. 2. The set \scrA i = \partial B(xi, r)\cap \Omega (\bfitx , r)\cap A is composed of two arcs (in red). If z \in \partial B(xi, r)\cap 
\partial B(x\ell , r) for some \ell \not = i, as for z = w, then \nu  - i(z) = \nu \ell (z), while if z \in \partial B(xi, r) \cap \partial A, as for
z = u, then \nu  - i(z) = \nu A(z). (Figure in color online.)

3. Proof of second-order differentiability of \bfitG . In this section, we prove
that the second-order derivatives of G, as defined in (2.2), are given by (2.5, 2.7, 2.8,
2.9, 2.10). In [7] we have built appropriate bi-Lipschitz mappings Tt in order to use
integration by substitution for the differentiation of G(\bfitx + t\delta \bfitx , r) and G(\bfitx , r + t\delta r).
Some of the more technical aspects of these constructions were related to the fact that
G is an area functional, which required defining Tt on \Omega (\bfitx , r)\cap A and on \partial (\Omega (\bfitx , r)\cap A).
Since \nabla G only involves boundary integrals that, in addition, can be decomposed into
integrals on arcs of circle, this facilitates the construction of the mappings Tt required
to compute \nabla 2G, as Tt need only be defined on \partial \Omega (\bfitx , r) \cap A.

We consider two types of transformations for the shape sensitivity analysis. First,
in the case of fixed radius and center perturbations one needs a mapping Tt between
the reference set \partial \Omega (\bfitx , r)\cap A and the perturbed set \partial \Omega (\bfitx +t\delta \bfitx , r)\cap A; see Theorem 2.
Second, in the case of fixed centers and radius perturbation one needs a mapping Tt
between \partial \Omega (\bfitx , r) \cap A and the perturbed set \partial \Omega (\bfitx , r + t\delta r) \cap A; see Theorem 3. The
shape sensitivity analysis of \nabla G is then achieved through integration by substitution
using Tt. The construction of these mappings Tt is similar to the constructions in [7];
however, the results are presented in a different way as we need specific properties
of Tt to compute the derivatives of \nabla G. One of the main differences with respect
to [7] appears in Theorem 2, where one considers simultaneous perturbations of all
the balls' centers, which allows us to simplify the calculations of the Hessian of G. On
the one hand, Tt was used in [7] mainly to prove first-order shape differentiability and
its unusual structure did not affect the expression of the first-order shape derivative,
in the sense that a similar formula would have been obtained in a smooth setting.
On the other hand, the expression of the second-order shape derivative of G at a
nonsmooth reference domain \Omega differs significantly from the expression that would be
obtained for a smooth \Omega , as it involves terms with a support at singular boundary
points of \Omega , and the particular structure of Tt now plays an important role in the
calculation of those singular terms.

In [7], we have described detailed conditions to avoid degenerate situations and
we also discussed various examples of such degeneracies and how they may affect
the numerical algorithm. In the present paper we use the same conditions to prove
second-order differentiability of G. To summarize, the main issues when studying the
differentiability of G arise when two balls are tangent or exactly superposed, when the
boundaries of more than two balls intersect at the same point, or when \Omega (\bfitx , r) and A
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are not compatible in the sense of Definition 3.1. The role of Assumptions 1 and 2 is
to avoid these singular cases, which allows us to prove second-order differentiability
of G. We emphasize that these assumptions only exclude a null-measure set of balls'
configurations in \BbbR 2m+1, and in [6] we show via the study of several singular cases that
the second-order differentiability of G fails when these assumptions are not satisfied.

Assumption 1. The centers \{ xi\} mi=1 satisfy \| xi - xj\| /\in \{ 0, 2r\} for 1 \leq i, j \leq m,
i \not = j, and \partial B(xi, r) \cap \partial B(xj , r) \cap \partial B(xk, r) = \emptyset for all 1 \leq i, j, k \leq m with i, j, k
pairwise distinct.

Definition 3.1. Let \omega 1, \omega 2 be open subsets of \BbbR 2. We call \omega 1 and \omega 2 compatible
if \omega 1 \cap \omega 2 \not = \emptyset , \omega 1 and \omega 2 are Lipschitz domains, and the following conditions hold:
(i) \omega 1\cap \omega 2 is a Lipschitz domain; (ii) \partial \omega 1\cap \partial \omega 2 is finite; (iii) \partial \omega 1 and \partial \omega 2 are locally
smooth in a neighborhood of \partial \omega 1\cap \partial \omega 2; and (iv) \tau 1(x)\cdot \nu 2(x) \not = 0 for all x \in \partial \omega 1\cap \partial \omega 2,
where \tau 1(x) is a tangent vector to \partial \omega 1 at x and \nu 2(x) is a normal vector to \partial \omega 2 at x.

Assumption 2. Sets \Omega (\bfitx , r) and A are compatible.

The notion of compatiblity from Definition 3.1 is illustrated in Figure 3: the ball
\omega 1 and the triangle \omega 2 satisfy \omega 1 \cap \omega 2 \not = \emptyset and are always compatible except when
the ball is tangent to the boundary of the triangle or when the boundary of the ball
meets a corner of the triangle. Thus, the set of points where they are not compatible
has measure zero. Note that the examples depicted in Figure 3 are representative of
the geometric configurations occurring in practice.

(a) compatible (b) compatible (c) not compatible (d) not compatible

Fig. 3. Compatibility of the ball \omega 1 and the triangle \omega 2 in the sense of Definition 3.1. In (c),
condition (iii) of Definition 3.1 fails as \partial \omega 2 is not locally smooth in a neighborhood of one of the
three points in \partial \omega 1 \cap \partial \omega 2. In (d), condition (iv) of Definition 3.1 fails for one of the three points
in \partial \omega 1 \cap \partial \omega 2.

We observe that \Omega (\bfitx , r) is Lipschitz under Assumption 1, and if, in addition, the
intersection of \partial \Omega (\bfitx , r) and \partial A is empty, then Assumption 2 is satisfied. Hence, in
this particular case we can drop Assumption 2 in Theorems 2 and 3.

We also recall the following basic results, which are key ingredients for the calcu-
lation of the shape Hessian of G.

Theorem 1 (tangential divergence theorem). Let \Gamma \subset \BbbR 2 be a Ck open curve,
k \geq 2, with a parameterization \gamma , and denote (v, w) the starting and ending points of
\Gamma , respectively, with respect to \gamma . Let \tau be the unitary-norm tangent vector to \Gamma , \nu 
the unitary-norm normal vector to \Gamma , and \scrH the mean curvature of \Gamma , with respect to
the parameterization \gamma . Let F \in W 1,1(\Gamma ,\BbbR 2) \cap C0(\Gamma ,\BbbR 2); then we have\int 
\Gamma 

div\Gamma (F ) dz =

\int 
\Gamma 

\scrH F \cdot \nu dz+F (w) \cdot \tau (w) - F (v) \cdot \tau (v) =
\int 
\Gamma 

\scrH F \cdot \nu dz+JF (z) \cdot \tau (z)Kwv ,

where div\Gamma (F ) := div(F ) - DF\nu \cdot \nu is the tangential divergence of F on \Gamma .
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Proof. The result follows from [35, section 7.2] and [14, Chap. 9, section 5.5].

Lemma 3.2 (change of variables for line integrals). Let \Gamma \subset \BbbR 2 be a Ck open
curve, k \geq 2, and \nu a unitary-norm normal vector to \Gamma . Let F \in C0(\Gamma ,\BbbR 2) and
Tt : \Gamma \rightarrow Tt(\Gamma ) be a bi-Lipschitz mapping. Then\int 

Tt(\Gamma )

F (z) dz =

\int 
\Gamma 

F (Tt(z))\omega t(z) dz,

where

(3.1) \omega t(z) := \| M(z, t)\nu (z)\| 

and M(z, t) := det(DTt(z))DTt(z)
 - \top is the cofactor matrix of DTt(z). Furthermore,

we have

(3.2) \partial t\omega t| t=0 = div\Gamma V with V := \partial tTt| t=0 on \Gamma .

Proof. See [19, Prop. 5.4.3] for the proof.

3.1. Construction of a perturbation field for center perturbations. The-
orem 2 below employs several ideas from [7, Thms. 3.2 and 3.6]. However, an impor-
tant difference is that we consider simultaneous center perturbations for all balls
instead of just one, which is more convenient for the calculation of \nabla 2G. Theorem 2
provides an appropriate mapping Tt for the differentiation of \partial xiG(\bfitx + t\delta \bfitx , r) that
will be used in sections 3.4 and 3.5 and for the differentiation of \partial rG(\bfitx + t\delta \bfitx , r) in
section 3.6.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then there exists t0 > 0
such that for all t \in [0, t0] we have the following decomposition:

(3.3) \partial \Omega (\bfitx + t\delta \bfitx , r) \cap A =

\=k\bigcup 
k=1

\scrS k(t),

where \scrS k(t) are arcs parameterized by an angle aperture [\theta k,v(t), \theta k,w(t)], t \mapsto \rightarrow \theta k,v(t),
t \mapsto \rightarrow \theta k,w(t) are continuous functions on [0, t0], and \=k is independent of t.

