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A SHAPE OPTIMIZATION APPROACH TO THE PROBLEM OF
COVERING A TWO-DIMENSIONAL REGION WITH

MINIMUM-RADIUS IDENTICAL BALLS\ast 

E. G. BIRGIN\dagger , A. LAURAIN\ddagger , R. MASSAMBONE\dagger , AND A. G. SANTANA\dagger 

Abstract. We investigate the problem of covering a region in the plane with the union of m
identical balls of minimum radius. The region to be covered may be disconnected, be nonconvex, have
Lipschitz boundary, and in particular have corners. Nullifying the area of the complement of the union
of balls with respect to the region to be covered is considered as the constraint, while minimizing
the balls' radius is the objective function. The first-order sensitivity analysis of the area to be
nullified in the constraint is performed using shape optimization techniques. Bi-Lipschitz mappings
are built to model small perturbations of the nonsmooth shape defined via unions and intersections;
this allows us to compute the derivative of the constraint via the notion of shape derivative. The
considered approach is fairly general and can be adapted to tackle other relevant nonsmooth shape
optimization problems. By discretizing the integrals that appear in the formulation of the problem
and its derivatives, a nonlinear programming problem is obtained. From the practical point of view,
the region to be covered is modeled by an oracle that, for a given point, answers whether it belongs
to the region or not. No additional information on the region is required. Numerical examples in
which the nonlinear programming problem is solved with an augmented Lagrangian approach are
presented. The experiments illustrate the wide variety of regions whose covering can be addressed
with the proposed approach.
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1. Introduction. In this work we consider the problem of finding the mini-
mum radius r of m identical balls B(xi, r), i = 1, . . . ,m, whose union covers a given
arbitrary region A \subset \BbbR d. The covering problem has a wide variety of practical applica-
tions ranging from the configuration of a gamma ray machine radiotherapy equipment
unit [26] to placing base stations [10]. The problem of covering the d-dimensional space
or a bounded region with overlapping identical balls minimizing the number of balls
or their radius represents a challenging problem that has been studied for more than
half a century [8, 34]. An attempt to devise a formula for the area of a ball that is
covered by two other identical balls in the plane was reported in 1962 in [41, pp. 184,
185]. The author said, ``It was found that a single `formula' could not be obtained
for the area covered but an algorithm was devised which uses no less than eight for-
mulae depending on certain geometric properties of the covering configuration."" He
further concluded that ``The impossibility of obtaining any reasonable `formula' for
the function we are trying to maximize in the relatively trivial case m = 2 seems
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to indicate the futility of the analytical approach especially when m is large. On
this sad note the general analytical approach was abandoned and another method
of a somewhat experimental nature [hereafter named black box maximization], using
high-speed electronic computers, was adopted."" Since then, several approaches to
the problem have been based on different kinds of numerical optimization techniques.
Although some of the techniques can be applied with small variations to arbitrary
dimensions, applications and the appeal of representing solutions graphically justify
the attention that has been given to the cases d = 2, 3.

In [30] and [31] the cases in which A is an equilateral triangle and a square are
considered, respectively. In both cases a two-level optimization strategy is considered.
In the inner level, the radius r is fixed and a feasibility problem is solved to determine
whether, with the fixed radius, there exist balls' centers x1, . . . , xm \in \BbbR 2 such that
the balls cover A. BFGS [29], a quasi-Newton method for smooth unconstrained min-
imization, is used to perform this task (presumably, minimizing the squared residual).
Unfortunately, it is not explicit in [30] and [31] how the feasibility problem is modeled
and how its first-order derivatives are computed. Depending on whether the balls
with fixed radius cover A or not, a discrete rule is used in the outer level to update r.
The method stops with a prescribed precision on the radius. In [36] the problem in
which A is a region given by the union and the difference of polygons is considered. A
mathematical programming model is proposed and analyzed. The proposed method
is based on the computation of a feasible descent direction [42] that requires solving
a linear programming problem at each iteration. In [18, 27, 28] a simulated annealing
approach with an adaptive mesh is considered. Balls' centers are chosen as points in
the mesh. Then, points in the mesh are assigned to the closest center using Voronoi
tessellation and, as a consequence, the optimal radius for balls with the given centers
to cover all points in the mesh is easily obtained. Neighbor solutions constituted by
perturbations of the current centers are evaluated and accepted as in a classical local
search strategy within the framework of the simulated annealing approach. The cases
in which A is a rectangle, a triangle, and a square are tackled with slight variations
of this approach in [18], [27], and [28], respectively. In [40, 38], arbitrary two- and
three-dimensional regions are considered but the problem of covering the region is
replaced by the problem of covering an arbitrary chosen set of points within A. Then,
a specific optimization technique named hyperbolic penalization [39] is applied. In [2]
the problem of covering an arbitrary region A is modeled as a nonlinear semidefinite
programming problem with the help of convex algebraic geometry tools. The intro-
duced model describes the covering problem without resorting to discretizations but
depends on some polynomials of unknown degrees with impracticable large bounds
and whose coefficients are hard to compute. The resulting problem is solved with an
augmented Lagrangian (AL) method for nonlinear semidefinite programming. Solving
the AL subproblems requires several spectral decompositions per iteration, which is
very time-consuming; thus, only a limited number of numerical examples is exhibited.

In the present work, the covering problem is tackled from a shape optimization
perspective. In a broad sense, shape optimization is the study of optimization prob-
lems where the variable is a geometric object, usually a subset of \BbbR d; see [12, 17, 35].
The covering problem may be naturally formulated as a nonsmooth shape optimiza-
tion problem, as A may be nonsmooth, and the union of balls B(xi, r) covering A can
be seen, except for degenerate cases, as a union of curvilinear polygons. To be more
precise, Lipschitz domains and transformations seem to be the natural framework to
model covering with a union of balls. Shape sensitivity analysis in a Lipschitz setting is
well-understood---a family of Lipschitz domains is parameterized via diffeomorphisms



SHAPE OPTIMIZATION FOR THE COVERING PROBLEM A2049

applied to a reference shape, then the integral on the moving domain is pulled back to
the reference domain, and in this way the so-called shape derivative [12, 17, 35] can be
computed. In this paper, standard shape derivative formulae for Lipschitz domains
are used to compute the sensitivity of the constraint.

The covering problem, formulated as a shape optimization problem, features an
interesting class of moving nonsmooth domains that has received little attention in
the literature so far, that is, moving domains defined via unions and intersections of
subcomponents animated by their own independent motions. To be more specific, in
this approach the variable domain is the complement of the union of balls with respect
to the region to be covered, where each ball may either be dilated or be translated
in an arbitrary direction. The problem then consists in minimizing the radius of the
identical balls, with the constraint that the area of this variable domain vanishes.
The main task is then to compute the derivative of this constraint with respect to
translation and dilations of the balls. Specialized methods have been developed to
compute the first-order derivative of the area of a union of balls: in two dimensions for
dilations and translations in [20], and for translations in any dimension in [9], where
the derivative is expressed as a linear combination of the derivatives of the distances
between the centers. Nevertheless, a general methodology for the sensitivity analysis
of shape funcionals depending on sets defined via unions and intersections is lacking.
The main challenge we are facing in this setting is the construction of a bi-Lipschitz
mapping between the reference domain and the moving domain, which also needs to
coincide with the basic transformations of the subcomponents. Our main contribution
is to show that stretching, moving spheres and their intersection with a fixed set
may be represented by a bi-Lipschitz map, which allows us to use the known shape
derivative formulae. The techniques and ideas developed in this work to build such a
mapping are fairly general and can be used in two dimensions for shape functionals
involving sets defined via unions and/or intersections, involving the solutions of partial
differential equations, and to compute second-order derivatives. They can also be used
to study the structure of first- and second-order shape derivatives, a topic that is well-
understood in the smooth framework but has been less investigated in the nonsmooth
case; see the pioneering work [11] and the recent contributions [14, 15, 22, 23]. Some
of these techniques are nevertheless specific to two dimensions and distinct methods
should be devised to treat the case of higher dimensions.

The rest of this work is organized as follows. In section 2 we describe the shape
optimization formulation of the covering problem considered in this paper, and we
give the formulae for the gradient of its constraint. Section 3 is devoted to the proof
of differentiability of the constraint function. We first show that, under some natu-
ral nondegeneracy conditions, the structure of the variable domain is preserved, for
small translations and dilations of the balls. This is a prerequisite to perform shape
sensitivity analysis and compute shape derivatives. Then we build the bi-Lipschitz
mapping between the reference domain and the moving domain, and we use it to
compute the derivatives. In section 4 we describe algorithms to approximate areas
and line integrals appearing in the constraint and its derivatives and provide conver-
gence estimates for the approximations. In section 5, numerical experiments illustrate
the applicability of the introduced approach to a variety of regions A to be covered.
Conclusions and lines for future research are given in the last section.

Notation. For a given set \omega \subset \BbbR 2, \partial \omega denotes its boundary, \omega its closure, and
\omega c its complement. The notation \| \cdot \| is used for the Euclidean norm. The divergence
of a sufficiently smooth vector field \BbbR 2 \ni (x, y) \mapsto \rightarrow V (x, y) = (V1(x, y), V2(x, y)) \in \BbbR 2

is defined by div V := \partial V1

\partial x + \partial V2

\partial y , and its Jacobian matrix is denoted DV .
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2. The continuous problem. Let A be an open bounded subset of \BbbR 2 and
\Omega (\bfitx , r) =

\bigcup m
i=1B(xi, r), where \bfitx := \{ xi\} mi=1 and B(xi, r) are open balls with centers

xi \in \BbbR 2 and radii r. We consider the problem of covering A using a fixed number m
of balls B(xi, r) with minimal radius r, i.e., we are looking for a vector (\bfitx , r) \in \BbbR 2m+1

such that A \subset \Omega (\bfitx , r) with minimal r. The problem can be formulated as

(2.1) Minimize
(\bfitx ,r)\in \BbbR 2m+1

r subject to G(\bfitx , r) = 0,

where

G(\bfitx , r) := Vol(A \setminus \Omega (\bfitx , r))(2.2)

and Vol(A \setminus \Omega (\bfitx , r)) denotes the volume of A \setminus \Omega (\bfitx , r).
The function G can be interpreted as the composition of a so-called shape func-

tional A\setminus \Omega \mapsto \rightarrow Vol(A\setminus \Omega ) with a function (\bfitx , r) \mapsto \rightarrow A\setminus \Omega (\bfitx , r). Under some geometric
conditions detailed in the next sections, the derivative of such a function can be com-
puted using techniques of shape calculus and in particular via the concept of shape
derivative [12, 17, 24, 25, 35]. In the forthcoming sections we prove that

\nabla G(\bfitx , r) =  - 
\biggl( \int 

\partial B(x1,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu (z) dz, \cdot \cdot \cdot ,
\int 
\partial B(xm,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu (z) dz,

\int 
\partial \Omega (\bfitx ,r)\cap A

dz

\biggr) \top 

,(2.3)

where \nu is the outward unit normal vector to \Omega (\bfitx , r). Note that \nabla G(\bfitx , r) is a block
vector of size 2m+ 1 since \nu is a vector with two components.

Remark 2.1. The results of this section may be extended to several other relevant
situations. In particular, the case of different radii ri can be obtained immediately.
Say \Omega (\bfitx , \bfitr ) is now a union of balls with different radii \bfitr := \{ ri\} mi=1. Then the
partial derivative with respect to ri of the function (\bfitx , \bfitr ) \mapsto \rightarrow G(\bfitx , \bfitr ) is \partial riG(\bfitx , \bfitr ) =
 - 
\int 
\partial B(xi,ri)\cap \partial \Omega (\bfitx ,\bfitr )\cap A

dz.

3. Proof of differentiability of \bfitG . In this section we prove the formula (2.3)
for \nabla G. Assumption 3.1 below precludes that two balls be exactly superposed, that
two balls be tangent, and that more than two balls' boundaries intersect at the same
point. The assumption makes the task of proving that \nabla G is given by (2.3) simpler.
As will be shown in section 3.5, there are situations in which the assumption does
not hold and \nabla G is still given by (2.3), while there are also situations in which the
assumption does not hold and \nabla G does not exist. It is not a restrictive assumption;
indeed if Assumption 3.1 is not satisfied for some configuration of \Omega (\bfitx , r), then it
can be satisfied using an arbitrary small perturbation of r or \bfitx = \{ xi\} mi=1. In other
words, the assumption excludes a null-measure set of balls' configurations in \BbbR 2m+1,
and, thus, supposing it holds does not represent a practical issue of concern.

Assumption 3.1. The centers \{ xi\} mi=1 satisfy \| xi  - xj\| \not = 0 and \| xi  - xj\| \not = 2r
for all 1 \leq i, j \leq m, i \not = j. Also, for all 1 \leq i, j, k \leq m with i, j, k pairwise distinct,
we have \partial B(xi, r) \cap \partial B(xj , r) \cap \partial B(xk, r) = \emptyset .