Also, for all t \in [0, t0] there exists a bi-Lipschitz mapping Tt : \partial \Omega (\bfitx , r) \cap A\rightarrow \BbbR 2

satisfying Tt(\partial \Omega (\bfitx , r) \cap A) = \partial \Omega (\bfitx + t\delta \bfitx , r) \cap A and Tt(\scrS k(0)) = \scrS k(t) for all k =
1, . . . , \=k. Furthermore,

V \cdot \nu i = \delta xi \cdot \nu i on \scrS k(0) \subset \partial B(xi, r),(3.4)

V (z) = \delta xi  - 
\nu A(z) \cdot \delta xi
\tau i(z) \cdot \nu A(z)

\tau i(z) if z \in \partial B(xi, r) \cap \partial A,(3.5)

V (z) = \delta xi  - 
\nu \ell (z) \cdot (\delta xi  - \delta x\ell )

\tau i(z) \cdot \nu \ell (z)
\tau i(z) if z \in \partial B(xi, r) \cap \partial B(x\ell , r), i \not = \ell ,(3.6)

where V := \partial tTt| t=0.

Proof. The decomposition (3.3) relies on Assumptions 1 and 2 and is obtained in
a similar way as in [7, Thm. 3.2]. Therefore, in this proof we focus on the construction
of the mapping Tt. We observe that each extremity of the arcs \scrS k(t) in (3.3) is either a
point belonging to \partial B(xi+t\delta xi, r)\cap \partial A or a point in \partial B(xi+t\delta xi, r)\cap \partial B(x\ell +t\delta x\ell , r).

We first provide a general formula for the angle \vargamma (t) in local polar coordinates
with the pole xi + t\delta xi, describing a point in \partial B(xi + t\delta xi, r) \cap \partial A. Let \phi be the
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oriented distance function to A, defined as \phi (x) := d(x,A) - d(x,Ac), where d(x,A)
is the distance from x to the set A, and z \in \partial B(xi, r) \cap \partial A. Since \Omega (\bfitx , r) and A
are compatible due to Assumption 2, it follows that \partial A is locally smooth around
the points \partial B(xi, r) \cap \partial A, hence there exists a neighborhood Uz of z such that the
restriction of \phi to Uz is smooth, \phi (x) = 0 and \| \nabla \phi (x)\| = 1 for all x \in \partial A \cap Uz.

Let (r, \theta z) be the polar coordinates of z with the pole xi. Introduce the function

\sigma (t, \vargamma ) = \phi 

\biggl( 
xi + t\delta xi + r

\biggl( 
cos\vargamma 
sin\vargamma 

\biggr) \biggr) 
and compute

\partial \vargamma \sigma (0, \theta z) = r

\biggl( 
 - sin \theta z
cos \theta z

\biggr) 
\cdot \nabla \phi 

\biggl( 
xi + r

\biggl( 
cos \theta z
sin \theta z

\biggr) \biggr) 
= r\tau i(z) \cdot \nabla \phi (z).

As \Omega (\bfitx , r) and A are compatible, B(xi, r) is not tangent to \partial A, and using \| \nabla \phi (z)\| = 1
we obtain \tau i(z) \cdot \nabla \phi (z) \not = 0. Thus, we can apply the implicit function theorem which
yields the existence of a smooth function [0, t0] \ni t \mapsto \rightarrow \vargamma (t) with \sigma (t, \vargamma (t)) = 0 and
\vargamma (0) = \theta z. We also compute, using \nabla \phi (z) = \| \nabla \phi (z)\| \nu A(z) since \phi is the oriented
distance function to A, that

(3.7) \vargamma \prime (0) =  - \partial t\sigma (0, \vargamma (0))
\partial \vargamma \sigma (0, \vargamma (0))

=  - \nabla \phi (z) \cdot \delta xi
r\tau i(z) \cdot \nabla \phi (z)

=  - \nu A(z) \cdot \delta xi
r\tau i(z) \cdot \nu A(z)

.

We now consider the second case of a point in \partial B(xi+ t\delta xi, r)\cap \partial B(x\ell + t\delta x\ell , r),
i \not = \ell and introduce the functions

\psi (t, \vargamma ) = \| \zeta (t, \vargamma )\| 2  - r2 with \zeta (t, \vargamma ) = xi + t\delta xi  - x\ell  - t\delta x\ell + r

\biggl( 
cos\vargamma 
sin\vargamma 

\biggr) 
.

Observe that \vargamma \mapsto \rightarrow \zeta (t, \vargamma ) is a parameterization of the circle \partial B(xi+ t\delta xi, r) in a coor-
dinate system of center x\ell , which means that the solutions of the equation \psi (t, \vargamma ) = 0
describe the intersections between \partial B(xi+ t\delta xi, r) and \partial B(x\ell + t\delta x\ell , r). We compute
\partial \vargamma \psi (0, \vargamma ) = 2\zeta (0, \vargamma ) \cdot \partial \vargamma \zeta (0, \vargamma ) with

\zeta (0, \vargamma ) = xi  - x\ell + r

\biggl( 
cos\vargamma 
sin\vargamma 

\biggr) 
and \partial \vargamma \zeta (0, \vargamma ) = r

\biggl( 
 - sin\vargamma 
cos\vargamma 

\biggr) 
.

Now let z \in \partial B(xi, r) \cap \partial B(x\ell , r), and let \theta z be the corresponding angle in a polar
coordinate system with pole xi. Since Assumption 1 is satisfied, it is easy to see that
\partial \vargamma \psi (0, \theta z) = 2\zeta (0, \theta z) \cdot \partial \vargamma \zeta (0, \theta z) \not = 0. Hence, the implicit function theorem can be
applied to (t, \vargamma ) \mapsto \rightarrow \psi (t, \vargamma ) in a neighborhood of (0, \theta z). This yields the existence, for
t0 sufficiently small, of a smooth function t \mapsto \rightarrow \vargamma (t) in [0, t0] such that \psi (t, \vargamma (t)) = 0
in [0, t0] and \vargamma (0) = \theta z. We also have the derivative

\vargamma \prime (t) =  - \partial t\psi (t, \vargamma (t))
\partial \vargamma \psi (t, \vargamma (t))

=  - \zeta (t, \vargamma (t)) \cdot \partial t\zeta (t, \vargamma (t))
\zeta (t, \vargamma (t)) \cdot \partial \vargamma \zeta (t, \vargamma (t))

,

and in particular, using \nu i = (cos \theta z, sin \theta z)
\top and \tau i = ( - sin \theta z, cos \theta z)

\top ,

(3.8) \vargamma \prime (0) =  - (xi  - x\ell + r\nu i) \cdot (\delta xi  - \delta x\ell )
(xi  - x\ell + r\nu i) \cdot (r\tau i)

=  - \nu \ell \cdot (\delta xi  - \delta x\ell )
r\nu \ell \cdot \tau i

.
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We are now ready to build the mapping Tt. Let \scrS (t) \subset \partial B(xi+ t\delta xi, r) be one of
the arcs parameterized by the angle aperture [\theta v(t), \theta w(t)] in the decomposition (3.3);
we have dropped the index k for simplicity. Then, \theta v(t) and \theta w(t) are given by \vargamma (t)
with either \theta z = \theta v(0) or \theta z = \theta w(0), and \vargamma (t) either corresponds to an intersection
\partial B(xi + t\delta xi, r) \cap \partial A or to an intersection \partial B(xi + t\delta xi, r) \cap \partial B(x\ell + t\delta x\ell , r). Thus
we define Tt on the arc \scrS (0) as

(3.9) Tt(x) := xi + t\delta xi + r

\biggl( 
cos \xi (t, \theta )
sin \xi (t, \theta )

\biggr) 
with x = xi + r

\biggl( 
cos \theta 
sin \theta 

\biggr) 
\in \scrS (0),

where

(3.10) \xi (t, \theta ) := \theta v(t) + \alpha (t)(\theta  - \theta v(0)) for (t, \theta ) \in [0, t0]\times [\theta v(0), \theta w(0)] and \alpha (t) :=
\theta w(t) - \theta v(t)
\theta w(0) - \theta v(0)

.

The bi-Lipschitz property of Tt on \partial \Omega (\bfitx , r) \cap A is obtained as in the proof of [7,
Thm. 3.3].

Finally, differentiating in (3.9) with respect to t and using \xi (0, \theta ) = \theta we get
(3.4). Then (3.10) yields \xi (t, \theta v(0)) = \theta v(t), \xi (t, \theta w(0)) = \theta w(t), \partial t\xi (0, \theta v(0)) = \theta \prime v(0),
\partial t\xi (0, \theta w(0)) = \theta \prime v(0), consequently using (3.7) we obtain (3.5) and using (3.8) we
obtain (3.6).

Remark 1. A closer look at the construction of Tt in the proof of Theorem 2
shows that there are infinitely many ways of constructing Tt with the key property
Tt(\partial \Omega (\bfitx , r) \cap A) = \partial \Omega (\bfitx + t\delta \bfitx , r) \cap A that is used to compute derivatives of G.
However, the definition of the derivatives of G, and consequently the expressions of
the gradient and Hessian of G, are independent of the choice of Tt.

3.2. Construction of a perturbation field for radius perturbations. The-
orem 3 below relies on several ideas from [7, Thms. 3.3 and 3.8] and provides an
appropriate mapping Tt for the differentiation of \partial rG(\bfitx , r + t\delta r) that will be used in
section 3.3. We omit the proof of Theorem 3 which is similar to the proof of Theorem 2
and refer to [6] for the detailed proof.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then there exists t0 > 0

such that for all t \in [0, t0] we have the decomposition \partial \Omega (\bfitx , r+ t\delta r)\cap A =
\bigcup \=k

k=1 \scrS k(t),
where \scrS k(t) are arcs parameterized by an angle aperture [\theta k,v(t), \theta k,w(t)], t \mapsto \rightarrow \theta k,v(t),
t \mapsto \rightarrow \theta k,w(t) are continuous functions on [0, t0], and \=k is independent of t.

Also, for all t \in [0, t0] there exists a bi-Lipschitz mapping Tt : \partial \Omega (\bfitx , r) \cap A\rightarrow \BbbR 2

satisfying Tt(\partial \Omega (\bfitx , r) \cap A) = \partial \Omega (\bfitx , r + t\delta r) \cap A and Tt(\scrS k(0)) = \scrS k(t) for all k =
1, . . . , \=k. In addition, we have

V \cdot \nu i = \delta r on \scrS k(0) \subset \partial B(xi, r),(3.11)

V (z) = \delta r\nu i(z) - \delta r
\nu A(z) \cdot \nu i(z)
\tau i(z) \cdot \nu A(z)

\tau i(z) if z \in \partial B(xi, r) \cap \partial A,(3.12)

V (z) = \delta r\nu i(z) + \delta r
1 - \nu \ell (z) \cdot \nu i(z)
\tau i(z) \cdot \nu \ell (z)

\tau i(z) if z \in \partial B(xi, r) \cap \partial B(x\ell , r), i \not = \ell ,(3.13)

where V := \partial tTt| t=0.

3.3. Second-order derivative of \bfitG with respect to the radius. We have
\partial rG(\bfitx , r) =  - 

\int 
\partial \Omega (\bfitx ,r)\cap A

dz; see (2.3) and [7, section 3.3] for the detailed calcula-

tion. As in [7], the calculation is achieved through integration by substitution us-
ing the mapping Tt given by Theorem 3, which requires that Assumptions 1 and
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2 hold. According to Theorem 3, there exists a bi-Lipschitz mapping Tt satisfying
Tt(\partial \Omega (\bfitx , r) \cap A) = \partial \Omega (\bfitx , r + t\delta r) \cap A, and this yields, using Lemma 3.2 on each arc
of \partial \Omega (\bfitx , r) \cap A,

\partial rG(\bfitx , r + t\delta r) =  - 
\int 
\partial \Omega (\bfitx ,r+t\delta r)\cap A

dz =  - 
\int 
Tt(\partial \Omega (\bfitx ,r)\cap A)

dz =  - 
\int 
\partial \Omega (\bfitx ,r)\cap A

\omega t(z) dz.

Thus, using Lemma 3.2 and the decomposition (2.6), we compute

d

dt
\partial rG(\bfitx , r + t\delta r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\partial \Omega (\bfitx ,r)\cap A

div\Gamma V (z) dz =  - 
m\sum 
i=1

\int 
\scrA i

div\Gamma V (z) dz.

Applying Theorem 1 for each arc in \scrA i, we obtain

d

dt
\partial rG(\bfitx , r + t\delta r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
m\sum 
i=1

\int 
\scrA i

\scrH V \cdot \nu i dz  - 
m\sum 
i=1

\sum 
(v,w)\in \BbbA i

JV (z) \cdot \tau i(z)Kwv .(3.14)

To get a more explicit formula we need to determine V (v), V (w), and V \cdot \nu i
on \scrA i. For this we apply Theorem 3 to two different cases. On the one hand, if
v \in \partial B(xi, r) \cap \partial B(x\ell , r) for some i \not = \ell , then applying (3.13) we obtain

V (v) \cdot \tau i(v) = \delta r
1 - \nu \ell (v) \cdot \nu i(v)
\nu \ell (v) \cdot \tau i(v)

.(3.15)

On the other hand, if v \in \partial B(xi, r) \cap \partial A, then applying (3.12) we get

(3.16) V (v) \cdot \tau i(v) =  - \delta r
\nu A(v) \cdot \nu i(v)
\tau i(v) \cdot \nu A(v)

.

Then, recalling that L(z) = \{ \ell \in \{ 1, . . . ,m\} \setminus \{ i\} | z \in \partial B(x\ell , r)\} for z \in \{ v, w\} ,
and that \nu  - i(z) := \nu \ell (z) if z \in \partial B(xi, r) \cap \partial B(x\ell , r), \ell \not = i, and \nu  - i(z) := \nu A(z) if
z \in \partial B(xi, r) \cap \partial A, (3.15) and (3.16) can be merged into a single formula:

(3.17) V (v) \cdot \tau i(v) = \delta r
| L(v)|  - \nu  - i(v) \cdot \nu i(v)

\nu  - i(v) \cdot \tau i(v)
.

We obtain a similar formula for V (w) \cdot \tau i(w). Gathering these results we get

d

dt
\partial rG(\bfitx , r + t\delta r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - \delta rPer(\partial \Omega (\bfitx , r) \cap A)
r

 - \delta r
m\sum 
i=1

\sum 
(v,w)\in \BbbA i

s
| L(z)|  - \nu  - i(z) \cdot \nu i(z)

\nu  - i(z) \cdot \tau i(z)

{w

v

,

where we have used \scrH V \cdot \nu i = \delta r
r on \scrA i \subset \partial B(xi, r) due to (3.11) and \scrH = 1/r. This

yields (2.7).

3.4. Second-order derivative of \bfitG with respect to the centers. We have
\partial xiG(\bfitx , r) =  - 

\int 
\scrA i
\nu i(z) dz; see (2.3) and [7, section 3.4] for the detailed calculation.

As in [7], the calculation is achieved through integration by substitution using the
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mapping Tt from Theorem 2 with the specific perturbation \delta \bfitx = (0, . . . , 0, \delta xi, 0, . . . , 0),
which requires that Assumptions 1 and 2 hold. Using Lemma 3.2 yields

\partial xi
G(\bfitx + t\delta \bfitx , r) =  - 

\int 
\partial B(xi+t\delta xi,r)\cap \partial \Omega (\bfitx +t\delta \bfitx ,r)\cap A

\nu t(z) dz =  - 
\int 
Tt(\scrA i)

\nu t(z) dz

=  - 
\int 
\scrA i

\nu t(Tt(z))\omega t(z) dz,

where \nu t is the outward unit normal vector to \partial B(xi + t\delta xi, r) \cap \partial \Omega (\bfitx + t\delta \bfitx , r) \cap A
and \omega t is given by (3.1).

To obtain the derivative of \partial xiG(\bfitx + t\delta \bfitx , r) with respect to t at t = 0 we need
the so-called material derivative of the normal vector given by

d

dt
\nu t(Tt(z))| t=0 =  - (D\Gamma V )\top \nu i on \scrA i,

with V := \partial tTt| t=0; see [39, Lemma 5.5, page 99], and D\Gamma V := DV  - (DV )\nu i \otimes \nu i
denotes the tangential Jacobian of V on \scrA i. Then, using (3.2) we obtain

d

dt
\partial xiG(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\scrA i

 - (D\Gamma V )\top \nu i + \nu i div\Gamma (V ) dz.

This expression can be further transformed using the following properties of tensor
calculus:

div\Gamma (\nu i \otimes V ) = div\Gamma (V )\nu i + (D\Gamma \nu i)V and \nabla \Gamma (V \cdot \nu i) = D\Gamma \nu 
\top 
i V +D\Gamma V

\top \nu i on \scrA i.(3.18)

We show that D\Gamma \nu 
\top 
i V = D\Gamma \nu iV on \scrA i. Indeed, let W \in \BbbR 2 and denote V\tau and W\tau 

to be the tangential components of V and W on \scrA i. Differentiating \nu i \cdot \nu i = 1 on \scrA i,
we get (D\Gamma \nu i)

\top \nu i = 0 and then

(D\Gamma \nu i)
\top V \cdot W = (D\Gamma \nu i)

\top V\tau \cdot W = (D\Gamma \nu i)
\top V\tau \cdot W\tau = (D\Gamma \nu i)V\tau \cdot W\tau ,

using the fact that the second fundamental form (V\tau ,W\tau ) \mapsto \rightarrow (D\Gamma \nu i)V\tau \cdot W\tau is sym-
metric. Further,

(D\Gamma \nu i)
\top V \cdot W = (D\Gamma \nu i)

\top W\tau \cdot V\tau = (D\Gamma \nu i)
\top W \cdot V = (D\Gamma \nu i)V \cdot W on \scrA i.(3.19)

Now, using (3.18) and (3.19) we obtain

d

dt
\partial xi

G(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\scrA i

div\Gamma (\nu i \otimes V ) - \nabla \Gamma (V \cdot \nu i) dz.