We consider two types of perturbed sets for the optimization. First of all,
\Omega (\bfitx , r + t\delta r) \cap A arises from a perturbation r + t\delta r of the radius while the cen-
ters \bfitx are fixed. Second, the sets \Omega (\bfitx + t\delta \bfitx , r) \cap A correspond to translations of
B(xi, r), i.e., to perturbations of the centers \bfitx + t\delta \bfitx = \{ xi + t\delta xi\} mi=1 with a fixed
radius r. The shape sensitivity analysis of the area of these perturbed domains is
achieved through integration by substitution. The integral on the perturbed domain
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is pulled back onto the unperturbed domain, and then the derivative with respect
to t of the integrand can be computed. In order to apply integration by substitu-
tion, one needs at least a bi-Lipschitz mapping between the reference domain and
the perturbed domain. In the case of the radius perturbation, for instance, the refer-
ence domain would be \Omega (\bfitx , r) \cap A and the perturbed domain \Omega (\bfitx , r + t\delta r) \cap A. The
objective is then to build a bi-Lipschitz mapping Tt : \Omega (\bfitx , r) \cap A \rightarrow \BbbR 2 such that
Tt(\Omega (\bfitx , r)\cap A) = \Omega (\bfitx , r+ t\delta r)\cap A and Tt(\partial (\Omega (\bfitx , r)\cap A)) = \partial (\Omega (\bfitx , r+ t\delta r)\cap A). In
the case of center perturbations we are looking for a bi-Lipschitz mapping such that
Tt(\Omega (\bfitx , r) \cap A) = \Omega (\bfitx + t\delta \bfitx , r) \cap A and Tt(\partial (\Omega (\bfitx , r) \cap A)) = \partial (\Omega (\bfitx + t\delta \bfitx , r) \cap A).

The main difficulty with building Tt is that \Omega (\bfitx , r) \cap A is defined via unions of
balls and intersection with A. Taken individually, the transformations of B(xi, r) are
simple translations and dilations. Unfortunately, it is not possible to simply sum these
simple transformations up to obtain Tt, as this would yield a discontinuous Tt. Even
though the construction of Tt is rather technical, the main ideas may be summarized
as follows. The boundary of \Omega (\bfitx , r) \cap A can be decomposed into a union of curves
and singular points where two circles meet or where a circle meets the boundary
of A. The crucial observation is that for small t, the motion of a singular point is
entirely determined by the translations or dilations of the balls B(xi, r). This can be
easily understood by considering the intersection between two translating or dilating
circles. On the smooth parts of the boundary of \Omega (\bfitx , r) \cap A there is more freedom
for building Tt, using the fact that small displacements along a smooth subset of the
boundary do not modify the shape globally. Thus, the main idea of the construction
is to first determine Tt at the singular points using the implicit function theorem, and
then to appropriately extend Tt to the smooth parts of \partial (\Omega (\bfitx , r) \cap A), so that Tt is
bi-Lipschitz and models a translation or a dilation on each B(xi, r).

3.1. Construction of a mapping corresponding to a perturbation of the
radius. Theorem 3.2 guarantees that under Assumption 3.1, and for sufficiently small
t, the structure of \Omega (\bfitx , r+t\delta r) is stable, in the sense that \partial \Omega (\bfitx , r+t\delta r) is composed of
a constant number of connected components and arcs, and that no topological changes
occur, such as splitting, merging, or holes appearing in \Omega (\bfitx , r + t\delta r). This result is
necessary for building a bi-Lipschitz mapping field between \Omega (\bfitx , r) and \Omega (\bfitx , r+ t\delta r)
in Theorem 3.3. If topological changes were occuring, for instance, the perturbation
of \Omega (\bfitx , r) could not be described by a bi-Lipschitz transformation. In this case,
techniques of asymptotic analysis would have to be used to study the variation of G;
several examples of such singular situations are presented in section 3.5.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then there exists t0 > 0 such
that for all t \in [0, t0] we have the following decomposition:

(3.1) \partial \Omega (\bfitx , r + t\delta r) =

\=k\bigcup 
k=1

\scrE k(t) and \scrE k(t) =
\=\ell k\bigcup 
\ell =1

\scrA k,\ell (t),

where \=k \geq 1 and \=\ell k \geq 1 are independent of t, and \{ \scrE k(t)\} 
\=k
k=1 are the connected

components of \partial \Omega (\bfitx , r+t\delta r). Also, for each k = 1, . . . , \=k and \ell = 1, . . . , \=\ell k, there exists
a unique index ik,\ell , independent of t, such that \scrA k,\ell (t) is a subarc of \partial B(xik,\ell 

, r+ t\delta r)
parameterized by an angle aperture [\theta ink,\ell (t), \theta 

out
k,\ell (t)], and t \mapsto \rightarrow \theta ink,\ell (t), t \mapsto \rightarrow \theta outk,\ell (t) are

continuous functions on [0, t0].

Proof. Let \scrI := \{ 1, . . . ,m\} and introduce \scrZ i :=
\bigcup 

j\in \scrI ,j \not =i \partial B(xi, r) \cap \partial B(xj , r).
Notice that \scrZ i \subset \partial B(xi, r), that \scrZ i may be empty, and that the cardinal \=\alpha i of \scrZ i is
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always even due to Assumption 3.1. The points of \scrZ i can be described, in local polar
coordinates with the pole xi, by angles \theta i,\alpha \in [0, 2\pi ) with \alpha = 1, . . . , \=\alpha i. The points
of \scrZ i may be ordered so that the angles \theta i,\alpha satisfy 0 \leq \theta i,1 < \theta i,2 < \cdot \cdot \cdot < \theta i,\=\alpha i

< 2\pi .
Clearly, \partial \Omega (\bfitx , r) has a finite number \=k of connected components \scrE k. We start by

showing the decomposition into arcs

(3.2) \partial \Omega (\bfitx , r) =

\=k\bigcup 
k=1

\scrE k and \scrE k =

\=\ell k\bigcup 
\ell =1

\scrA k,\ell ,

where each arc \scrA k,\ell satisfies \scrA k,\ell \subset \partial B(xi\ell , r) for some index i\ell \in \scrI , and the end-
points of \scrA k,\ell are two consecutive points of \scrZ i\ell , in the order determined by the angles

\{ \theta i\ell ,\alpha \} 
\=\alpha i\ell 
\alpha =1. Note that the index i\ell is unique thanks to Assumption 3.1.

For a given k \in \{ 1, . . . , \=k\} , the first arc \scrA k,1 \subset \scrE k is chosen arbitrarily. If
\scrZ i1 = \emptyset , then we have \scrE k = \scrA k,1 = \partial B(xi1 , r), i.e.,

\=\ell k = 1. If \scrZ i1 \not = \emptyset , then \scrA k,1

may be parameterized either by the angle aperture [\theta i1,\gamma 1 , \theta i1,\gamma 1+1] for some index
1 \leq \gamma 1 \leq \=\alpha i1  - 1 or by the angle aperture [\theta i1,\=\alpha i1

, \theta i1,1 + 2\pi ], since the endpoints of

\scrA k,1 are consecutive points on \scrZ i1 . Let us call z
in
\ell and zout\ell the initial and final points

of \scrA k,\ell , respectively, where the superscript ``in"" and ``out"" refer to a counterclockwise
motion along the circles. Then we have zout1 \in \scrZ i1\cap \scrZ i2 \not = \emptyset for some i2 \not = i1. Defining
zin2 := zout1 , this determines automatically the next arc \scrA k,2 \subset \partial B(xi2 , r) with initial
point zin2 and final point zout2 , so that zin2 and zout2 are two consecutive points of \scrZ i2 .
Given zout\ell for some \ell \geq 1, the procedure can be iterated by setting zin\ell +1 := zout\ell .

The procedure ends when \ell is such that zout\ell = zin1 , yielding the decomposition of
\scrE k in (3.2) with \=\ell k = \ell . A simple example illustrating this geometric procedure is
provided in Figure 1.

Now that we have established the decomposition into subarcs (3.2) of the con-
nected components of \partial \Omega (\bfitx , r), we prove that this decomposition is stable for small
perturbations of the radius r \mapsto \rightarrow r + t\delta r. Let (i, j) \in \scrI 2 with i \not = j. If \partial B(xi, r) \cap 
\partial B(xj , r) = \emptyset , then thanks to Assumption 3.1 we also have \partial B(xi, r+t\delta r)\cap \partial B(xj , r+
t\delta r) = \emptyset for all t \in [0, t0] and t0 > 0 sufficiently small. If \partial B(xi, r) \cap \partial B(xj , r) is
not empty, then it is composed of exactly two points due to Assumption 3.1, i.e.,
\partial B(xi, r) \cap \partial B(xj , r) = \{ zij1, zij2\} \subset \scrZ i with zij1 \not = zij2. Using Assumption 3.1, it
is clear that for all \eta > 0, there exists t0 > 0 such that for all t \in [0, t0] we have the
property \partial B(xi, r + t\delta r) \cap \partial B(xj , r + t\delta r) = \{ zij1(t), zij2(t)\} with

zijk(t) \in B(zijk, \eta ) and zijk(t)\rightarrow zijk as t\rightarrow 0 for all k \in \{ 1, 2\} .(3.3)

We can also choose \eta > 0 sufficiently small so that

B(zi1j1k1 , \eta ) \cap B(zi2j2k2 , \eta ) = \emptyset for all (i1, j1, k1) \not = (i2, j2, k2).(3.4)

Now let us fix \eta > 0 and t0 > 0 such that (3.3) and (3.4) are satisfied, and define

\scrZ i(t) :=
\bigcup 

j\in \scrI ,j \not =i

\partial B(xi, r + t\delta r) \cap \partial B(xj , r + t\delta r).

In view of (3.3) and (3.4), the function pt : \scrZ i(t) \ni z \mapsto \rightarrow argminv\in \scrZ i
\| z  - v\| \in \scrZ i

defines a bijection between \scrZ i(t) and \scrZ i: the injectivity of pt : \scrZ i(t) \rightarrow \scrZ i is due to
Assumption 3.1 and the surjectivity is a consequence of (3.3). Thus, we conclude that
for all t \in [0, t0] the points of \scrZ i(t) can be described, in local polar coordinates with
the pole xi, by angles \theta i,\alpha (t) \in [ - \mu 0, 2\pi  - \mu 0) for some \mu 0 \geq 0 independent of t, with
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x5

\scrA 1,3

\scrA 1,1

x4

\scrA 1,2

x1

\scrA 2,2

x3

\scrA 2,1

\theta 2,1

\theta 2,2\theta 2,3

\theta 2,4

zin1 = zout3

zin3 = zout2

zin2 = zout1

x2

Fig. 1. An example of decomposition \partial \Omega (\bfitx , r) =
\bigcup \=k

k=1 \scrE k in (3.2), where \scrE k are the con-

nected components of \partial \Omega (\bfitx , r), with \=k = 2, \scrE k =
\bigcup \=\ell k

\ell =1 \scrA k,\ell with \=\ell 1 = 3 and \=\ell 2 = 2. The set
\scrZ 2 :=

\bigcup 
j\in \scrI ,j \not =2 \partial B(x2, r) \cap \partial B(xj , r) is composed of four points, hence \=\alpha 2 = 4. The arc \scrA 1,1 is

parameterized by the angle aperture [\theta 2,2, \theta 2,3], which corresponds to i1 = 2 and \gamma 1 = 2 in the proof
of Theorem 3.2.

\alpha = 1, . . . , \=\alpha i, where \=\alpha i = | \scrZ i| is the cardinal of \scrZ i = \scrZ i(0). For each t \in [0, t0], there
is a bijection between the sets of angles \{ \theta i,\alpha (t)\} \=\alpha i

\alpha =1 and \{ \theta i,\alpha \} \=\alpha i
\alpha =1 and we have

(3.5)  - \mu 0 \leq \theta i,1(t) < \theta i,2(t) < \cdot \cdot \cdot < \theta i,\=\alpha i
(t) < 2\pi  - \mu 0 for all t \in [0, t0].

The points of \scrZ i(t) can be ordered using \{ \theta i,\alpha (t)\} \=\alpha i
\alpha =1. Moreover, in view of (3.3)

the functions t \mapsto \rightarrow \theta i,\alpha (t) are continuous on [0, t0] and we have \theta i,\alpha (0) = \theta i,\alpha for
\alpha = 1, . . . , \=\alpha i.

Finally, we consider the decompositions

\partial \Omega (\bfitx , r + t\delta r) =

\=k(t)\bigcup 
k=1

\scrE k(t) and \scrE k(t) =
\=\ell k(t)\bigcup 
\ell =1

\scrA k,\ell (t),

where \scrE k(t) are the connected components of \partial \Omega (\bfitx , r+ t\delta r). In view of the bijection
between \scrZ i(t) and \scrZ i, the bijection between \{ \theta i,\alpha (t)\} \=\alpha i

\alpha =1 and \{ \theta i,\alpha \} \=\alpha i
\alpha =1, and (3.5),

we conclude that the set of subarcs of \partial B(xi, r) defined by the points of \scrZ i is also
in bijection with the set of subarcs of \partial B(xi, r + t\delta r) defined by the points of \scrZ i(t).
Then, employing the same procedure leading to the decompositions (3.2), we obtain
that for all t \in [0, t0] we have \=k(t) = \=k and \=\ell k(t) = \=\ell k for all k = 1, . . . , \=k. Due to
\theta i,\alpha (0) = \theta i,\alpha and (3.5), we also have \scrA k,\ell (0) = \scrA k,\ell and \scrA k,\ell (t) \subset \partial B(xi\ell , r + t\delta r)
for all t \in [0, t0], where i\ell is the unique index such that \scrA k,\ell \subset \partial B(xi\ell , r). This proves
the result.

Theorem 3.3. Suppose that Assumption 3.1 holds. Then there exists t0 > 0 such
that for all t \in [0, t0], there exists a bi-Lipschitz mapping Tt : \Omega (\bfitx , r)\rightarrow \BbbR 2 satisfying
Tt(\Omega (\bfitx , r)) = \Omega (\bfitx , r + t\delta r) and Tt(\partial \Omega (\bfitx , r)) = \partial \Omega (\bfitx , r + t\delta r).
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Proof. First we provide a general formula for the angle \vargamma (t), in local polar coordi-
nates with the pole xa, describing an intersection point of two circles \partial B(xa, r+ t\delta r)
and \partial B(xb, r + t\delta r), with xa, xb \in \BbbR 2, xa \not = xb, and \| xa  - xb\| < 2r. Introduce

\psi (t, \vargamma ) := \| \zeta (t, \vargamma )\| 2  - (r + t\delta r)2 with \zeta (t, \vargamma ) := xa  - xb + (r + t\delta r)

\biggl( 
cos\vargamma 
sin\vargamma 

\biggr) 
.