Applying Theorem 1 to the integral of div\Gamma (\nu i \otimes V ) on each arc in \scrA i we get

d

dt
\partial xi

G(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\scrA i

\scrH (\nu i \otimes V ) \cdot \nu i  - \nabla \Gamma (V \cdot \nu i) dz  - 
\sum 

(v,w)\in \BbbA i

J(\nu i(z)\otimes V (z)) \cdot \tau i(z)Kwv ,

and then, using \scrH = 1/r on \scrA i,

(3.20)
d

dt
\partial xi

G(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 1

r

\int 
\scrA i

(V \cdot \nu i)\nu i  - r\nabla \Gamma (V \cdot \nu i) dz  - 
\sum 

(v,w)\in \BbbA i

J(V (z) \cdot \tau i(z))\nu i(z)Kwv .
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Considering that \delta x\ell = 0 for \ell \not = i since we use the specific perturbation \delta \bfitx =
(0, . . . , 0, \delta xi, 0, . . . , 0), (3.5) and (3.6) actually provide the same formula in this par-
ticular case:

(3.21) V (z) \cdot \tau i(z) = \delta xi \cdot 
\biggl( 
\tau i  - 

\nu  - i

\tau i \cdot \nu  - i

\biggr) 
(z) =  - 

\biggl( 
\nu  - i \cdot \nu i
\nu  - i \cdot \tau i

\delta xi \cdot \nu i
\biggr) 
(z)

for z \in \{ v, w\} and (v, w) \in \BbbA i. We also have \nabla \Gamma (V \cdot \nu i) = \nabla \Gamma (\delta xi \cdot \nu ) = (D\Gamma \nu )
\top \delta xi

and

D\Gamma \nu i = D\Gamma 

\biggl( 
cos \theta 
sin \theta 

\biggr) 
=

\biggl( 
\nabla \Gamma (cos \theta )

\top 

\nabla \Gamma (sin \theta )
\top 

\biggr) 
=

1

r

\biggl( 
\partial \theta (cos \theta )\tau 

\top 
i

\partial \theta (sin \theta )\tau 
\top 
i

\biggr) 
=

1

r
\tau i \otimes \tau i on \scrA i.

Applying (3.4) yields V \cdot \nu i = \delta xi \cdot \nu i on \scrA i. Gathering these results we get

d

dt
\partial xi

G(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 1

r

\int 
\scrA i

(\delta xi \cdot \nu i)\nu i  - (\tau i \otimes \tau i)\delta xi dz +
\sum 

(v,w)\in \BbbA i

s
\nu  - i \cdot \nu i
\nu  - i \cdot \tau i

\nu i \otimes \nu i
{w

v

\delta xi,

which yields (2.8).

3.5. Second-order derivative with respect to \bfitx \bfiti and \bfitx \ell of \bfitG . As in section
3.4 we use the mapping Tt from Theorem 2, which requires that Assumptions 1 and 2
hold, but now with the specific perturbation \delta \bfitx = (0, . . . , 0, \delta x\ell , 0, . . . , 0). This yields
a transformation Tt satisfying, in particular, Tt(\scrA i) = \partial B(xi, r)\cap \partial \Omega (\bfitx + t\delta \bfitx , r)\cap A.
Then, using Lemma 3.2 we obtain

\partial xi
G(\bfitx + t\delta \bfitx , r) =  - 

\int 
\partial B(xi,r)\cap \partial \Omega (\bfitx +t\delta \bfitx ,r)\cap A

\nu t(z) dz =  - 
\int 
Tt(\scrA i)

\nu t(z) dz

=  - 
\int 
\scrA i

\nu t(Tt(z))\omega t(z) dz,

where \nu t is the outward unit normal vector to \partial B(xi, r) \cap \partial \Omega (\bfitx + t\delta \bfitx , r) \cap A and \omega t

is given by (3.1). Applying (3.4) and considering that \delta xi = 0 since we are using the
specific perturbation \delta \bfitx = (0, . . . , 0, \delta x\ell , 0, . . . , 0), we get V \cdot \nu i = 0 on \scrA i. Then,
applying (3.6) with \delta xi = 0 we get

V (z) \cdot \tau i(z) =
\delta x\ell \cdot \nu \ell (z)
\tau i(z) \cdot \nu \ell (z)

if z \in \partial B(x\ell , r) \cap \partial B(xi, r), i \not = \ell .(3.22)

Next, the derivative of \partial xi
G(\bfitx + t\delta \bfitx , r) with respect to t at t = 0 is already

calculated in (3.20), but the terms (V \cdot \nu i)\nu i and \nabla \Gamma (V \cdot \nu i) in (3.20) vanish due to
V \cdot \nu i = 0 on \scrA i. We also observe that V (z) = 0 if z \in \{ v, w\} with (v, w) \in \BbbA i

and z /\in \partial B(x\ell , r). Finally, using (3.22), \scrI i\ell = \{ v \in \partial B(x\ell , r) | (v, \cdot ) \in \BbbA i\} and
\scrO i\ell = \{ w \in \partial B(x\ell , r) | (\cdot , w) \in \BbbA i\} we get

d

dt
\partial xiG(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=
\sum 
v\in \scrI i\ell 

V (v) \cdot \tau i(v)\nu i(v) - 
\sum 

w\in \scrO i\ell 

V (w) \cdot \tau i(w)\nu i(w)

=

\Biggl[ \sum 
v\in \scrI i\ell 

\nu i(v)\otimes \nu \ell (v)
\nu \ell (v) \cdot \tau i(v)

 - 
\sum 

w\in \scrO i\ell 

\nu i(w)\otimes \nu \ell (w)
\nu \ell (w) \cdot \tau i(w)

\Biggr] 
\delta x\ell ,

which yields (2.9).
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3.6. Second-order derivative with respect to \bfitx \bfiti and \bfitr of \bfitG . In a similar
way as in sections 3.4 and 3.5, we use the mapping Tt from Theorem 2 with the
perturbation \delta \bfitx = (0, . . . , 0, \delta xi, 0, . . . , 0). This yields, using Lemma 3.2,

\partial rG(\bfitx + t\delta \bfitx , r) =  - 
\int 
\partial \Omega (\bfitx +t\delta \bfitx ,r)\cap A

dz =  - 
\int 
Tt(\partial \Omega (\bfitx ,r)\cap A)

dz =  - 
\int 
\partial \Omega (\bfitx ,r)\cap A

\omega t(z) dz.

Proceeding as in the calculation leading to (3.14), we get

d

dt
\partial rG(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
m\sum 
\ell =1

\int 
\scrA \ell 

\scrH V \cdot \nu \ell dz  - 
m\sum 
\ell =1

\sum 
(v,w)\in \BbbA \ell 

JV (z) \cdot \tau \ell (z)Kwv .(3.23)

Considering that \delta x\ell = 0 for \ell \not = i, since \delta \bfitx = (0, . . . , 0, \delta xi, 0, . . . , 0), (3.5) and
(3.6) actually provide the same formula in this particular case:

V (z) \cdot \tau i(z) = \delta xi \cdot 
\biggl( 
\tau i  - 

\nu  - i

\tau i \cdot \nu  - i

\biggr) 
(z) =  - 

\biggl( 
\nu  - i \cdot \nu i
\nu  - i \cdot \tau i

\delta xi \cdot \nu i
\biggr) 
(z),(3.24)

for z \in \{ v, w\} and (v, w) \in \BbbA i, and also

V (z) \cdot \tau \ell (z) = \delta xi \cdot 
\biggl( 
\tau \ell  - 

\nu \ell 
\tau i \cdot \nu \ell 

(\tau i \cdot \tau \ell )
\biggr) 
(z)

= \delta xi \cdot 
\biggl( 

\mu 

\tau i \cdot \nu \ell 

\biggr) 
(z) if z \in \partial B(xi, r) \cap \partial B(x\ell , r) and \ell \not = i,

with \mu := \tau \ell (\tau i \cdot \nu \ell ) - (\tau i \cdot \tau \ell )\nu \ell . This yields \mu \cdot \tau i = 0 and

\mu \cdot \nu i = (\tau \ell \cdot \nu i)(\tau i \cdot \nu \ell ) - (\tau i \cdot \tau \ell )(\nu \ell \cdot \nu i) =  - (\tau i \cdot \nu \ell )2  - (\tau i \cdot \tau \ell )2 =  - 1,

where we have used \tau \ell \cdot \nu i =  - \tau i \cdot \nu \ell and \tau i \cdot \tau \ell = \nu \ell \cdot \nu i. Thus \mu =  - \nu i and we get

V (z) \cdot \tau \ell (z) =  - 
\delta xi \cdot \nu i(z)
\tau i(z) \cdot \nu \ell (z)

if z \in \partial B(xi, r) \cap \partial B(x\ell , r) and \ell \not = i.(3.25)

In (3.23), we observe that V (z) = 0 whenever z \in \{ v, w\} and z /\in \partial B(xi, r); this
can be seen from (3.5)--(3.6) and the fact that we use \delta \bfitx = (0, . . . , 0, \delta xi, 0, . . . , 0).
Hence, recalling that L(z) = \{ \ell \in \{ 1, . . . ,m\} \setminus \{ i\} | z \in \partial B(x\ell , r)\} ,
m\sum 
\ell =1

\sum 
(v,w)\in \BbbA \ell 

JV (z) \cdot \tau \ell (z)Kwv =
\sum 

(v,w)\in \BbbA i

JV (z) \cdot \tau i(z)Kwv +

m\sum 
\ell =1
\ell \not =i

\sum 
(v,w)\in \BbbA \ell 

JV (z) \cdot \tau \ell (z)Kwv

=
\sum 

(v,w)\in \BbbA i

JV (z) \cdot \tau i(z)Kwv  - 
\sum 

(v,w)\in \BbbA i

u

v
\sum 

\ell \in L(z)

V (z) \cdot \tau \ell (z)

}

~

w

v

.