Observe that \vargamma \mapsto \rightarrow \zeta (t, \vargamma ) is a parameterization of the circle \partial B(xa, r+ t\delta r) in a coor-
dinate system of center xb, which means that the solutions of the equation \psi (t, \vargamma ) = 0
describe the intersections between \partial B(xa, r + t\delta r) and \partial B(xb, r + t\delta r).

We compute \partial \vargamma \psi (0, \vargamma ) = 2\langle \zeta (0, \vargamma ), \partial \vargamma \zeta (0, \vargamma )\rangle with

\zeta (0, \vargamma ) = xa  - xb + r

\biggl( 
cos\vargamma 
sin\vargamma 

\biggr) 
and \partial \vargamma \zeta (0, \vargamma ) = r

\biggl( 
 - sin\vargamma 
cos\vargamma 

\biggr) 
.(3.6)

Now let us select one of the two points in \partial B(xa, r + t\delta r) \cap \partial B(xb, r + t\delta r) and let \^\theta 
be the corresponding angle in a polar coordinate system with the pole xa. Since the
conditions of Assumption 3.1 are satisfied, it is easy to see that

(3.7) \partial \vargamma \psi (0, \^\theta ) = \langle \zeta (0, \^\theta ), \partial \vargamma \zeta (0, \^\theta )\rangle \not = 0.

Hence, the implicit function theorem can be applied to the function (t, \vargamma ) \mapsto \rightarrow \psi (t, \vargamma )

in a neighborhood of (0, \^\theta ). This yields the existence, for t0 sufficiently small, of a

smooth function t \mapsto \rightarrow \vargamma (t) in [0, t0] such that \psi (t, \vargamma (t)) = 0 in [0, t0] and \vargamma (0) = \^\theta . We
also have the derivative

(3.8) \vargamma \prime (t) =  - \partial t\psi (t, \vargamma (t))
\partial \vargamma \psi (t, \vargamma (t))

=  - \langle \zeta (t, \vargamma (t)), \partial t\zeta (t, \vargamma (t))\rangle  - (r + t\delta r)\delta r

\langle \zeta (t, \vargamma (t)), \partial \vargamma \zeta (t, \vargamma (t))\rangle 
.

Now, let \scrA be one of the two arcs composing the boundary of B(xa, r)\cup B(xb, r),
for instance, \scrA = \partial B(xa, r) \cap (B(xa, r) \cup B(xb, r)), and let \theta a and \theta b be the angles
parameterizing the endpoints of \scrA , with \theta a < \theta b < \theta a + 2\pi since \scrA is not a circle.
In view of the development above, for t0 sufficiently small, we obtain two smooth
functions t \mapsto \rightarrow \theta a(t) and t \mapsto \rightarrow \theta b(t), with \theta a(t) < \theta b(t) < \theta a(t) + 2\pi for all t \in [0, t0],

where \theta a(t) and \theta b(t) are given by \vargamma (t) with \^\theta = \theta a and \^\theta = \theta b, respectively. The
angles \theta a(t) and \theta b(t) are parameterizing the endpoints of one of the two arcs \scrA (t)
composing the boundary of B(xa, r + t\delta r) \cup B(xb, r + t\delta r) with \scrA (0) = \scrA .

Next we define

\xi (t, \theta ) := \alpha (t)(\theta  - \theta b)+\theta b(t) for (t, \theta ) \in [0, t0]\times [\theta a, \theta b] and \alpha (t) :=
\theta b(t) - \theta a(t)
\theta b  - \theta a

.

Then, for \theta \in [\theta a, \theta b] we have \xi (t, \theta ) \in [\theta a(t), \theta b(t)] and \xi (t, \theta ) is a parameterization
of \scrA (t). We can parameterize a point x \in \scrA (0) by

(3.9) x = xa + r

\biggl( 
cos \theta 
sin \theta 

\biggr) 
and define \BbbT t(\theta ) := xa + (r + t\delta r)

\biggl( 
cos \xi (t, \theta )
sin \xi (t, \theta )

\biggr) 
.

Writing \xi (t, \theta ) = \theta + \beta (t, \theta ) with \beta (t, \theta ) := (\alpha (t) - 1)(\theta  - \theta b(t)), we observe that\biggl( 
cos \xi (t, \theta )
sin \xi (t, \theta )

\biggr) 
= R(xa, \beta (t, \theta ))

\biggl( 
cos \theta 
sin \theta 

\biggr) 
= R(xa, \beta (t, \theta ))\nu ,
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r

r + t\delta r

\^\theta \xi (t, \^\theta )
\theta 

\xi (t, \theta )

xa

xb

\scrA (0) \ni x
\scrA (t) \ni Tt(x)

Fig. 2. Illustration of the geometric constructions in the proof of Theorem 3.3. For a given
point x on the arc \scrA (0), the polar coordinate (r+t\delta r, \xi (t, \theta )), with the pole xa, represents the moving

point Tt(x) \in \scrA (t), and we have T0(x) = x and \xi (0, \theta ) = \theta \in [\theta a, \theta b]. In the particular case \theta = \^\theta ,

the polar coordinate (r+ t\delta r, \xi (t, \^\theta )) corresponds to an intersection point between B(xa, r+ t\delta r) and

B(xb, r + t\delta r), and we have \xi (0, \^\theta ) = \^\theta = \theta a.

where R(xa, \beta (t, \theta )) is a rotation matrix of center xa and angle \beta (t, \theta ), and \nu is the
outward unit normal vector to \scrA at the point (r, \theta ) in polar coordinates with the pole
xa. Also, thanks to \theta a < \theta b < \theta a +2\pi and \theta \in [\theta a, \theta b], there exists a smooth bijection
\theta : \scrA \ni x \mapsto \rightarrow \theta (x) \in [\theta a, \theta b]. Thus, using (3.9) we can define the function

(3.10) Tt(x) := \BbbT t(\theta (x)) = x - r\nu (x) + (r + t\delta r)R(xa, \beta (t, \theta (x)))\nu (x) for all x \in \scrA .

In Figure 2 we provide an illustration of \^\theta and of the functions Tt(x), \xi (t, \theta ).
Now we show that Tt is Lipschitz on \scrA . Using (3.9) we define

(3.11) \BbbS (t, \theta ) := \BbbT t(\theta ) - xa  - r
\biggl( 
cos \theta 
sin \theta 

\biggr) 
= r

\biggl( 
cos \xi (t, \theta ) - cos \theta 
sin \xi (t, \theta ) - sin \theta 

\biggr) 
+ t\delta r

\biggl( 
cos \xi (t, \theta )
sin \xi (t, \theta )

\biggr) 
.

Using \xi (t, \theta ) = \theta + \beta (t, \theta ) we compute

\partial \theta \BbbS (t, \theta ) = r

\biggl( 
 - \alpha (t) sin \xi (t, \theta ) + sin \theta 
\alpha (t) cos \xi (t, \theta ) - cos \theta 

\biggr) 
+ t\delta r\alpha (t)

\biggl( 
 - sin \xi (t, \theta )
cos \xi (t, \theta )

\biggr) 
= r

\biggl( 
c1(t, \theta ) sin \theta + c2(t, \theta ) cos \theta 
 - c1(t, \theta ) cos \theta + c2(t, \theta ) sin \theta 

\biggr) 
+ t\delta r\alpha (t)

\biggl( 
 - sin \xi (t, \theta )
cos \xi (t, \theta )

\biggr) 
with

(3.12) c1(t, \theta ) := 1 - \alpha (t) cos\beta (t, \theta ) and c2(t, \theta ) :=  - \alpha (t) sin\beta (t, \theta ).

Since \alpha (0) = 1 we have \beta (0, \theta ) = 0, c1(0, \theta ) = 0, and c2(0, \theta ) = 0 for all \theta \in [\theta a, \theta b].
Thus, we obtain

(3.13) c1(t, \theta ) = t\partial tc1(\xi 1, \theta ) and c2(t, \theta ) = t\partial tc2(\xi 2, \theta )
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for some \xi 1 \in [0, t] and \xi 2 \in [0, t]. Then we compute

(3.14) \partial t\beta (t, \theta ) = \alpha \prime (t)(\theta  - \theta b(t)) - (\alpha (t) - 1)\theta \prime b(t) and \alpha \prime (t) =
\theta \prime 
b(t) - \theta \prime 

a(t)
\theta b - \theta a

.

Using (3.6) and (3.8), we can show that for sufficiently small t0 we have

(3.15) | \theta \prime a(t)| \leq C0 and | \theta \prime b(t)| \leq C0 for all t \in [0, t0],

where C0 does not depend on t. Then, using (3.13) and (3.14) we get | c1(t, \theta )| \leq C1t
and | c2(t, \theta )| \leq C2t, where C1 and C2 are both independent of t and \theta .

Finally, gathering (3.12), (3.13), (3.14), (3.15) and using a uniform bound on \alpha (t)
we obtain

(3.16) \| \partial \theta \BbbS (t, \theta )\| \leq C3t for all t \in [0, t0] and \theta \in [\theta a, \theta b],

where C3 is independent of t and \theta .
Now we show that (3.16) implies the existence of a constant C > 0 such that

x \mapsto \rightarrow S(t, x) := Tt(x) - x is Lipschitz on \scrA with Lipschitz constant Ct, i.e.,

(3.17) \| S(t, x) - S(t, y)\| \leq Ct\| x - y\| for all (t, x, y) \in [0, t0]\times \scrA 2.

Indeed if this were not the case, then there would exist a sequence (tn, xn, yn) \in 
[0, t0]\times \scrA 2 such that

(3.18)
\| S(tn, xn) - S(tn, yn)\| 

tn\| xn  - yn\| 
\rightarrow \infty as n\rightarrow +\infty .

Suppose that (3.18) holds. In view of (3.11) the numerator \| S(tn, xn) - S(tn, yn)\| is
uniformly bounded on [0, t0]\times \scrA 2, thus we must have tn\| xn  - yn\| \rightarrow 0. We suppose
that both tn \rightarrow 0 and \| xn  - yn\| \rightarrow 0; the other cases follow in a similar way. Using
the compactness of [0, t0]\times \scrA 2, we can extract a subsequence, still denoted (tn, xn, yn)
for simplicity, which converges toward (0, x \star , x \star ) \in [0, t0]\times \scrA 2. Then we write

\| S(tn, xn) - S(tn, yn)\| 
tn\| xn  - yn\| 

=
\| \BbbS (tn, \theta (xn)) - \BbbS (tn, \theta (yn))\| 

tn| \theta (xn) - \theta (yn)| \underbrace{}  \underbrace{}  
bounded using (3.16) at \theta (x \star )

| \theta (xn) - \theta (yn)| 
\| xn  - yn\| \underbrace{}  \underbrace{}  
bounded

,

where we have used the fact that \| xn  - yn\| = r\| 
\bigl( cos \theta (xn) - cos \theta (yn)

sin \theta (xn) - sin \theta (yn)

\bigr) 
\| . This contra-

dicts (3.18), which proves (3.17).
So far we have built a Lipschitz function Tt on an arc \scrA . We now proceed to build

Tt on the entire boundary \partial \Omega (\bfitx , r). On each arc \scrA k,\ell (t) \subset \partial B(xik,\ell 
, r + t\delta r) of the

decomposition (3.1), Tt is built as in (3.10). Then due to (3.1) we have by construction
that Tt(\partial \Omega (\bfitx , r)) = \partial \Omega (\bfitx , r + t\delta r). The continuity of Tt at the arc junctions is an
immediate consequence of the definition of \theta a(t) and \theta b(t). Using the compactness
of \partial \Omega (\bfitx , r), the Lipschitz property (3.17) is valid on each connected component of
\partial \Omega (\bfitx , r). Using Kirszbraun's theorem [21] we can extend x \mapsto \rightarrow S(t, x) to a Lipschitz
function on \Omega (\bfitx , r) with the same Lipschitz constant Ct.

Since S(t, x) = Tt(x)  - x, this also defines an extension of x \mapsto \rightarrow Tt(x) to \Omega (\bfitx , r)
and this shows that x \mapsto \rightarrow Tt(x) is Lipschitz on \Omega (\bfitx , r) with Lipschitz constant 1 +Ct
for all t \in [0, t0]. Since C is independent of t, we can choose t0 sufficiently small so
that x \mapsto \rightarrow Tt(x) is invertible for all t \in [0, t0]. The inverse is also Lipschitz on \partial \Omega (\bfitx , r)
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with Lipschitz constant (1  - Ct) - 1 for all t \in [0, t0]. This shows that Tt : \Omega (\bfitx , r) \rightarrow 
Tt(\Omega (\bfitx , r)) is bi-Lipschitz for all t \in [0, t0].

Finally, we prove that Tt(\Omega (\bfitx , r)) = \Omega (\bfitx , r+t\delta r). Suppose first that \partial \Omega (\bfitx , r) has
exactly one connected component. Since Tt : \Omega (\bfitx , r)\rightarrow Tt(\Omega (\bfitx , r)) is bi-Lipschitz it is
also a homeomorphism, thus it maps interior points onto interior points and boundary
points onto boundary points, i.e., Tt(\Omega (\bfitx , r)) is the interior of Tt(\partial \Omega (\bfitx , r)). According
to the Jordan curve theorem [37], \Omega (\bfitx , r + t\delta r) is the interior of \partial \Omega (\bfitx , r + t\delta r).
Since \partial \Omega (\bfitx , r + t\delta r) = Tt(\partial \Omega (\bfitx , r)) we also have that the interiors are the same,
i.e., Tt(\Omega (\bfitx , r)) = \Omega (\bfitx , r + t\delta r). The case where \partial \Omega (\bfitx , r) has several connected
components follows in a similar way.

3.2. Construction of a mapping corresponding to a perturbation of the
centers. Unlike the case of the radius where the balls are dilated simultaneously,
the computation of the partial derivatives of G with respect to xi only requires the
perturbation of one center xi at a time. This can be modeled using a general setting
where we build a mapping Tt between two sets B(\^x, r) \cap E and B(\^x + t\delta \^x, r) \cap E,
where E \subset \BbbR 2 and B(\^x, r) are compatible in the following sense. In what follows, a
Lipschitz domain denotes an open, bounded set that is locally representable as the
graph of a Lipschitz function; see [24, Definition 1] for a precise definition.

Definition 3.4. Let \omega 1, \omega 2 be open subsets of \BbbR 2. We call \omega 1 and \omega 2 compatible
if \omega 1 \cap \omega 2 \not = \emptyset , \omega 1 and \omega 2 are Lipschitz domains, and the following conditions hold:
(i) \omega 1\cap \omega 2 is a Lipschitz domain; (ii) \partial \omega 1\cap \partial \omega 2 is finite; (iii) \partial \omega 1 and \partial \omega 2 are locally
smooth in a neighborhood of \partial \omega 1 \cap \partial \omega 2; (iv) \tau 1(x) \cdot \nu 2(x) \not = 0 for all x \in \partial \omega 1 \cap \partial \omega 2,
where \tau 1(x) is a tangent vector to \partial \omega 1 at x and \nu 2(x) is a normal vector to \partial \omega 2 at x.

Let us consider the following simple example: A is a square and \Omega (\bfitx , r) is a
single ball, i.e., we have m = 1. Hence, the set of possible geometric configurations
is three-dimensional. The sets A and \Omega (\bfitx , r) are always compatible in the sense of
Definition 3.4, except when \partial \Omega (\bfitx , r) hits a corner of the square, or when \partial \Omega (\bfitx , r)
and \partial A are tangent, as illustrated in Figure 3. This shows that the set of geomet-
ric configurations such that A and \Omega (\bfitx , r) are not compatible has measure zero in
\BbbR 3. Note that the examples depicted in Figure 3 are representative of the geometric
configurations occurring in practice.

The following result establishes the stability of the structure of B(\^x, r)\cap E under
a small perturbation of the center \^x of the ball. We omit the proof of Theorem 3.5,
which follows the same methodology as the proof of Theorem 3.2. Further, we build
a bi-Lipschitz mapping in Theorem 3.6 between B(\^x, r) \cap E and B(\^x + t\delta \^x, r) \cap E;
see Figure 4.

(a) compatible (b) compatible (c) not compatible (d) not compatible

Fig. 3. Compatibility of a ball \omega 1 and a square \omega 2 in the sense of Definition 3.4. In (c),
condition (iii) of Definition 3.4 fails, while in (d), condition (iv) of Definition 3.4 fails.
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\^x+ t\delta \^x \^x

za = Tt(za)
z

zt = Tt(z)zb

\partial E\vargamma (t)

\tau (z)

\nabla \phi (z)

Fig. 4. Illustration of a key idea of the proof of Theorem 3.6. The point z belongs to \partial B(\^x, r)\cap 
\partial E while zt belongs to \partial B(\^x+ t\delta \^x, r)\cap \partial E. We build a transformation Tt mapping the subarc of \partial E
between za and z to the subarc between za and zt, and also mapping the arc of circle \partial B(\^x, r) \cap E
to \partial B(\^x + t\delta \^x, r) \cap E. Note that the sets E and B(\^x, r) are compatible in the sense of Definition
3.4.

Theorem 3.5. Let \^x, \delta \^x \in \BbbR 2, E \subset \BbbR 2, and suppose that B(\^x, r) and E are
compatible. Then there exists t0 > 0 such that for all t \in [0, t0] we have the following
decomposition:

(3.19) \partial B(\^x+ t\delta \^x, r) \cap E =

\=k\bigcup 
k=1

\scrA k(t),

where \=k is independent of t, and \scrA k(t) are subarcs of \partial B(\^x + t\delta \^x, r) parameterized
by an angle aperture [\theta k,a(t), \theta k,b(t)], and t \mapsto \rightarrow \theta k,a(t), t \mapsto \rightarrow \theta k,b(t) are continuous
functions on [0, t0].

Theorem 3.6. Let \^x, \delta \^x \in \BbbR 2, E \subset \BbbR 2, and suppose that B(\^x, r) and E are
compatible. Then there exists t0 > 0 such that for all t \in [0, t0], there exists a bi-
Lipschitz mapping Tt : B(\^x, r) \cap E \rightarrow \BbbR 2 satisfying Tt(B(\^x, r)\cap E) = B(\^x+t\delta \^x, r)\cap E
and Tt(\partial (B(\^x, r) \cap E)) = \partial (B(\^x+ t\delta \^x, r) \cap E).

Proof. We start by providing a general formula for the angle \vargamma (t), in local polar
coordinates with the pole \^x+ t\delta \^x, describing an intersection point between the circle
\partial B(\^x + t\delta \^x, r) and \partial E. Let z \in \partial B(\^x, r) \cap \partial E and \nu E(z) the outward unit normal
vector to E at z. Let \phi be the oriented distance function to E, defined as \phi (x) :=
d(x,E) - d(x,Ec), where d(x,E) is the distance from x to the set E. Since we have
assumed that B(\^x, r) and E are compatible, it follows that \partial E is locally smooth
around the points \partial B(\^x, r)\cap \partial E, hence there exists a neighborhood Uz of z such that
the restriction of \phi to Uz is smooth, \phi (x) = 0, and \| \nabla \phi (x)\| = 1 for all x \in \partial E \cap Uz.

Let (r, \^\theta ) denote the polar coordinates of z, with the pole \^x. Introduce the function

\psi (t, \vargamma ) = \phi 

\biggl( 
\^x+ t\delta \^x+ r

\biggl( 
cos\vargamma 
sin\vargamma 

\biggr) \biggr) 
.

We compute

\partial \vargamma \psi (0, \^\theta ) = r

\biggl( 
 - sin \^\theta 

cos \^\theta 

\biggr) 
\cdot \nabla \phi 

\biggl( 
\^x+ r

\biggl( 
cos \^\theta 

sin \^\theta 

\biggr) \biggr) 
= r\tau (z) \cdot \nabla \phi (z),

where \tau (z) is a tangent vector to \partial B(\^x, r) at z. Since B(\^x, r) and E are compatible,
B(\^x, r) is not tangent to \partial E and using \| \nabla \phi (z)\| = 1 we obtain \tau (z)\cdot \nabla \phi (z) \not = 0. Thus,
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we can apply the implicit function theorem and this yields the existence of a smooth
function [0, t0] \ni t \mapsto \rightarrow \vargamma (t) with \psi (t, \vargamma (t)) = 0 and \vargamma (0) = \^\theta . We also compute, using
that \nabla \phi (z) = \| \nabla \phi (z)\| \nu E(z) since \phi is the oriented distance function to \partial E,

(3.20) \vargamma \prime (0) =  - \partial t\psi (0, \vargamma (0))
\partial \vargamma \psi (0, \vargamma (0))

=  - \nabla \phi (z) \cdot \delta \^x
r\tau (z) \cdot \nabla \phi (z)

=  - \nu E(z) \cdot \delta \^x
r\tau (z) \cdot \nu E(z)

.

Let \scrA (t) be one of the arcs in the decomposition (3.19) parameterized by the angle
aperture [\theta a(t), \theta b(t)]; we have dropped the index k for simplicity. The angles \theta a(t)

and \theta b(t) are given by \vargamma (t) with either \^\theta = \theta a(0) or \^\theta = \theta b(0).
Let zt \in \partial B(\^x + t\delta \^x, r) \cap \partial E be the point parameterized by polar coordinates

(r, \vargamma (t)) with the pole \^x + t\delta \^x. Let za \in \partial E \cap B(\^x, r) and zb \in \partial E \cap B(\^x, r)c, both
distinct from z and sufficiently close to z so that the subarc of \partial E between za and
zb is smooth. Let \gamma : [0, 1] \rightarrow \BbbR 2 be a smooth parameterization of this arc satisfying
\gamma (0) = za and \gamma (1) = zb. We may choose t0 > 0 sufficiently small so that zt \in \gamma ((0, 1))
for all t \in [0, t0] and then define \sigma (t) := \gamma  - 1(zt) > 0 for all t \in [0, t0]. Then define

Tt(\gamma (s)) := \gamma ( \sigma (t)\sigma (0)s) for all 0 < s < \sigma (0), or equivalently

(3.21) Tt(x) := \gamma 

\biggl( 
\gamma  - 1(zt)

\gamma  - 1(z)
\gamma  - 1(x)

\biggr) 
for all x \in \gamma ([0, \sigma (0)]).

Observe that Tt(za) = za, Tt(z) = zt and Tt(\gamma ([0, \sigma (0)])) = \gamma ([0, \sigma (t)]), which is
precisely the smooth subarc of \partial E between za and zt; see Figure 4 for an illustration
of the construction of Tt. Then we define Tt in a similar way in neighborhoods of the
other points of \partial B(\^x, r)\cap \partial E. For all other points x of \partial E\cap B(\^x, r) we set Tt(x) = x.
Thus by construction we have Tt(\partial E \cap B(\^x, r)) = \partial E \cap B(\^x+ t\delta \^x, r).

Let us define S(t, \gamma (s)) := Tt(\gamma (s))  - \gamma (s) for all 0 < s < \sigma (0) and compute the
derivative

\partial s[S(t, \gamma (s))] =
\sigma (t)

\sigma (0)
\gamma \prime 
\biggl( 
\sigma (t)

\sigma (0)
s

\biggr) 
 - \gamma \prime (s)

= \gamma \prime 
\biggl( 
s+

\biggl( 
\sigma (t)

\sigma (0)
 - 1

\biggr) 
s

\biggr) 
 - \gamma \prime (s) +

\biggl( 
\sigma (t)

\sigma (0)
 - 1

\biggr) 
\gamma \prime 
\biggl( 
\sigma (t)

\sigma (0)
s

\biggr) 
= st

\sigma \prime (\eta 0)

\sigma (0)
\gamma \prime \prime (\eta 1) + t

\sigma \prime (\eta 0)

\sigma (0)
\gamma \prime 
\biggl( 
\sigma (t)

\sigma (0)
s

\biggr) 
with \eta 0 \in [0, t] and | \eta 1  - s| \leq st| \sigma \prime (\eta 0)/\sigma (0)| . Using (3.20) and the smoothness of
\gamma  - 1 we obtain that \sigma \prime is uniformly bounded on [0, t0]. Using the smoothness of \gamma we
obtain

\| \partial s[S(t, \gamma (s))]\| \leq Ct for all t \in [0, t0] and 0 < s < \sigma (0)

for some constant C independent of t. Using a similar methodology as in the proof of
Theorem 3.3, this proves that Tt is Lipschitz on \partial E \cap B(\^x, r) with Lipschitz constant
1 + Ct for all t \in [0, t0].

The definition of Tt on the arc \scrA (0) follows the same steps as in the proof of
Theorem 3.3. For t0 sufficiently small and t \in [0, t0], \scrA (t) is an arc parameterized

by \theta a(t) and \theta b(t), where \theta a(t) and \theta b(t) are given by \vargamma (t) with \^\theta = \theta a and \^\theta = \theta b,
respectively. Then we define

(3.22) Tt(x) := \^x+ t\delta \^x+ r

\biggl( 
cos \xi (t, \theta )
sin \xi (t, \theta )

\biggr) 
with x = \^x+ r

\biggl( 
cos \theta 
sin \theta 

\biggr) 
\in \scrA (0),
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where

(3.23) \xi (t, \theta ) := \alpha (t)(\theta  - \theta b) + \theta b(t) for (t, \theta ) \in [0, t0]\times [\theta a, \theta b] and \alpha (t) :=
\theta b(t) - \theta a(t)

\theta b - \theta a
.

The fact that Tt is Lipschitz on \partial B(\^x, r)\cap E with Lipschitz constant 1+Ct, and the
bi-Lipschitz extension of Tt to B(\^x, r) \cap E can be done as in the proof of Theorem 3.3.

We have already shown that Tt(\partial E \cap B(\^x, r)) = \partial E \cap B(\^x+ t\delta \^x, r) and by con-
struction we also have Tt(\scrA (0)) = \scrA (t). This shows that Tt(\partial (B(\^x, r) \cap E)) =
\partial (B(\^x + t\delta \^x, r) \cap E). The property Tt(B(\^x, r) \cap E) = B(\^x + t\delta \^x, r) \cap E is obtained
in a similar way as in the proof of Theorem 3.3.

3.3. Derivative of \bfitG with respect to the radius. To compute this derivative
we consider a perturbation \delta r of the radius. The following result may be proven using
Theorem 3.3 and a similar construction as in the proof of Theorem 3.6; therefore we
omit its proof here. The result requires the following assumption.

Assumption 3.7. Sets \Omega (\bfitx , r) and A are compatible.

Under Assumption 3.1, the set \Omega (\bfitx , r) is Lipschitz, and if in addition the in-
tersection of \partial \Omega (\bfitx , r) and \partial A is empty, then Assumption 3.7 holds. Hence, in this
particular case we can drop Assumption 3.7 in Theorem 3.8.