Note that the negative sign in front of the last sum is due to the fact that if an ending
point of an arc in \BbbA \ell belongs to some arc in \BbbA i, then it is a starting point for this
arc in \BbbA i, and vice versa. Using (3.4) we have V \cdot \nu \ell \equiv 0 on \scrA \ell for all \ell \not = i. Since
\scrH = 1/r, we may write (3.23) as

d

dt
\partial rG(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 1

r

\int 
\scrA i

V \cdot \nu i dz  - 
\sum 

(v,w)\in \BbbA i

u

vV (z) \cdot \tau i(z) - 
\sum 

\ell \in L(z)

V (z) \cdot \tau \ell (z)

}

~

w

v

.
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Using (3.4) we get V \cdot \nu i = \delta xi \cdot \nu i on \scrA i. Finally, using (3.24)--(3.25) we get

d

dt
\partial rG(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 1

r

\int 
\scrA i

\delta xi \cdot \nu i dz

+
\sum 

(v,w)\in \BbbA i

u

v\nu  - i(z) \cdot \nu i(z)
\nu  - i(z) \cdot \tau i(z)

\delta xi \cdot \nu i(z) - 
\sum 

\ell \in L(z)

\delta xi \cdot \nu i(z)
\tau i(z) \cdot \nu \ell (z)

}

~

w

v

,

which yields (2.10).

4. Exact calculation of \bfitG and its derivatives. In this section, we consider
that A = \cup pj=1Aj and \{ Aj\} pj=1 are nonoverlapping convex polygons. (If not available,
such decomposition can be computed in \scrO (eA + \=eA), where eA is the number of
vertices of A and \=eA is its number of notches; see, for example, [25] and the references
therein.) The key ingredient for the exact computation of G, \nabla G, and \nabla 2G as stated
in section 2 is to consider partitions

(4.1) Aj \cap \Omega (\bfitx , r) =
\bigcup 

i\in \scrK Aj

Sij , j = 1, . . . , p,

where \scrK Aj \subseteq \{ i \in \{ 1, . . . ,m\} | B(xi, r)\cap Aj \not = \emptyset \} for j = 1, . . . , p and each Sij is such
that \partial Sij is a simple and convex curve given by the union of segments and arcs of
the circle \partial B(xi, r). It is worth noticing that, since A1, A2, . . . , Ap are disjoint, then
\{ Sij\} (i,j)\in \scrK with \scrK = \{ (i, j) | j \in \{ 1, . . . , p\} and i \in \scrK Aj

\} is a partition of A\cap \Omega (\bfitx , r),
i.e.,

(4.2) A \cap \Omega (\bfitx , r) =
\bigcup 

(i,j)\in \scrK 

Sij ;

see Figure 4. Note that 8 out of the 10 balls intersect with either A1 or A2 in Figure 4.
Let us number the balls intersecting only A1 from 1 to 5 and the balls intersecting
only A2 from 8 to 10. Thus, balls 1 to 5 contribute to (4.1) with S11, S21, . . . , S51, i.e.,
they contribute to the partition of A1 only; while balls 8, 9, and 10 contribute with
S82, S92, and S10,2, i.e., they contribute to the partition of A2 only. Balls 6 and 7 inter-
sect both A1 and A2 and contribute with S61 and S71 to the partition of A1 and with
S62 and S72 to the partition of A2. Therefore, we have \scrK A1

= \{ 1, 2, 3, 4, 5, 6, 7\} , \scrK A2
=

\{ 6, 7, 8, 9, 10\} , and\scrK = \{ (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (6, 2), (7, 1), (7, 2), (8, 2),
(9, 2), (10, 2)\} . In addition, for further use, we define \scrK B1

= \scrK B2
= \scrK B3

= \scrK B4
=

\scrK B5 = \{ 1\} , \scrK B6 = \scrK B7 = \{ 1, 2\} , \scrK B8 = \scrK B9 = \scrK B10 = \{ 2\} .
The computation of the partitions in (4.1) is based on Voronoi diagrams. For a

given (\bfitx , r), we first compute the Voronoi diagram with cells \{ Vi\} mi=1 associated with
the balls centers x1, . . . , xm. Each cell Vi is a (bounded or unbounded) polyhedron
given by the points y \in \BbbR 2 such that \| y  - xi\| = min\{ \ell =1,...,m\} \{ \| y  - x\ell \| \} . Then,
for each j = 1, . . . , p and each i = 1, . . . ,m, we compute the convex polygons Wij =
Aj \cap Vi and, in the sequence, Sij = Wij \cap B(xi, r). (Note that, by construction,
Wij \cap B(xi, r) = Wij \cap \Omega (\bfitx , r); and so (4.1) and, in consequence, (4.2) hold.) In
the construction process, we obtain the sets \scrK Aj

= \{ i \in \{ 1, . . . ,m\} | Sij \not = \emptyset \} ,
\scrK Bi

= \{ j \in \{ 1, . . . , p\} | Sij \not = \emptyset \} , and \scrK such that (i, j) \in \scrK if and only if Sij \not = \emptyset .
Let \scrV (Sij) be the set of vertices of Sij , let \scrA (Sij) = \partial Sij \cap \partial B(xi, r) be the union
of the arcs in \partial Sij , and let \scrE (Sij) = \partial Sij \setminus \scrA (Sij) be the union of the edges in \partial Sij .
Moreover, we associate with \scrE (Sij) and \scrA (Sij) the corresponding sets of maximal
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A1

A2

A1

A2

(a) (b)

Fig. 4. Figure (a) represents a region A to be covered given by A = \cup p
j=1Aj with p = 2 and

an arbitrary configuration of balls \Omega (\bfitx , r) = \cup m
i=1B(xi, r) with m = 10. Figure (b) represents the

partitions of A1 \cap \Omega (\bfitx , r) and A2 \cap \Omega (\bfitx , r) defined in (4.1) that, together, as expressed in (4.2),
represent a partition of A \cap \Omega (\bfitx , r). In (b), the Voronoi diagram that allows the partitions to be
computed is depicted.

arcs \BbbA (Sij) and edges \BbbE (Sij). Strictly speaking, these are sets of pairs of points
representing arcs and edges, respectively. Each edge is represented by a pair [v, w]
of vertices in counterclockwise order and each arc is represented by a pair (v, w)
of vertices, in counterclockwise order, which unequivocally determines two angles.
For each vertex z \in \scrV (Sij), we save whether or not z \in \partial A. If z \in \partial A, then we
save, whenever it exists, the unitary (Euclidean) norm outward normal vector to \partial A
at z, named \nu A(z). Additionally, for each vertex z \in \scrV (Sij), we save the set of
indices L(z) \subseteq \{ 1, . . . ,m\} \setminus \{ i\} such that z \in \partial B(x\ell , r) for all \ell \in L(z).

Each set \scrA i = \partial B(xi, r) \cap \partial \Omega (\bfitx , r) \cap A for i = 1, . . . ,m, defined in (2.4), corre-
sponds to the union of the arcs in \partial Sij for all j \in \scrK Bi , i.e., it holds that

(4.3) \scrA i =
\bigcup 

j\in \scrK Bi

\scrA (Sij)

for i = 1, . . . ,m. It is worth noticing (4.3) does not mean that every arc in \BbbA i belongs
to \BbbA (Sij) for some j \in \scrK Bi

nor that | \BbbA i| =
\sum 

j\in \scrK Bi
| \BbbA (Sij)| . Indeed, if z is an

extremity of an arc in \BbbA (Sij), then either z \in \partial B(x\ell , r) for some \ell \not = i or z \in \partial Aj . In
the case z \in \partial Aj , it may happen that z /\in \partial A, and consequently z is not an extremity
of an arc in \BbbA i. To construct \BbbA i, consecutive arcs (arcs with an extreme in common)
in \cup j\in \scrK Bi

\BbbA (Sij) must be merged into a single arc. So, what holds is that each arc in
\BbbA i belongs to \BbbA (Sij) for some j \in \scrK Bi or is the union of two or more consecutive arcs
in \cup j\in \scrK Bi

\BbbA (Sij). Thus | \BbbA i| \leq 
\sum 

j\in \scrK Bi
| \BbbA (Sij)| . The particular case \scrA i = \partial B(xi, r)

is considered separately; in this case, we set \BbbA i = \emptyset and Circle(\BbbA i) equal to true.
In a similar way, we also define

(4.4) \scrE i =
\bigcup 

j\in \scrK Bi

\scrE (Sij),

and the associated set \BbbE i of pairs [v, w] representing edges, for i = 1, . . . ,m. These
sets of edges play a role in the computation of G only. Thus, while the same principle
of merging consecutive edges could be applied, it has no practical relevance because,
one way or the other, the same result is obtained.
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A second ingredient for the exact computation of G and its derivatives are the
parameterizations

(4.5) t \mapsto \rightarrow 
\biggl( 
x\scrE (t)
y\scrE (t)

\biggr) 
= v + t(w  - v), t \in [0, 1],

of each edge represented by [v, w] \in \cup mi=1\BbbE i, and the parameterizations

(4.6) \theta \mapsto \rightarrow 
\biggl( 
x\scrA (\theta )
y\scrA (\theta )

\biggr) 
= xi + r

\biggl( 
cos \theta 
sin \theta 

\biggr) 
, \theta \in [\theta v, \theta w],

of each arc represented by (v, w) \in \BbbA i for i = 1, . . . ,m, where \theta v and \theta w are the
angular coordinates of v  - xi and w  - xi, respectively.

We are now ready to compute G and its derivatives. By (2.2),

(4.7) G(\bfitx , r) = Vol(A) - Vol(A \cap \Omega (\bfitx , r)) = Vol(A) - 
\sum 

(i,j)\in \scrK 

Vol(Sij).

By Green's theorem,

(4.8) Vol(Sij) =

\int 
Sij

dxdy =

\int 
\partial Sij

x dy =
\sum 

[v,w]\in \BbbE (Sij)

\int 1

0

x\scrE (t) dy\scrE (t) +
\sum 

(v,w)\in \BbbA (Sij)

\int \theta w

\theta v

x\scrA (\theta ) dy\scrA (\theta )

for all (i, j) \in \scrK , while, by (4.5),

(4.9)

\int 1

0

x\scrE (t) dy\scrE (t) =
(v1 + w1)(w2  - v2)

2

for all [v, w] \in \BbbE (Sij) and all (i, j) \in \scrK , and, by (4.6),

(4.10)

\int \theta w

\theta v

x\scrA (\theta ) dy\scrA (\theta ) = (xi)1 r (sin \theta w  - sin \theta v)

+
r2

2
(\theta w  - \theta v + sin \theta w cos \theta w  - sin \theta v cos \theta v)

for all (v, w) \in \BbbA (Sij) and all (i, j) \in \scrK . The computation of G as defined in (2.2)
using (4.7)--(4.10) is summarized in Algorithm 4.1.

For computing\nabla G(\bfitx , r) = (\partial x1G(\bfitx , r), . . . , \partial xmG(\bfitx , r), \partial rG(\bfitx , r))
\top , by (2.3) and

(2.4), we have that

(4.11)

\partial xi
G(\bfitx , r) =  - 

\int 
\scrA i

\nu i(z) dz =  - 
\sum 

(v,w)\in \BbbA i

\int \theta w

\theta v

r (cos \theta , sin \theta )\top d\theta 

=
\sum 

(v,w)\in \BbbA i

r (sin \theta v  - sin \theta w, cos \theta w  - cos \theta v)
\top 

for i = 1, . . . ,m, and, by (2.3) and (2.6), we have that

(4.12) \partial rG(\bfitx , r) =  - 
\int 
\cup m

i=1\scrA i

dz =  - 
\sum 

(v,w)\in \cup m
i=1\BbbA i

\int \theta w

\theta v

r d\theta =  - 
\sum 

(v,w)\in \cup m
i=1\BbbA i

r (\theta w  - \theta v).

The computation of \nabla G as defined in (2.3) using (4.11) and (4.12) is summarized in
Algorithm 4.2.
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Algorithm 4.1 Computes G(\bfitx , r).

Input: Vol(A), (\bfitx , r), and sets \{ \BbbE i,\BbbA i\} mi=1.
Output: G(\bfitx , r).
\gamma \leftarrow 0
for i = 1, . . . ,m do

if Circle(\BbbA i) then
\gamma \leftarrow \gamma + \pi r2

else
foreach [v, w] \in \BbbE i do

\gamma \leftarrow \gamma + 1
2 (v1 + w1)(w2  - v2)

foreach (v, w) \in \BbbA i do

\gamma \leftarrow \gamma + (xi)1r(sin \theta w  - sin \theta v) +
r2

2 (\theta w  - \theta v + sin \theta w cos \theta w  - sin \theta v cos \theta v)

return G = Vol(A) - \gamma 

Algorithm 4.2 Computes \nabla G(\bfitx , r).
Input: (\bfitx , r), and sets \{ \BbbA i\} mi=1.
Output: \nabla G(\bfitx , r).
gr \leftarrow 0 and gxi

\leftarrow (0, 0)\top for i = 1, . . . ,m.
for i = 1, . . . ,m do

if Circle(\BbbA i) then
gr \leftarrow gr  - 2\pi r

else
foreach (v, w) \in \BbbA i do

gr \leftarrow gr  - r(\theta w  - \theta v)
gxi
\leftarrow gxi

+ r(sin \theta v  - sin \theta w, cos \theta w  - cos \theta v)
\top 

return \nabla G(\bfitx , r) = (gr, g
\top 
x1
, . . . , g\top xm

)\top 

For computing \nabla 2G, we use that, in (2.7),

(4.13)  - Per(\partial \Omega (\bfitx , r) \cap A)
r

=
\sum 

(v,w)\in \cup m
i=1\BbbA i

(\theta v  - \theta w),

in (2.8),

1

r

\int 
\scrA i

 - \nu i(z)\otimes \nu i(z) + \tau i(z)\otimes \tau i(z) dz

=
\sum 

(v,w)\in \BbbA i

\int \theta w

\theta v

 - 
\biggl( 

(cos \theta )2 sin \theta cos \theta 
sin \theta cos \theta (sin \theta )2

\biggr) 
+

\biggl( 
(sin \theta )2  - sin \theta cos \theta 
 - sin \theta cos \theta (cos \theta )2

\biggr) 
d\theta 

=
\sum 

(v,w)\in \BbbA i

\biggl( 
sin(\theta v  - \theta w) cos(\theta v + \theta w) (cos \theta w)

2  - (cos \theta v)
2

(cos \theta w)
2  - (cos \theta v)

2 sin(\theta w  - \theta v) cos(\theta v + \theta w)

\biggr) 
,

(4.14)

and, in (2.10),

(4.15)  - 1

r

\int 
\scrA i

\nu i(z) dz =
\sum 

(v,w)\in \BbbA i

(sin \theta v  - sin \theta w, cos \theta w  - cos \theta v)
\top .
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Recall that in (2.7), (2.8), and (2.10), for z \in \partial B(xi, r), \nu  - i(z) represents the unitary-
norm outwards normal vector to the set intersecting \partial B(xi, r) at z. If this set is \partial A,
then \nu  - i(z) = \nu A(z). If this set is \partial B(x\ell , r) for some \ell \in L(z), then \nu  - i(z) = \nu \ell (z) =
(cos\vargamma z, sin\vargamma z)

\top , where \vargamma z is the angular coordinate of z  - x\ell . With these definitions
and substituting (4.13), (4.14), and (4.15) in (2.7), (2.8), (2.9), and (2.10), we arrive
at Algorithm 4.3.

Algorithm 4.3 Computes \nabla 2G(\bfitx , r).

Input: (\bfitx , r) and sets \{ \BbbA i\} mi=1.
Output: The lower triangle of H = \nabla 2G(\bfitx , r) \in \BbbR 2m+1,2m+1.
H \leftarrow 0.
for i = 1, . . . ,m do

if Circle(\BbbA i) then
h2m+1,2m+1 \leftarrow h2m+1,2m+1  - 2\pi 

else
foreach (v, w) \in \BbbA i do

let a\odot b mean a\leftarrow a+ b\biggl( 
h2i - 1,2i - 1

h2i,2i - 1 h2i,2i

\biggr) 
\odot 

\biggl( 
sin(\theta v  - \theta w) cos(\theta v + \theta w)

(cos \theta w)
2  - (cos \theta v)

2 sin(\theta w  - \theta v) cos(\theta v + \theta w)

\biggr) 
(h2m+1,2i - 1, h2m+1,2i) \odot (sin \theta v  - sin \theta w, cos \theta w  - cos \theta v)

h2m+1,2m+1 \odot \theta v  - \theta w
for z \in \{ v, w\} do

if z = v then let a\odot b mean a\leftarrow a - b else let a\odot b mean a\leftarrow a+ b

if z \in \partial A then
\alpha \leftarrow 

\bigl( 
 - \nu A(z) \cdot (cos \theta z, sin \theta z)\top 

\bigr) 
/
\bigl( 
\nu A(z) \cdot ( - sin \theta z, cos \theta z)

\top \bigr) \biggl( 
h2i - 1,2i - 1

h2i,2i - 1 h2i,2i

\biggr) 
\odot \alpha 

\biggl( 
(cos \theta z)

2

sin \theta z cos \theta z (sin \theta z)
2

\biggr) 
(h2m+1,2i - 1, h2m+1,2i) \odot \alpha (cos \theta z, sin \theta z)

h2m+1,2m+1 \odot \alpha 

foreach \ell (z) \in L(z) do\biggl( 
h2i - 1,2i - 1

h2i,2i - 1 h2i,2i

\biggr) 
\odot 

\biggl( 
cotan(\vargamma z  - \theta z)(cos \theta z)2

cotan(\vargamma z  - \theta z) sin \theta z cos \theta z cotan(\vargamma z  - \theta z)(sin \theta z)2
\biggr) 

h2m+1,2i - 1 \odot cotan(\vargamma z  - \theta z) cos \theta z  - cos \theta z/ sin(\vargamma z  - \theta z)

h2m+1,2i \odot cotan(\vargamma z  - \theta z) sin \theta z  - sin \theta z/ sin(\vargamma z  - \theta z)

h2m+1,2m+1 \odot (cos(\vargamma z  - \theta z) - 1)/ sin(\vargamma z  - \theta z)
if \ell (z) > i then\biggl( 

h2\ell (z) - 1,2i - 1 h2\ell (z) - 1,2i

h2\ell (z),2i - 1 h2\ell (z),2i

\biggr) 
\odot  - (sin(\vargamma z  - \theta z)) - 1

\biggl( 
cos \theta z cos\vargamma z sin \theta z cos\vargamma z
cos \theta z sin\vargamma z sin \theta z sin\vargamma z