Theorem 3.8. Suppose that Assumptions 3.1 and 3.7 hold. Then, there ex-
ists t0 > 0 such that for all t \in [0, t0], there exists a bi-Lipschitz mapping Tt :
\Omega (\bfitx , r) \cap A\rightarrow \BbbR 2 satisfying Tt(\Omega (\bfitx , r)\cap A) = \Omega (\bfitx , r+t\delta r)\cap A and Tt(\partial (\Omega (\bfitx , r)\cap A))
= \partial (\Omega (\bfitx , r + t\delta r) \cap A).

Theorem 3.8 provides a mapping Tt that allows us to use the following integration
by substitution:

G(\bfitx , r + t\delta r) = Vol(A \setminus \Omega (\bfitx , r + t\delta r)) = Vol(A) - Vol(A \cap \Omega (\bfitx , r + t\delta r))

= Vol(A) - 
\int 
Tt(\Omega (\bfitx ,r)\cap A)

dz = Vol(A) - 
\int 
\Omega (\bfitx ,r)\cap A

| detDTt(z)| dz.

For sufficiently small t we have | detDTt(z)| = detDTt(z) and \partial t detDTt(z)| t=0 =
div V (z) with V := \partial tTt| t=0; see [12, 17, 35]. The set \Omega (\bfitx , r) \cap A is Lipschitz due to
Assumption 3.7, thus we may apply a divergence theorem in Lipschitz domains; see,
for instance, [13, section 4.3, Theorem 1]. Denoting by \nu the outward unit normal
vector to \Omega (\bfitx , r), this yields

d

dt
G(\bfitx , r + t\delta r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\Omega (\bfitx ,r)\cap A

div V (z) dz =  - 
\int 
\partial (\Omega (\bfitx ,r)\cap A)

V (z) \cdot \nu (z) dz.(3.24)

The last integral in (3.24) is commonly called boundary expression of the shape deriv-
ative and the penultimate integral is called volume expression; see [12, 24, 35]. These
expressions are standard for Lipschitz domains and vector fields V .

Now we compute V on (\partial (\Omega (\bfitx , r) \cap A)) \cap \partial B(xi, r). In the case of \Omega (\bfitx , r) \cap A
we also have a decomposition into arcs similar to (3.1), and we can use (3.9) and
\xi (0, \theta ) = \theta to obtain

V = \partial tTt| t=0 = \delta r

\biggl( 
cos \theta 
sin \theta 

\biggr) 
+ \partial t\xi (0, \theta )r

\biggl( 
 - sin \theta 
cos \theta 

\biggr) 
on \partial (\Omega (\bfitx , r) \cap A) \cap \partial B(xi, r),

where \theta is the angle in polar coordinates with the pole xi. Since \nu =
\bigl( 
cos \theta 
sin \theta 

\bigr) 
on

\partial \Omega (\bfitx , r) \cap \partial B(xi, r), we get V \cdot \nu = \delta r on \partial (\Omega (\bfitx , r) \cap A) \cap \partial B(xi, r). We define Tt



SHAPE OPTIMIZATION FOR THE COVERING PROBLEM A2061

as in (3.21) or as the identity on \partial A \cap \partial (\Omega (\bfitx , r) \cap A). Thus, it is easy to check that
V = \partial tTt| t=0 is tangent to \partial A\cap \partial (\Omega (\bfitx , r)\cap A), so that V \cdot \nu = 0 on \partial A\cap \partial (\Omega (\bfitx , r)\cap A).
Gathering these results we obtain

d

dt
G(\bfitx , r + t\delta r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\partial (\Omega (\bfitx ,r)\cap A)

V (z) \cdot \nu (z) dz =  - \delta r
\int 
\partial \Omega (\bfitx ,r)\cap A

dz,

which gives the formula for the last entry of (2.3).

3.4. Derivative of \bfitG with respect to the centers. To compute this deriva-
tive we consider a perturbation \delta \bfitx such that \delta xi \not = 0 for some index i \in \scrI and \delta xj = 0
for j \not = i, i.e., we consider the translation of only one ball in \Omega (\bfitx , r). Introduce the
notation \Omega  - i :=

\bigcup m
j=1,j \not =iB(xj , r). Then we have the partition

\Omega (\bfitx + t\delta \bfitx , r) \cap A = (\Omega  - i \cap A) \cup (B(xi + t\delta xi, r) \cap \Omega c
 - i \cap A).

We assume that the following condition holds.

Assumption 3.9. Sets B(xi, r) and \Omega c
 - i \cap A are compatible.

Setting E := \Omega c
 - i \cap A, we can apply the results of Theorems 3.5 and 3.6 using

Assumption 3.9. Let Tt be the bi-Lipschitz mapping given by Theorem 3.6. Then
Tt(B(xi, r) \cap E) = B(xi + t\delta xi, r) \cap E and using an integration by substitution with
the mapping Tt, we obtain

G(\bfitx + t\delta \bfitx , r) = Vol(A \setminus \Omega (\bfitx + t\delta \bfitx , r)) = Vol(A) - Vol(\Omega (\bfitx + t\delta \bfitx , r) \cap A)

= Vol(A) - Vol(\Omega  - i \cap A) - 
\int 
B(xi+t\delta xi,r)\cap E

dz

= Vol(A) - Vol(\Omega  - i \cap A) - 
\int 
Tt(B(xi,r)\cap E)

dz

= Vol(A) - Vol(\Omega  - i \cap A) - 
\int 
B(xi,r)\cap E

| detDTt(z)| dz

with V := \partial tTt| t=0. The set B(xi, r) \cap E is Lipschitz due to Assumption 3.9; thus
the divergence theorem yields

d

dt
G(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
B(xi,r)\cap E

div V (z) dz =  - 
\int 
\partial (B(xi,r)\cap E)

V (z) \cdot \nu (z) dz,

where \nu is the outward unit normal vector to \Omega (\bfitx , r).
Now we compute V on \partial (B(xi, r) \cap E). Let \scrA \subset \partial B(xi, r) be an arc in the

decomposition (3.19) at t = 0; then using \xi (0, \theta ) = \theta , (3.22), and (3.23) with \^x = xi
we obtain

V = \partial tTt| t=0 = \delta xi + \partial t\xi (0, \theta )r

\biggl( 
 - sin \xi (0, \theta )
cos \xi (0, \theta )

\biggr) 
= \delta xi + \partial t\xi (0, \theta )r

\biggl( 
 - sin \theta 
cos \theta 

\biggr) 
on \scrA ,

where \theta is the angle in local polar coordinates with the pole xi. Since \nu =
\bigl( 
cos \theta 
sin \theta 

\bigr) 
is

a normal vector on \scrA , we get V \cdot \nu = \delta xi \cdot \nu on \scrA . On \partial A \cap \partial (B(xi, r) \cap E), Tt is
defined by (3.21) or is the identity. Thus it is easy to check that V = \partial tTt| t=0 is a
tangent vector on \partial A \cap \partial (B(xi, r) \cap E), so that V \cdot \nu = 0 on \partial A \cap \partial (B(xi, r) \cap E).
Gathering these results we obtain

d

dt
G(\bfitx + t\delta \bfitx , r)

\bigm| \bigm| \bigm| \bigm| 
t=0

=  - 
\int 
\partial (B(xi,r)\cap E)

V (z) \cdot \nu (z) dz =  - \delta xi \cdot 
\int 
\partial B(xi,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu (z) dz,

which gives the formula for the first 2m entries of (2.3).
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3.5. Analysis of several singular cases. The theory in sections 3.1--3.4 shows
that (2.3) corresponds to the gradient of (2.2) under Assumptions 3.1, 3.7, and 3.9.
From the practical point of view, the set of points (\bfitx , r) that do not satisfy these
assumptions has measure zero in \BbbR 2m+1; thus, it does not represent an issue. From
a theoretical point of view, it is interesting to understand what may happen at these
points.

Examples 3.10, 3.11, and 3.12 correspond to situations in which Assumption 3.1
does not hold. Example 3.10 corresponds to two tangent balls compactly contained
in A; Example 3.11 corresponds to three balls whose boundaries intersect at a single
point; and Example 3.12 corresponds to two superimposed balls, i.e., two balls whose
boundaries intersect in an infinite number of points. In the first two cases, (2.3) still
corresponds to the gradient of (2.2), while in the third case the gradient of (2.2) does
not exist. Finally, Example 3.13 illustrates a situation in which Assumptions 3.7
and 3.9 do not hold and the gradient of (2.2) does not exist.

Example 3.10. Suppose m = 2, \Omega (\bfitx + t\delta \bfitx , r) \subset A for all t \in [0, t0] and t0 suf-
ficiently small, and the two balls are tangent at t = 0, i.e., \| x1  - x2\| = 2r. Note
that Assumption 3.1 is not satisfied. Two cases need to be considered to compute
the gradient of G. First, if \langle x1  - x2, \delta x1  - \delta x2\rangle \geq 0, then it is clear that B(x1 +
t\delta x1, r) \cap B(x2 + t\delta x2, r) = \emptyset for all t \in [0, t0]. Therefore G(\bfitx + t\delta \bfitx , r) = G(\bfitx , r) =
Vol(A) - 2\pi r2 for all t \in [0, t0], and limt\searrow 0(G(\bfitx + t\delta \bfitx , r) - G(\bfitx , r))/t = 0. Second, if
\langle x1  - x2, \delta x1  - \delta x2\rangle < 0, then B(x1 + t\delta x1, r) \cap B(x2 + t\delta x2, r) \not = \emptyset for all t \in (0, t0].
Let us introduce the notation a(t) := Vol (B(x1 + t\delta x1, r) \cap B(x2 + t\delta x2, r)). Using

trigonometry we can show that a(t) = 2r2 arccos (d(t)/2r) - d(t)
\bigl( 
r2  - (d(t)2)/4

\bigr) 1/2
,

where d(t) := \| x1 + t\delta x1  - (x2 + t\delta x2)\| . It is convenient to rewrite this expression as

a(t) = 2r2 arccos((1 - g(t))1/2) - 2r2(g(t) + g(t)2)1/2

with g(t) :=  - (2t\langle x1 - x2, \delta x1 - \delta x2\rangle +t2\| \delta x1 - \delta x2\| 2)/(4r2), g(t) \geq 0 for all t \in [0, t0]
for t0 small enough, d(t) = 2r(1 - g(t))1/2, and g\prime (0) =  - \langle x1  - x2, \delta x1  - \delta x2\rangle )/(2r2).
After simplifications, we obtain a\prime (t) = 2r2( g(t)

1 - g(t) )
1/2g\prime (t), and in particular a\prime (0) = 0.

This shows that

lim
t\searrow 0

G(\bfitx + t\delta \bfitx , r) - G(\bfitx , r)
t

= 0 when \langle x1  - x2, \delta x1  - \delta x2\rangle < 0.

Hence limt\searrow 0(G(\bfitx + t\delta \bfitx , r)  - G(\bfitx , r))/t = 0 in both cases. Proceeding in a similar
way we can also show that limt\searrow 0(G(\bfitx , r+ t\delta r) - G(\bfitx , r))/t = 4\pi r. Thus \nabla G(\bfitx , r) =
(0, . . . , 0, 4\pi r)\top in the case \| x1 - x2\| = 2r. It is easy to check that formula (2.3) also
gives \nabla G(\bfitx , r) = (0, . . . , 0, 4\pi r)\top in this case. This indicates that, for the analyzed
case, (2.3) is valid even without the satisfaction of Assumption 3.1. However, we had
to use a different technique to prove that (2.3) holds, due to the fact that G(\bfitx +t\delta \bfitx , r)
takes different expressions depending on the sign of \langle x1  - x2, \delta x1  - \delta x2\rangle .

Example 3.11. Let m = 3 and x1, x2, x3 be the vertices of an equilateral triangle
such that the circles \partial B(x1, r), \partial B(x2, r), and \partial B(x3, r) intersect at a single point.
Observe that Assumption 3.1 is not satisfied in this configuration. Then, if \delta r < 0 it
is clear that B(x1, r+ t\delta r)\cap B(x2, r+ t\delta r)\cap B(x3, r+ t\delta r) = \emptyset , thus limt\searrow 0(G(\bfitx , r+
t\delta r)  - G(\bfitx , r))/t can be computed as in section 3.3, and is equal to \partial rG(\bfitx , r) given
by (2.3). Now if \delta r > 0, the intersection B(x1, r+ t\delta r)\cap B(x2, r+ t\delta r)\cap B(x3, r+ t\delta r)
forms a well-known shape called a Reuleaux triangle. An explicit calculation shows
that this Reuleaux triangle is included in a ball whose area is of order t2\delta r2. Thus
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the first derivative of this area with respect to t at t = 0 is zero, hence the derivative
limt\searrow 0(G(\bfitx , r + t\delta r) - G(\bfitx , r))/t is also equal to \partial rG(\bfitx , r) given by (2.3) if \delta r > 0.

Example 3.12. Letm = 2, \Omega (\bfitx +t\delta \bfitx , r) \subset A for t \in [0, t0] and t0 sufficiently small,
and the two balls are superposed at t = 0, i.e., \| x1  - x2\| = 0 and Assumption 3.1
is not satisfied in this configuration. Denoting d(t) := t\| \delta x1  - \delta x2\| and a(t) :=

Vol\Omega (\bfitx + t\delta \bfitx , r), an explicit calculation yields a(t) = \pi r2 + 2r2 arctan(d(t)2r ) + rd(t),
and consequently a\prime (0) = 2r\| \delta x1  - \delta x2\| .