\biggr) 

return H

Algorithms 4.1, 4.2, and 4.3 depend on the computation of sets \BbbE i and \BbbA i for i =
1, . . . ,m. Computing these sets requires (a) computing the Voronoi diagram with cells
\{ Vi\} mi=1 associated with the balls' centers x1, . . . , xm and (b) for each i \in \{ 1, . . . ,m\} 
and j \in \{ 1, . . . , p\} computing Wij = Vi \cap Aj and Sij = Wij \cap B(xi, r). Computing
the Voronoi diagram, using, for example, Fortune's algorithm [17], has known time
complexity \scrO (m logm) [13, Lem. 7.9, p.158]. Since the intersection between a two-
dimensional polyhedron defined by a half-planes and a convex polygon with b sides
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can be computed in \scrO (ab) [22], all Wij can be computed in

(4.16) \scrO 
\biggl( m\sum 

i=1

p\sum 
j=1

eVi
eAj

\biggr) 
,

where eVi
is the number of half-planes that define Vi, for i = 1, . . . ,m, and eAj

is the
number of sides of each Aj , for j = 1, . . . , p. However, it is also known [13, Thm.
7.3, p. 150] that a Voronoi diagram generated by m \geq 3 points has at most 3m  - 6
edges; and since each edge is part of exactly two cells, we have that

\sum m
i=1 eVi

= \scrO (m).
Thus, (4.16) reduces to \scrO (m

\sum p
j=1 eAj

). By construction, it also holds that
\sum m

i=1 | \BbbE i| 
is \scrO (m

\sum p
j=1 eAj

). Finally, [6, Alg. A.4] is used to compute Sij =Wij \cap B(xi, r), and
a simple inspection of this algorithm shows that the computational effort required to
compute all Sij , as well as

\sum m
i=1 | \BbbA i| , are both \scrO (m

\sum p
j=1 eAj

). This implies that the

worst-case time complexity of Algorithms 4.1, 4.2, and 4.3 is\scrO (m logm+m
\sum p

j=1 eAj
).

5. Numerical experiments. In this section, we aim to illustrate the capabili-
ties and limitations of the proposed approach. We implemented Algorithms 4.1, 4.2,
and 4.3 in Fortran 90. Given the balls' centers \{ xi\} mi=1, the Voronoi diagram is com-
puted with subroutine Dtris2 from Geompack [24] (available at https://people.math.
sc.edu/Burkardt/f src/geompack2/geompack2.html). In fact, Dtris2 provides a De-
launay triangulation from which the Voronoi diagram is extracted. The intersection
Wij of each Voronoi cell Vi (that is, a bounded or unbounded polyhedron) and each
convex polygon Aj is computed with the Sutherland--Hodgman algorithm [38]. For
each convex polygon Wij , the intersection Sij with the ball B(xi, r) is computed with
an adaptation of a single iteration of the Sutherland--Hodgman algorithm; see [6, Alg.
A.4].

Since Algorithms 4.1, 4.2, and 4.3 are based on Assumptions 1 and 2, the question
of enforcing these conditions in the numerical experiments arises. From a theoretical
point of view, these assumptions are convenient to obtain first- and second-order
differentiability. Nevertheless, one can prove first- and second-order differentiability
or Gateaux semidifferentiability, using asymptotic analysis, for various singular cases
for which Assumptions 1 and 2 do not hold; see [7, section 3.5] and [6]. From a
numerical point of view, there is no need to enforce these conditions: the initial
configuration is random and, therefore, is never singular, and these singular cases
constitute a set of null measure so that they rarely occur in practice. Of course, they
occur in the limit if the solution of the problem under consideration is degenerate.
However, since, in practice, iterative algorithms stop ``before reaching the limit,""
degenerate solutions do not represent a practical issue. This was illustrated by a
numerical experiment in [7, section 5] for the singular case where A is the union
of two tangent unitary-diameter balls to be covered with m = 2 balls. Despite the
solution being degenerate, it was found, with the desired preset precision, by visiting
only points at which Assumptions 1 and 2 hold and, therefore, the derivatives are well
defined.

First of all, to put the practical performance of Algorithm 4.1 in perspective in
relation to the practical performance of the method implemented in [7], consider a
trivial configuration given by a square of side three with the bottom-left corner at the
origin and two unitary-radius balls with centers x1 = (0, 3)\top and x2 = (1.2, 1.7)\top .
The covered area can be computed analytically and is given by Vol(A \cap \Omega (\bfitx , r)) =
5\pi /4  - 2 arccos(d/2) + d

\sqrt{} 
1 - (d/2)2 \approx 3.781718647855564, where d = \| x1  - x2\| .

Algorithm 4.1 computes this quantity up to the machine precision in 10 - 6 seconds

https://people.math.sc.edu/Burkardt/f_src/geompack2/geompack2.html
https://people.math.sc.edu/Burkardt/f_src/geompack2/geompack2.html
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of CPU time. Algorithm 4.1 from [7], devised to cover more general nonpolygonal
regions, approximates a covered area with precision O(h) at cost O(h2) by partitioning
a regionD that contains A in small squares of side h, where h > 0 is a given parameter.
In this specific trivial example, it takes 271.92 seconds of CPU time to compute the
covered area with half of the machine precision using h = 10 - 5. (With h = 10 - 3 and
h = 10 - 4, four and six correct decimal digits are obtained, by consuming 0.024 and
2.4 seconds of CPU time, respectively. Moreover, the cost is proportional to the area
of D, which is as small as possible since we considered D = A.) So, in this trivial
example, we showed that Algorithm 4.1 allows us to compute the covered area with
twice the number of correct digits with a computational cost that is eight orders of
magnitude smaller (i.e., a hundred million times faster) than the cost of the approach
proposed in [7], thus dramatically improves the computational efficiency.

Problem (2.1) is a nonlinear programming problem of the form

(5.1) Minimize f(\bfitx , r) := r subject to G(\bfitx , r) = 0 and r \geq 0

that can be tackled with an Augmented Lagrangian (AL) approach [9]. In the numer-
ical experiments, we considered the AL method Algencan [2, 9, 10]. Algencan 4.0, im-
plemented in Fortran 90 and available at http://www.ime.usp.br/\sim egbirgin/tango/,
was considered. Algencan is an AL method with safeguards that, at each iteration,
solves a bound-constrained subproblem. Since, in the present work, second-order de-
rivatives are available, subproblems are solved with an active-set Newton's method;
see [8] and [9, Chap .9] for details. When Algencan is applied to problem (5.1), on
success, it finds (\bfitx  \star , r \star , \lambda  \star ) with r \star > 0 satisfying

(5.2) \| \nabla f(\bfitx  \star , r \star ) + \lambda  \star \nabla G(\bfitx  \star , r \star )\| \infty \leq \varepsilon opt and \| G(\bfitx  \star , r \star )\| \infty \leq \varepsilon feas,

where \varepsilon feas > 0 and \varepsilon opt > 0 are given feasibility and optimality tolerances, respec-
tively; i.e., it finds a point that approximately satisfies KKT conditions for prob-
lem (5.1). Following [7], in order to enhance the probability of finding an approxima-
tion to a global minimizer, a simple multistart strategy with random initial guesses
is employed; see [7, section 5] for details. We considered \varepsilon feas = \varepsilon opt = 10 - 8.

In the numerical experiments, we considered (i) a nonconvex polygon with holes
already considered in [37], (ii) a sketch of a map of the Americas available from [9,
section 13.2] and already considered in [7], and (iii) iteration three of the Ces\`aro
fractal; see Figures 6a--8a. (Two additional problems can also be found in [6].) In
Figures 6b--8b, the way in which the problems were partitioned into convex polygons
is made explicit. A description of each problem (namely, the vertices of each convex
polygon that compose each problem) can be found in [6, App. B].

Fortran source code of Algorithms 4.1, 4.2, and 4.3, the source code of the con-
sidered problems, as well as the source code necessary to reproduce all numerical
experiments, is available at http://www.ime.usp.br/\sim egbirgin/. All tests were con-
ducted on a computer with an AMD Opteron 6376 processor and 256GB 1866 MHz
DDR3 of RAM memory, running Debian GNU/Linux (version 9.13--stretch). Code
was compiled by the GFortran compiler of GCC (version 6.3.0) with the -O3 opti-
mization directive enabled.

In the experiments, we covered the three considered regions with m \in \{ 10, 20, . . . ,
100\} balls. For each problem and each considered value of m, the multistart strategy
makes 10,000 attempts, i.e. 10,000 different random initial guesses are considered.
Table 1 and Figures 6--8 show the results. In Table 1, r\ast represents the smallest
obtained radius, G(\bfitx \ast , r\ast ) corresponds to the value of G at the obtained solution,

http://www.ime.usp.br/~egbirgin/tango/
http://www.ime.usp.br/~egbirgin/
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and ``trial"" is the ordinal of the initial guess that yields the smallest radius. In
addition, some performance metrics are also displayed in the remaining columns of
the table. Columns ``outit"" and ``innit"" correspond to the so-called outer and inner
iterations of the AL method, respectively, ``Alg.1"", ``Alg.2"", and ``Alg.3"" correspond
to the number of calls to Algorithms 4.1, 4.2, and 4.3, respectively, i.e., to the number
of evaluations of G, \nabla G, and \nabla 2G that were required in the optimization process,
and ``CPU time"" corresponds to the elapsed CPU time in seconds. All of these
performance metrics correspond to the trial that lead to the smallest radius for a given
problem and a given number of balls m. Thus, the whole process took approximately
10,000 times this effort. Clearly, the overall cost can be reduced by reducing the
number of trials. Figure 5 illustrates, for the ``nonconvex with holes problem"" with
m \in \{ 10, 20, . . . , 100\} , the best obtained radius as a function of the number of trials.
The picture shows that, for all values of m, good quality local minimizers are found
with less than 100 trials and that in the remaining 99\% additional trials only marginal
improvements are obtained.