First, expression (2.3) evaluated at x1 = x2 = 0 yields \partial x1
G(\bfitx , r) = (0, 0) and

\partial x2
G(\bfitx , r) = (0, 0). Thus, in this case (2.3) does not give the correct value for the

directional derivatives of G. Second, it is interesting to observe that, taking \delta x2 = 0
to simplify, a\prime (0) = 2r\| \delta x1\| is equal to lim\varepsilon \searrow 0 - \partial x1

G(\{ x1 + \varepsilon \delta x1, x2\} , r) \cdot \delta x1 with
\partial x1G(\{ x1 + \varepsilon \delta x1, x2\} , r) given by (2.3).

Example 3.13. Let A = B(0, 1), m = 1, \bfitx = x1 = 0, and r = 1. Observe
that in this example \partial \Omega (\bfitx , r) \cap \partial A = \partial B(0, 1) is not a finite set of points. Therefore
Assumption 3.7 (precisely item (ii) in Definition 3.4) and Assumption 3.9 do not hold.

On the one hand, we have G(\bfitx , r) = 0 and G(\bfitx , r+ t\delta r) = 0 for t > 0 and \delta r > 0.
Thus we get in this case

(3.25) lim
t\searrow 0

G(\bfitx , r + t\delta r) - G(\bfitx , r)
t

= 0 when \delta r > 0.

For \delta r < 0 we have G(\bfitx , r + t\delta r) = \pi (1 + t\delta r)2  - \pi = \pi (2t\delta r + t2\delta r2), therefore

(3.26) lim
t\searrow 0

G(\bfitx , r + t\delta r) - G(\bfitx , r)
t

= 2\pi \delta r when \delta r < 0.

This shows that G only has directional partial derivatives with respect to r at \bfitx = 0.
We observe that in this configuration, formula (2.3) yields the expression \partial rG(\bfitx , r) =
0 which is the same as the directional derivative (3.25). It is also interesting to
observe that the other directional derivative (3.26) is equal to limr\rightarrow 1,r<1 \partial rG(\bfitx , r)\delta r
with \partial rG(\bfitx , r) given by (2.3).

On the other hand, we have G(\bfitx , r) = 0 and G(\bfitx + t\delta \bfitx , r) > 0 for t > 0 and
\delta \bfitx = \delta x1 \not = 0. An explicit calculation similar to the calculation in (3.12) yields

(3.27) lim
t\searrow 0

G(\bfitx + t\delta \bfitx , r) - G(\bfitx , r)
t

= 2r\| \delta x1\| .

However, expression (2.3) evaluated at \bfitx = x1 = 0 yields \partial x1G(\bfitx , r) = (0, 0). Thus,
in this case (2.3) does not give the correct value for the directional derivatives of G.
Nevertheless, it can be checked that (3.27) is equal to lim\varepsilon \searrow 0 \partial x1

G(\varepsilon \delta x1, r) \cdot \delta x1 with
\partial x1

G(\varepsilon \delta x1, r) given by (2.3).

4. Numerical approximation of \bfitG and \bfnabla \bfitG . In this paper we follow an
optimize-then-discretize approach, i.e., we first find an expression for \nabla G in the con-
tinuous setting and then discretize it. In section 3 the gradient of G has been cal-
culated analytically using techniques of nonsmooth shape calculus. We now show
how the constraint G and its gradient \nabla G may be approximated numerically. In the
approximation, it is assumed that the region A to be covered is modeled by an oracle
which, for a given point x, answers whether x \in A or not. This is the most general
way of defining a region A \subset D, and it reflects the fact that, from the practical point
of view, A is considered to be a black-box from which no additional information is
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known other than the one given by the oracle. If more information about A were
found available, such as an expression for its boundary, more efficient approximations
could be devised.

We first prove a general result for the approximation of volumes of sets with
piecewise smooth boundary using unions of square cells of a Cartesian grid. We show
in Theorem 4.1 that this approximation is O(h), where h is the size of the cells. In
Algorithm 4.1 we implement this approach to approximate the constraint G. Then
in Algorithm 4.2, a uniform discretization with step h\theta of the arcs of circles and a
midpoint rule are used to approximate the integrals appearing in \nabla G given by (2.3).
We show in Theorem 4.2 that this approximation is of order O(h\theta ).

4.1. Numerical approximation of \bfitG on a regular Cartesian grid. In this
section we give a general result for the numerical approximation of volumes in a
class \scrO of domains with piecewise smooth boundary. In Algorithm 4.1 we implement
this approach to approximate the constraint function G(\bfitx , r) = Vol(A \setminus \Omega (\bfitx , r)).
Suppose that D = [0, LD]2 is a square; we define \scrO as the set of open and bounded
subsets \omega \subset D with piecewise smooth boundary \partial \omega , i.e.,

\partial \omega =

K\bigcup 
k=1

\Gamma k, k = 1, . . . ,K,(4.1)

where \Gamma k is a smooth open or closed arc, K < +\infty , and \Gamma k \cap \Gamma j is either empty or
composed of one or two points, for all j \not = k, j, k = 1, . . . ,K. We observe that \scrO con-
tains non-Lipschitz domains such as domains with cracks and cusps, and also includes
the sets used in the numerical experiments; see section 5. Here Per(\partial \omega ) denotes the
perimeter of \partial \omega , with \omega \in \scrO , and \chi \omega the indicator function of a set \omega \subset \BbbR 2. In view
of (4.1) and the smoothness of the \Gamma k's we have Per(\partial \omega ) =

\sum K
k=1 Per(\Gamma k) < +\infty .

Let the grid \scrL be the set of points zk,\ell = ((k + 1/2)h, (\ell + 1/2)h) with k, \ell =
0, . . . , N  - 1 and h = LD/N . The point zk,\ell is the center of the cell \scrS (k, \ell ) defined
by \scrS (k, \ell ) := \{ (x1, x2) \in D | kh \leq x1 \leq (k+1)h, \ell h \leq x2 \leq (\ell +1)h\} . The main idea
of the proof of Theorem 4.1 is to approximate \omega \in \scrO by a set \omega h that is the union
of small squares of area h2. As h \rightarrow 0, the symmetric difference (\omega h \setminus \omega ) \cup (\omega \setminus \omega h)
behaves, roughly speaking, like a thin layer of thickness of order h concentrated on
the boundary of \omega . Thus, the area of the symmetric difference is of the order of the
perimeter of \omega times h, which allows us to approximate the area of \omega by the area of
\omega h.

Theorem 4.1. Let \omega \in \scrO ; then there exists h0 > 0 such that, for all 0 < h \leq h0,

Vol(\omega ) = h2
N\sum 

k,\ell =1

\chi \omega (zk,\ell ) + E(h) with | E(h)| \leq 
\surd 
2hPer(\partial \omega ) + \pi Kh2/2.

Proof. Introduce \omega h :=
\bigcup 

zk,\ell \in \scrL \cap \omega \scrS (k, \ell ); then due to Vol(\scrS (k, \ell )) = h2 we have

Vol(\omega h) = h2
\sum N

k,\ell =1 \chi \omega (zk,\ell ). Define \omega int
h := \{ x \in \omega | d(x, \omega c) \geq c\delta h\} and \omega ext

h :=

\{ x \in D | d(x, \omega ) < c\delta h\} , where \omega c is the complement of \omega , c\delta :=
\surd 
2/2+ \delta with \delta > 0,

and d(x, \omega ) is the distance of x to the set \omega . We clearly have \omega int
h \subset \omega \subset \omega ext

h . We
show that, for h sufficiently small, we also have \omega int

h \subset \omega h \subset \omega ext
h .

Suppose that x \in \omega int
h , then \| x  - z\| \geq c\delta h for all z \in \omega c. There exists also

zk,\ell \in \scrL such that x \in \scrS (k, \ell ). Since zk,\ell is the center of the cell \scrS (k, \ell ), we have
\| x  - zk,\ell \| \leq (

\surd 
2/2)h. Then c\delta h \leq \| x  - z\| \leq \| x  - zk,\ell \| + \| zk,\ell  - z\| for all z \in \omega c,
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which yields \delta h = (c\delta  - 
\surd 
2/2)h \leq \| zk,\ell  - z\| for all z \in \omega c. This shows that zk,\ell \in \scrL \cap \omega 

and since x \in \scrS (k, \ell ) this yields x \in \omega h by definition of \omega h; hence \omega 
int
h \subset \omega h.

Next we prove \omega h \subset \omega ext
h . Let x \in \omega h, then by definition x \in \scrS (k, \ell ) for some

zk,\ell \in \scrL \cap \omega . Thus we have \| x  - zk,\ell \| \leq (
\surd 
2/2)h and d(x, \omega ) = infz\in \omega \| x  - z\| \leq 

\| x  - zk,\ell \| \leq (
\surd 
2/2)h < c\delta h. This shows that x \in \omega ext

h and consequently \omega h \subset \omega ext
h .

Consequently we have Vol(\omega int
h ) \leq Vol(\omega h) \leq Vol(\omega ext

h ).
Let \Gamma h

k := \{ x \in D | d(x,\Gamma k) < c\delta h\} be the so-called tubular neighborhood of \Gamma k,
where \Gamma k \subset \partial \omega is one of the arcs in the decomposition (4.1). Now we prove that

\omega \setminus 

\Biggl( 
K\bigcup 

k=1

\Gamma h
k

\Biggr) 
= \omega int

h \subset \omega h \subset \omega ext
h \subset \omega \cup 

\Biggl( 
K\bigcup 

k=1

\Gamma h
k

\Biggr) 
.(4.2)

We start with the rightmost inclusion. Let x \in \omega ext
h \setminus \omega ; then we have d(x, \omega ) < c\delta h

and consequently d(x, \partial \omega ) < c\delta h. Due to (4.1) this yields d(x,\Gamma k) < c\delta h for some
k \in \{ 1, . . . ,K\} , and this proves x \in \Gamma h

k . This proves indeed that \omega ext
h \subset \omega \cup 

\bigl( 
\cup Kk=1\Gamma 

h
k

\bigr) 
.

Now let x \in \omega int
h , and suppose that x \in \Gamma h

k for some k \in \{ 1, . . . ,K\} , then
d(x,\Gamma k) < c\delta h and consequently d(x, \partial \omega ) < c\delta h. This implies d(x, \omega c) < c\delta h and then
x /\in \omega int

h , which is a contradiction. This shows that x \in \omega \setminus 
\bigl( 
\cup Kk=1\Gamma 

h
k

\bigr) 
and we have

obtained the inclusion \omega int
h \subset \omega \setminus 

\bigl( 
\cup Kk=1\Gamma 

h
k

\bigr) 
. Conversely let x \in \omega \setminus 

\bigl( 
\cup Kk=1\Gamma 

h
k

\bigr) 
. Suppose

that d(x, \omega c) < c\delta h, then d(x, \partial \omega ) < c\delta h and d(x,\Gamma k) < c\delta h for some k \in \{ 1, . . . ,K\} ,
which implies x \in \Gamma h

k , a contradiction. This shows that d(x, \omega c) \geq c\delta h and x \in \omega int
h .

Thus we have proved \omega int
h = \omega \setminus 

\bigl( 
\cup Kk=1\Gamma 

h
k

\bigr) 
.

Let \scrV k be the set of endpoints of the arc \Gamma k; then \scrV k is included in the set of
vertices of \partial \omega and contains at most two vertices. For sufficiently small h, the tubular
neighborhood \Gamma h

k satisfies \Gamma h
k \subset \{ x + \nu (x)\mu | x \in \Gamma k, | \mu | < c\delta h\} \cup 

\bigcup 
z\in \scrV k

\BbbB (z), where
\BbbB (z) is an open half-ball with center z and radius c\delta h, and \nu (x) is a normal vector to
\Gamma k at x. Using the results of [16, Chapter 1], there exists h0,k > 0 independent of \delta 
(for sufficiently small \delta > 0) such that

Vol(\{ x+\nu (x)\mu | x \in \Gamma k, | \mu | < c\delta h\} ) = 2c\delta hPer(\Gamma k) for all h such that 0 < h \leq h0,k.

Since \scrV k contains at most two vertices, we obtain Vol(\Gamma h
k) \leq 2c\delta hPer(\Gamma k)+\pi (c\delta h)

2 for
all h such that 0 < h \leq h0,k. As there is a finite number of arcs \Gamma k, there exists h0 > 0

such that
\sum K

k=1 Vol(\Gamma 
h
k) \leq 2c\delta hPer(\partial \omega ) + \pi K(c\delta h)

2 for all h such that 0 < h \leq h0.
From now on we suppose that 0 < h \leq h0. This yields

Vol

\Biggl( 
\omega \cup 

\Biggl( 
K\bigcup 

k=1

\Gamma h
k

\Biggr) \Biggr) 
\leq Vol(\omega ) +

K\sum 
k=1

Vol(\Gamma h
k) \leq Vol(\omega ) + 2c\delta hPer(\partial \omega ) + \pi K(c\delta h)

2,

Vol

\Biggl( 
\omega \setminus 

\Biggl( 
K\bigcup 

k=1

\Gamma h
k

\Biggr) \Biggr) 
\geq Vol(\omega ) - 

K\sum 
k=1

Vol(\Gamma h
k) \geq Vol(\omega ) - 2c\delta hPer(\partial \omega ) - \pi K(c\delta h)

2.

Then, using (4.2) we obtain

 - 2c\delta hPer(\partial \omega ) - \pi K(c\delta h)
2 \leq Vol

\Biggl( 
\omega \setminus 

\Biggl( 
K\bigcup 

k=1

\Gamma h
k

\Biggr) \Biggr) 
 - Vol(\omega ) = Vol(\omega h) - Vol(\omega )

\leq Vol

\Biggl( 
\omega \cup 

\Biggl( 
K\bigcup 

k=1

\Gamma h
k

\Biggr) \Biggr) 
 - Vol(\omega ) \leq 2c\delta hPer(\partial \omega ) + \pi K(c\delta h)

2.