Fig. 5. Best radius r\ast for m \in \{ 10, 20, . . . , 100\} as a function of the number of trials in the
multistart globalization strategy.

As a whole, numerical experiments show that, by using second-order information,
the AL method is able to find high-precision local solutions efficiently. It is worth
noticing that, as shown in column G(\bfitx \ast , r\ast ) of Table 1, using \varepsilon feas = 10 - 8 means
that the area of the region A to be covered and the covered region A \cap \Omega (\bfitx \ast , r\ast )
coincide in eight significant digits. Since, in the considered problems, no region has
an area larger than 100 (see [6, App. B]), this means that reported solutions cover
more than 99.999999\% of the region. This precision is in contrast with the relatively
low-quality solutions obtained with the approximate procedure considered in [7]. A
scaled version of the nonconvex region with holes considered in the present work
was also considered in [37], where radii r\ast = 16.6176655/150 \approx 0.110784446 and
r\ast = 14.07100757/150 \approx 0.09380671713 for the cases with m = 30 and m = 40
were reported. A direct comparison is not possible because the balls' centers and the
covering's precision of these solutions was not reported in [37]. Anyway, smaller radii
were found for these two cases in the present work, namely, r\ast = 0.1094496310 and
r\ast = 0.09211041653, respectively. The region that represents a sketch of the map of
the Americas was also considered in [7]. Solutions presented in [7] are not comparable
to the ones presented here. The latter are much more precise and can be found with
much less effort.
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Table 1
Details of the obtained solutions and performance metrics of the application of Algencan to the

three considered covering problems.

m r\ast G(\bfitx \ast , r\ast ) Trial outit innit Alg. 1 Alg. 2 Alg. 3 CPU time

N
o
n
co

n
v
ex

w
it
h
h
o
le
s 10 1.954663097e - 01 5.2e - 09 7078 23 154 538 388 384 0.33

20 1.327772115e - 01 4.2e - 09 4580 21 123 426 345 333 0.56
30 1.094496310e - 01 9.9e - 09 7155 22 187 1154 413 407 1.48
40 9.211041653e - 02 9.3e - 09 8981 21 209 847 432 419 1.85
50 8.205969668e - 02 9.0e - 09 3176 21 218 937 450 428 2.57
60 7.397252994e - 02 8.4e - 09 7718 22 245 1750 484 465 4.54
70 6.895468329e - 02 9.0e - 09 2942 20 209 1228 421 409 4.35
80 6.406536859e - 02 7.5e - 09 8908 21 209 1366 419 419 5.69
90 6.034584051e - 02 7.7e - 09 3741 23 263 2595 500 493 9.71
100 5.722651130e - 02 6.9e - 09 2619 20 225 1390 448 425 5.45

S
k
et
ch

o
f
th

e
A
m
er
ic
a
s
m
a
p 10 1.102268022e - 01 6.2e - 09 7191 22 226 1198 434 446 0.91

20 7.056619375e - 02 4.2e - 09 558 21 256 1541 455 466 2.14

30 5.672894538e - 02 3.7e - 09 3341 20 241 1451 428 441 3.36

40 4.847968184e - 02 5.3e - 09 7518 21 274 1227 506 484 4.18

50 4.307962390e - 02 4.6e - 09 9471 22 190 915 405 410 3.82

60 3.866922338e - 02 9.0e - 09 6539 22 328 2124 544 548 9.17

70 3.547953624e - 02 9.3e - 09 2774 20 290 1864 508 490 10.81

80 3.303521347e - 02 3.7e - 09 9176 23 281 1098 529 511 8.94

90 3.108185943e - 02 9.4e - 09 1815 20 296 967 528 496 11.20

100 2.918558241e - 02 7.3e - 09 2427 21 302 1271 525 512 10.55

C
es
\`a
ro

fr
a
ct
a
l

10 2.127686460e - 01 5.5e - 09 7054 22 180 1348 377 400 0.63
20 1.332687821e - 01 3.8e - 09 4870 23 278 1152 421 508 1.22
30 1.052216365e - 01 4.1e - 09 7850 23 245 1219 486 475 2.18
40 9.342803510e - 02 9.4e - 09 2646 21 193 871 424 403 2.43
50 8.331418075e - 02 9.4e - 09 1317 23 197 1322 441 427 3.68
60 7.841515385e - 02 8.8e - 12 9229 31 433 3704 674 743 10.83
70 7.046047099e - 02 8.4e - 09 5859 22 289 1698 544 509 6.96
80 6.611079200e - 02 8.6e - 09 7697 21 329 1694 581 539 9.38
90 6.195627851e - 02 7.8e - 09 5722 23 318 3185 568 548 15.12
100 5.846596190e - 02 8.6e - 09 3205 21 296 1729 548 506 8.32

(a) Region (b) Partition (c) m = 10 (d) m = 20

(e) m = 30 (f) m = 40 (g) m = 50 (h) m = 60

(i) m = 70 (j) m = 80 (k) m = 90 (l) m = 100

Fig. 6. (a) The nonconvex polygon with holes considered in [37], partitioned into p = 14
convex polygons as depicted in (b). Pictures from (c) to (l) display the solutions found with m \in 
\{ 10, 20, . . . , 100\} .
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(a) Region (b) Partition (c) m = 10 (d) m = 20

(e) m = 30 (f) m = 40 (g) m = 50 (h) m = 60

(i) m = 70 (j) m = 80 (k) m = 90 (l) m = 100

Fig. 7. (a) Sketch of the Americas available from [9, section 13.2] and already considered in
[7], partitioned into p = 34 convex polygons as depicted in (b). Pictures from (c) to (l) display the
solutions found with m \in \{ 10, 20, . . . , 100\} .
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(a) Region (b) Partition (c) m = 10 (d) m = 20

(e) m = 30 (f) m = 40 (g) m = 50 (h) m = 60

(i) m = 70 (j) m = 80 (k) m = 90 (l) m = 100

Fig. 8. (a) Ces\`aro fractal, partitioned into p = 21 convex polygons as depicted in (b). Pictures
from (c) to (l) display the solutions found with m \in \{ 10, 20, . . . , 100\} .

6. Final considerations. From the shape optimization perspective, the pres-
ent work completes [7] with a second-order shape sensitivity analysis for nonsmooth
domains defined as a union of balls intersected with the domain to be covered. The
analysis of several singular cases in [6] seems to indicate that the assumptions used to
derive \nabla 2G cannot be weakened. From the practical point of view, the exact calcula-
tion of G and its first- and second-order derivatives represents the possibility, absent
in [7], of solving very efficiently and with high accuracy, problems in which the area
to be covered is given by a (union of) nonconvex polygons.

We now discuss potential extensions of our approach. Redefining \Omega (\bfitx , \bfitr ) :=
\cup mi=1B(xi, ri) and G(\bfitx , \bfitr ) := Vol(A \setminus \Omega (\bfitx , \bfitr )), where \bfitr := \{ ri\} mi=1, expressions and
algorithms to approximate G(\bfitx , \bfitr ), \nabla G(\bfitx , \bfitr ), and \nabla 2G(\bfitx , \bfitr ) can be obtained with
straightforward modifications to the introduced approach. From the practical point of
view, underlying partitions that lead to exact calculations might be implemented using
power diagrams [4, 23]. We observe that formulae (2.5), (2.7), (2.8), (2.9), and (2.10)
are valid for general sets A satisfying Assumptions 1 and 2, but the exact numerical
computation of G, \nabla G, and \nabla 2G requires A to be a union of nonoverlapping convex
polygons. The exact calculation of \nabla G and \nabla 2G can actually be performed for any
set A such that the intersections of \partial A with circles can be computed analytically.
However, the possibilities of computing G exactly are more restricted as this requires
the computation of integrals on subsets of \partial A. In some specific cases, this calculation
could be done exactly, for instance when A is a union of balls. Nevertheless, in more
general cases the integrals on subsets of \partial A could be efficiently approximated with
high accuracy; or, alternatively, the original A may be approximated by a polygon.

The case where \Omega (\bfitx , r) is a union of objects with arbitrary (sufficiently smooth)
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shapes is challenging and would require a generalization of the techniques developed in
[7] and in the present paper. A key idea of our construction of the mappings Tt, which
is still valid for objects with arbitrary shapes, is that the value of Tt at the intersection
points of the objects' boundaries (or the intersections with \partial A) is fully determined
by the motion of these singular points, whereas the value of Tt at the regular points
of \partial \Omega (\bfitx , r) is underdetermined. When the objects are balls, this underdetermination
is conveniently resolved using polar coordinates to extend Tt to the regular parts of
\partial \Omega (\bfitx , r). However, in the case of arbitrary shaped-objects, for which rotations and
free-form deformations become relevant, a more general construction of Tt is required.
A generalization to three dimensions of the nonsmooth shape optimization techniques
developed in [7] and in the present paper is conceivable but would also require a more
general approach to build Tt. Another interesting direction for future investigations
would be the application of these techniques for optimization problems involving par-
tial differential equations. The calculation of the shape derivatives would depend on
the specific partial differential equation, but the construction of the transformations
Tt would remain the same.
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