Finally this yields | Vol(\omega h) - Vol(\omega )| \leq 2c\delta hPer(\partial \omega ) + \pi K(c\delta h)
2 for all 0 < h \leq h0.

Passing to the limit \delta \rightarrow 0, this proves the result.
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Algorithm 4.1 Numerical approximation to Vol(A \cap \Omega (\bfitx , r)). It considers a
rectangular region D that contains A, computes a partition of D into rectangular cells
with sides not larger than h, and returns the sum of the areas of the cells such that
the center u of the cell satisfies u \in A and u is within some ball.
Input: Region A, balls' radius r and centers x1, . . . , xm, precision h > 0, and bottom-

left and top-right vertices dbl, dtr of a rectangle D \supseteq A.
Output: Approximation to Vol(A \cap \Omega (\bfitx , r)). (G(\bfitx , r) = Vol(A) - Vol(A \cap \Omega (\bfitx , r).)
Let nx = \lceil (dtrx  - dblx )/h\rceil , ny = \lceil (dtry  - dbly )/h\rceil , hx = (dtrx  - dblx )/nx, hy = (dtry  - dbly )/ny.
\gamma \leftarrow 0
for i = 1, . . . , nx do

for j = 1, . . . , ny do
Let u\leftarrow dbl + ((i - 1/2)hx, (j  - 1/2)hy)

T be the center of the (i, j)th cell.
if u \in A and there exists k \in \{ 1, . . . ,m\} such that \| xk  - u\| \leq r then
\gamma \leftarrow \gamma + 1

return hxhy\gamma 

4.2. Numerical approximation of \bfnabla \bfitG . In this section we provide estimates
for the numerical approximation of \nabla G using Algorithm 4.2. First we observe that
in (4.7), the balls B(xk, r) satisfying \| xi  - xk\| > 2r have no intersection with
\partial B(xi, r); therefore we can simply ignore these. Second, if \| xi  - xk\| \leq 2r there
is an intersection between B(xi, r) and B(xk, r), so the first step of Algorithm 4.2 is
to find the centers xk satisfying \| xi  - xk\| \leq 2r.

Combining the results of Theorems 3.2 and 3.5 we obtain a decomposition into
arcs similar to (3.1):

(4.3) \partial \Omega (\bfitx , r) \cap A =

\=k\bigcup 
k=1

\scrE k and \scrE k =

\=\ell k\bigcup 
\ell =1

\scrA k,\ell ,

where \=k \geq 1, \=\ell k \geq 1, and \{ \scrE k\} 
\=k
k=1 are the connected components of \partial \Omega (\bfitx , r) \cap A. In

particular we also have the decomposition

(4.4) \partial B(xi, r) \cap \partial \Omega (\bfitx , r) \cap A =

\=\ell i\bigcup 
\ell =1

\scrA \ell .

Let \nu (z) = (\nu 1(z), \nu 2(z)) be the outward normal vector on \partial B(xi, r), with \nu 1(z) =
cos \theta and \nu 2(z) = sin \theta , where \theta is the angle in polar coordinates with the pole xi. We
obtain the following approximation result for Algorithm 4.2.

Theorem 4.2. For q = 1, 2, denote by \scrG i,q the approximation of (\partial G/\partial xi)q =\int 
\partial B(xi,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu q(z) dz given by Algorithm 4.2. Then we have the estimate

(4.5)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B(xi,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu q(z) dz  - \scrG i,q

\bigm| \bigm| \bigm| \bigm| \bigm| < h\theta \=\ell i +
2\pi \=\ell ih

2
\theta 

24r
for q = 1, 2,

where \=\ell i is the number of arcs in the decomposition (4.4). Furthermore, let \scrG r be the
approximation of \partial G/\partial r =

\int 
\partial \Omega (\bfitx ,r)\cap A

dz given by Algorithm 4.2. Then we have the
estimate

(4.6)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial \Omega (\bfitx ,r)\cap A

dz  - \scrG r

\bigm| \bigm| \bigm| \bigm| \bigm| <
\biggl( 
h\theta +

2\pi h2\theta 
24r

\biggr) \=k\sum 
k=1

\=\ell k.
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Proof. Using (4.4) we compute

(4.7)

\int 
\partial B(xi,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu 1(z) dz =

\=\ell i\sum 
\ell =1

\int 
\scrA \ell 

\nu 1(z) dz =

\=\ell i\sum 
\ell =1

r

\int \theta \ell ,b

\theta \ell ,a

cos(\theta ) d\theta ,

where \theta \ell ,a, \theta \ell ,b are the angles parameterizing the endpoints of the arc \scrA \ell . In Algo-
rithm 4.2 we do not compute the exact values of \theta \ell ,a, \theta \ell ,b, therefore we cannot compute
the integrals in (4.7) explicitly. Instead we use the midpoint rule with step length
h\theta 

r and check if the midpoints are in \partial B(xi, r) \cap \partial \Omega (\bfitx , r) \cap A. This corresponds to

approximating the integrals \widehat I\ell := \int \^\theta \ell ,b
\^\theta \ell ,a

cos(\theta ) d\theta for some \^\theta \ell ,a, \^\theta \ell ,b satisfying

(4.8) | \^\theta \ell ,a  - \theta \ell ,a| \leq 
h\theta 
2r

and | \^\theta \ell ,b  - \theta \ell ,b| \leq 
h\theta 
2r
.

Let us denote I\ell the approximation of \widehat I\ell using the midpoint rule with step length h\theta 

r .
We have the following estimate for this approximation:\bigm| \bigm| \bigm| \bigm| \bigm| 

\int \^\theta \ell ,b

\^\theta \ell ,a

cos(\theta ) d\theta  - I\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq (\^\theta \ell ,b  - \^\theta \ell ,a)h
2
\theta sup\theta \in [\^\theta \ell ,a,\^\theta \ell ,b]

| cos(\theta )| 
24r2

<
2\pi h2\theta 
24r2

.

Thus we compute\bigm| \bigm| \bigm| \int \theta \ell ,b
\theta \ell ,a

cos(\theta ) d\theta  - I\ell 
\bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| \int \theta \ell ,b

\theta \ell ,a
cos(\theta ) d\theta  - 

\int \^\theta \ell ,b
\^\theta \ell ,a

cos(\theta ) d\theta 
\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \int \^\theta \ell ,b

\^\theta \ell ,a
cos(\theta ) d\theta  - I\ell 

\bigm| \bigm| \bigm| < h\theta 

r +
2\pi h2

\theta 

24r2 ,

where we have used (4.8). Then using (4.7) we get

(4.9)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial B(xi,r)\cap \partial \Omega (\bfitx ,r)\cap A

\nu 1(z) dz  - 
\=\ell i\sum 

\ell =1

rI\ell 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| < h\theta \=\ell i +
2\pi \=\ell ih

2
\theta 

24r
.

We obtain the same estimate for \nu 2(z). The estimate (4.6) is obtained in a similar
way, summing over all the arcs in the decomposition (4.3).

Algorithm 4.2 Numerical approximation to \nabla G(\bfitx , r). It computes a discretiza-
tion of \partial B(xi, r) \cap \partial \Omega (\bfitx , r) for i = 1, . . . ,m and approximates the integrals in (2.3)
using the composite middle point rule.

Input: Region A, balls' radius r > 0 and centers x1, . . . , xm, and precision h > 0.
Output: Approximation to \nabla G(\bfitx , r).
Let n\theta = \lceil 2\pi r/h\rceil and h\theta = 2\pi r/n\theta . Set \partial G/\partial r \leftarrow 0.
for i = 1, . . . ,m do

Let K = \{ k \in \{ 1, . . . ,m\} \setminus \{ i\} | \| xi  - xk\| \leq 2r\} . Set \partial G/\partial xi \leftarrow 0.
for \ell = 1, . . . , n\theta do

\theta \leftarrow (\ell  - 1
2 )

h\theta 

r and u\leftarrow xi + r(cos(\theta ), sin(\theta ))T

if u \in A and \| u - xk\| \geq r for all k \in K then
\partial G/\partial r \leftarrow \partial G/\partial r + 1 and \partial G/\partial xi \leftarrow \partial G/\partial xi + (cos(\theta ), sin(\theta ))T

return  - h\theta ((\partial G/\partial x1)T , . . . , (\partial G/\partial xm)T , \partial G/\partial r)T
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5. Numerical experiments. Problem (2.1), with the discretization Gh(\bfitx , r) of
G computed by Algorithm 4.1, is a constrained nonlinear programming problem (with
a linear objective function and a single difficult nonlinear constraint) of the form

(5.1) Minimize f(\bfitx , r) := r subject to Gh(\bfitx , r) = 0 and r \geq 0

that can be solved with an AL method [5]. In the present work we considered the
safeguarded AL method Algencan [1, 5]. (See [6] for a numerical comparison with
a state-of-the-art interior points method.) Algencan is based on the PHR AL func-
tion [19, 32, 33] that, for the considered problem, is defined by

(5.2) L\rho (\bfitx , r, \lambda ) = f(\bfitx , r) +
\rho 

2

\biggl[ 
Gh(\bfitx , r) +

\lambda 

\rho 

\biggr] 2
for all \rho > 0, r \geq 0, and \lambda \in \BbbR . Each iteration of the method consists in the
approximate minimization of (5.2) subject to r \geq 0 followed by the update of the
Lagrange multiplier \lambda and the penalty parameter \rho . The subproblem that consists
in minimizing (5.2) subject to r \geq 0 is a bound-constrained minimization problem.
In Algencan, bound-constrained subproblems are solved with an active-set method
named Gencan [3] that uses spectral projected gradient [7] directions for ``leaving
faces"" and a Newtonian approach ``within the faces"" (see [5, Chapter 9] for details).
In the Newtonian approach, since second-order information is not available, Newto-
nian linear systems are solved with preconditioned conjugate gradients in which the
Hessian-vector product is computed using an approximation to the Hessian of the AL
described in [4].

The convergence theory of Algencan can be found in [5]. When applied to prob-
lem (5.1), on success, given feasibility and optimality tolerances \varepsilon feas > 0 and \varepsilon opt > 0,
Algencan finds (\bfitx  \star , r \star , \lambda  \star ) with r \star > 0 (clearly, the bound constraint r \geq 0 is non-
active at any feasible solution) satisfying

(5.3) \| \nabla f(\bfitx  \star , r \star ) + \lambda  \star \nabla Gh(\bfitx 
 \star , r \star )\| \infty \leq \varepsilon opt and \| Gh(\bfitx 

 \star , r \star )\| \infty \leq \varepsilon feas,

i.e., it finds a point that approximately satisfies KKT conditions for problem (5.1). In
order to enhance the probability of finding an approximation to a global minimizer,
we employed a simple multistart strategy. For each considered problem, Algencan
was run a hundred times with an initial guess (\bfitx 0, r0), \bfitx 0 = (x01, . . . , x

0
m) such that

x0i \in A \subset \BbbR 2 are random variables with uniform distribution and r0 is a random
variable with uniform distribution in 1

m [ 12 ,
3
2 ]. Note that xi \in A is not a constraint

of the problem and that optimal solutions (\bfitx  \star , r \star ), \bfitx  \star = (x \star 1, . . . , x
 \star 
m), exist such

that x \star i \not \in A for some i. However, if xi \not \in A and r is such that B(xi, r) \cap A = \emptyset ,
then \partial G/\partial xi = 0. Thus, if x0i \not \in A and depending on the values of rk along the
optimization process, there exists the chance that the ith ball stagnates in its initial
configuration without contributing to the covering of A, producing in that case, with
high probability, a suboptimal solution.

Algorithms 4.1 and 4.2 were implemented in Fortran 90. Algencan 3.1.1,1 which is
also written in Fortran 90, was employed. All tests were conducted on a computer with
a 3.4 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 RAM memory, running
macOS Mojave (version 10.14.6). Code was compiled by the GFortran compiler of
GCC (version 8.2.0) with the -O3 optimization directive enabled.

1Algencan 3.1.1 is freely available at http://www.ime.usp.br/\sim egbirgin/tango/.

http://www.ime.usp.br/~egbirgin/tango/
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Table 1
Description of the considered regions A to be covered.

Heart A = \{ (x, y)T \in \BbbR 2 | (x2 + y2  - 1)3  - x2y3 \leq 0\} 

Soap A = \{ (x, y)T \in \BbbR 2 | (2x/3)4 + (2y)4 \leq 1\} 

Two squares

A = A1 \cup A2

A1 = \{ (x, y)T \in \BbbR 2 |  - 0.5 \leq x \leq 0.5,  - 0.5 \leq y \leq 0.5\} 
A2 = \{ (x, y)T \in \BbbR 2 | max\{ x+ y, x - y, - x+ y, - x - y\} \leq 

\surd 
2/2\} 

Peaked star

A = A1 \cap (A2 \cup A3 \cup A4 \cup A5)
A1 = \{ (x, y)T \in \BbbR 2 |  - 0.5 \leq x \leq 0.5,  - 0.5 \leq y \leq 0.5\} 

A2 = \{ (x, y)T \in \BbbR 2 | \| (x - 0.5, y  - 0.5)T \| 2 \geq 0.5\} 
A3 = \{ (x, y)T \in \BbbR 2 | \| (x - 0.5, y + 0.5)T \| 2 \geq 0.5\} 
A4 = \{ (x, y)T \in \BbbR 2 | \| (x+ 0.5, y  - 0.5)T \| 2 \geq 0.5\} 
A5 = \{ (x, y)T \in \BbbR 2 | \| (x+ 0.5, y + 0.5)T \| 2 \geq 0.5\} 

Ring
A = A1 \cap A2

A1 = \{ (x, y)T \in \BbbR 2 | \| (x, y)T \| 2 \leq 0.5\} 
A2 = \{ (x, y)T \in \BbbR 2 | \| (x, y)T \| 2 \geq 0.35\} 

Half ring

A = A1 \cap A2 \cap A3

A1 = \{ (x, y)T \in \BbbR 2 | \| (x, y)T \| 2 \leq 0.5\} 
A2 = \{ (x, y)T \in \BbbR 2 | \| (x, y)T \| 2 \geq 0.35\} 

A3 = \{ (x, y)T \in \BbbR 2 | x \leq 0\} 

Two half rings

A = (A1 \cap A2 \cap A3) \cup (A4 \cap A5 \cap A6)
A1 = \{ (x, y)T \in \BbbR 2 | \| (x, y  - 0.175)T \| 2 \leq 0.25\} A2 = \{ (x, y)T \in \BbbR 2 | \| (x, y  - 0.175)T \| 2 \geq 0.10\} 

A3 = \{ (x, y)T \in \BbbR 2 | x \leq 0\} A4 = \{ (x, y)T \in \BbbR 2 | \| (x, y + 0.175)T \| 2 \leq 0.25\} 
A5 = \{ (x, y)T \in \BbbR 2 | \| (x, y + 0.175)T \| 2 \geq 0.10\} A6 = \{ (x, y)T \in \BbbR 2 | x \geq 0\} 

Disconnected A =

A1(0, 0, 0, 1, 0, 3) \cup A1(0, 0, 1, 3, 0, 1) \cup A1(1.1, 1.1, 0, 1, 0, 3)\cup 
A1(1.1, 1.1, 1, 2, 1, 2) \cup A1(2.2, 3.2, 0, 1, 0, 1) \cup A1(2.2, 5.2, 0, 1, 0, 1)\cup 
A1(1.2, 4.2, 0, 1, 0, 1) \cup A1(3.2, 4.2, 0, 1, 0, 1)\cup 
A2(0, 3.1) \cup A2(2.2, 1.1) \cup A3 \cup A4 \cup A5

Table 1 shows the regions A to be covered that were considered in the numerical
experiments. In the description of the ``disconnected"" region A,

A1(\^x, \^y, x, \=x, y, \=y) = \{ (x, y)T \in \BbbR 2 | x \leq x - \^x \leq \=x, y \leq y  - \^y \leq \=y\} ,
A2(\^x, \^y) = \{ (x, y)T \in \BbbR 2 | y  - \^y \geq 0, y  - \^y \leq 

\surd 
3(x - \^x), y  - \^y \leq  - 

\surd 
3(x - \^x) +

\surd 
3\} ,

A3 = \{ (x, y)T \in \BbbR 2 | x - 3.3 \geq 0, y  - 5.3 \geq 0, (x - 3.3) + (y  - 5.3) \leq 1\} ,
A4 = \{ (x, y)T \in \BbbR 2 | x - 1.1 \leq 1, y  - 5.3 \geq 0,  - (x - 1.1) + (y  - 5.3) \leq 0\} ,
A5 = \{ (x, y)T \in \BbbR 2 | x - 3.3 \geq 0, y  - 3.1 \leq 1, (x - 3.3) - (y  - 3.1) \leq 0\} .

The sets A in Table 1 satisfy A \subset D, where D is a square of side 3 centered at the
origin for the ``heart,"" D is a rectangle with height 1 and width 3 centered at the origin
for the ``soap,"" D is a square of size

\surd 
2 centered at the origin for the ``two squares,"" D

is a square of size 1 centered at the origin for the ``peaked star,"" the ``ring,"" the ``half
ring,"" and the ``two half rings,"" and D is a rectangle with bottom-left corner (0, 0) and
top-right corner (4.3, 6.3) for the ``disconnected"" region. Taking into account the area
of D, in all instances but the ones related to the ``disconnected"" region we considered
h = 10 - 3. In the ``disconnected"" region we considered h = 5\times 10 - 3. In Algencan, we
set \varepsilon feas = 0.1h (i.e., \varepsilon feas = 5\times 10 - 4 for the ``disconnected"" A and \varepsilon feas = 10 - 4 in all
other cases) and \varepsilon opt = 10 - 1. The value of \varepsilon feas is naturally related to the value of
h---it would make no sense to require a tolerance much smaller than h for a constraint
that is computed with precision O(h).

Table 2 shows some performance metrics of the optimization procedure, while
Figure 5 shows the solutions found. In the table, ``trial"" is the number of the initial



A2070 BIRGIN, LAURAIN, MASSAMBONE, AND SANTANA

Table 2
Performance metrics of Algencan.

Region A m r\ast trial outit innit Alg. 4.1 Alg. 4.2 CPU time

3 0.7949 100 20 155 2188 249 59.08
7 0.5366 69 15 50 214 117 7.92
11 0.4100 89 12 68 303 130 12.77
15 0.3476 78 13 77 311 138 15.46

3 0.6578 70 12 76 402 134 4.61
7 0.4754 30 13 119 1228 185 20.11
11 0.3564 61 13 72 261 132 6.12
15 0.3154 69 13 80 447 140 12.77

4 0.3810 91 11 40 222 90 2.78
9 0.2474 70 11 45 197 94 3.18
12 0.2064 32 10 66 346 112 6.16

4 0.2317 82 20 136 2221 230 14.55
5 0.1892 32 10 61 251 107 1.70
9 0.1300 59 10 56 248 107 1.84

3 0.4295 12 10 40 186 86 0.49
7 0.2149 36 10 35 155 78 0.58
11 0.1441 23 12 94 337 152 1.50

3 0.2465 38 10 32 146 76 0.30
7 0.1211 52 7 50 541 86 1.29
11 0.0964 59 12 24 118 75 0.36

3 0.2146 86 9 29 167 69 0.43
7 0.1122 54 10 46 182 93 0.56
11 0.0938 88 11 29 132 76 0.46

3 1.7067 51 12 49 230 104 2.42
7 1.1774 19 20 129 2331 215 27.14
15 0.7820 36 20 112 1799 202 25.85

guess (between 1 and 100) that let the optimization method find the best solution;
``outit"" and ``innit"" are the number of outer and inner iterations of the AL optimization
method in that run; ``Alg. 4.1"" and ``Alg. 4.2"" are the number of calls to Algorithm 4.1
and Algorithm 4.2, i.e., the number of evaluations of G and \nabla G, respectively; and
``CPU time"" is the CPU time in seconds. In the table and the figures, obtained radii
are rounded to four decimal places. The heart-shape region A was taken from [2],
where solutions for 3 and 7 balls with radii 0.8065 and 0.5524 are reported.2 While
solutions reported in [2] and here represent the same arrangement of the balls, radii
obtained with the present approach are smaller. The covering of a ring with three balls
is an example in which the centers of the balls are outside the region to be covered. The
same phenomenon occurs with some balls in the instances with the ``disconnected""
region. All solutions found, except for the ones related to the ``peaked star,"" are
such that, looking with the naked eye, regions appear to be fully covered. If desired,
improved solutions can be found at the expense of multiplying the effort by 100 every
time h is divided by 10, since Algorithms 4.1 has time complexity O(1/h2). (As a
side note, Algorithm 4.2 has time complexity O(1/h).) Alternatively, better solutions

2The values reported in [2, section 5] correspond to r2.
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r \approx 0.7949 r \approx 0.5366 r \approx 0.4100 r \approx 0.3476

r \approx 0.6578 r \approx 0.4754 r \approx 0.3564 r \approx 0.3154

r \approx 0.3810 r \approx 0.2317 r \approx 0.4295 r \approx 0.2465 r \approx 0.2146

r \approx 0.2474 r \approx 0.1892 r \approx 0.2149 r \approx 0.1211 r \approx 0.1122

r \approx 0.2064 r \approx 0.1300 r \approx 0.1441 r \approx 0.0964 r \approx 0.0938

r \approx 1.7067 r \approx 1.1774 r \approx 0.7820

Fig. 5. Solutions found for covering regions in Table 1: heart-shape and soap-shape regions
with m = 3, 7, 11, 15, two squares region with m = 4, 9, 12, peaked star region with m = 4, 5, 9, ring,
half ring, and two half rings regions with m = 3, 7, 11, and disconnected region with m = 3, 7, 15.
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could also be found by considering a dynamic multigrid approach that makes use
of smaller values of h at critical places of the region to be covered. The ``peaked
star"" case is particularly challenging because its peaks have a small area to perimeter
ratio. Thus, the combination of a small but bounded-away-from-zero discretization
step h > 0 and a feasibility tolerance \varepsilon feas > 0 with the minimization of the balls'
radius r is attracted by configurations with uncovered peaks.

Figure 6 shows the evolution of the optimization process in the arbitrary selected
``two squares"" problems with m = 9 balls, starting from the 70th initial guess (x0, r0)
which is the one that leads to the best solution found. The top-left picture shows the
initial guess. It is worth recalling that the balls' centers are randomly chosen within
the region to be covered, while the initial radius is a random number in [ 12 ,

3
2 ]/m. The

picture shows that the initial radius is relatively small (with respect to the optimal
one) and that the balls' centers do not present any attractive feature. The initial value
of the Lagrange multipliers is \lambda 0 = 0, and the penalty parameter \rho 0 is automatically
chosen by the optimization solver in such a way that, in the AL function (5.2), the
term related to feasibility is one order of magnitude larger than the objective function;
see [5, p. 153]. This choice explains why in the first iteration the objective function
(radius of the balls) is increased, while feasibility is reduced. The sequence of iterates
shows that in iteration 5 the optimal arrangement has already been found, but the
current radius r5 \approx 2.388\times 10 - 1 produces a cover that leaves uncovered vertices that
are visible to the naked eye. From iteration 5 to the end, increasing values of the
penalty parameter produce successive iterates with increased radius and improved
feasibility. The optimization process ends at iteration 11 when the required feasibility
tolerance is reached.

Figure 7 shows the boxplot representation of the radii found in 100 runs of the
``two squares"" problem with m \in \{ 4, 9, 12\} . In the case m = 4, we have r\ast = rmin =
0.3810 and the median value is 0.3828, which is 4.7\% larger than r\ast . In the case
m = 9, we have r\ast = rmin = 0.2474 and the median value is 0.2835, which is 14.6\%
larger than r\ast . In the case m = 12, we have r\ast = rmin = 0.2064 and the median
value is 0.2327, which is 12.7\% larger than r\ast . These quantities were computed over
the runs that ended with a feasible solution, which were 100, 97, and 91, respectively.
These figures, together with the small number of outliers, show that the optimization
process is able to find ``good quality solutions"" in many cases, independently of the
given initial guess.

Figure 8 and Table 3 show the results obtained by varying h \in \{ 0.1, 10 - 2, 10 - 3,
10 - 4\} , with \varepsilon feas = 0.1h and \varepsilon opt = 0.1, in problems ``two squares"" and ``peaked
star"" with m = 9. The figures show that the smaller the value of h, the higher the
quality of the obtained cover. They also show that a region like the peaked star,
which exhibits ``small thin features,"" requires a smaller value of h, when compared to
the two squares region, for a ``reasonable"" cover to be obtained. Recall that h = 10 - 3

was considered in the numerical experiments shown in Figure 5 and Table 2. Figure 8
suggests that, to the naked eye, the solution obtained for the ``two squares"" problem
with m = 9 considering h = 10 - 2 is very similar to the one obtained with h = 10 - 3.
The same is true for all other problems that do not exhibit ``small thin features"" as the
ones present in the ``peaked star"" problem, and due to the O(1/h2) time complexity
of Algorithm 4.1, using h = 10 - 2 is a hundred times faster than using h = 10 - 3.
This is why numerical experiments in Figure 5 and Table 2 should be understood
as an illustration of the capabilities and limitations of the proposed approach, and
the considered value of h must depend on the desired goal for the problem at hand.
The last column in Table 3, titled ``PMC"" (which stands for ``practical measure of
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r0 \approx 7.222\times 10 - 2

G(x0, r0) \approx 1
r1 \approx 2.288\times 10 - 1

G(x1, r1) \approx 0.4
r2 \approx 2.709\times 10 - 1

G(x2, r2) \approx 0.06

r3 \approx 2.709\times 10 - 1

G(x3, r3) \approx 0.06
r4 \approx 2.752\times 10 - 1

G(x4, r4) \approx 0.03
r5 \approx 2.388\times 10 - 1

G(x5, r5) \approx 4\times 10 - 3

r6 \approx 2.405\times 10 - 1

G(x6, r6) \approx 3\times 10 - 3
r7 \approx 2.436\times 10 - 1

G(x7, r7) \approx 1\times 10 - 3
r8 \approx 2.446\times 10 - 1

G(x8, r8) \approx 6\times 10 - 4

r9 \approx 2.463\times 10 - 1

G(x9, r9) \approx 2\times 10 - 4
r10 \approx 2.467\times 10 - 1

G(x10, r10) \approx 2\times 10 - 4
r11 \approx 2.474\times 10 - 1

G(x11, r11) \approx 6\times 10 - 5

Fig. 6. Evolution of the optimization process in the ``two squares"" problems with m = 9 balls,
starting from the 70th initial guess (x0, r0) which is the one that leads to the best solution found.

time complexity"") displays the total CPU time divided by the number of calls to
Algorithm 4.1, and it roughly illustrates that the cost of approximating G is multiplied
by 100 when h is divided by 10, as expected.

Figure 9 corresponds to the covering of a union of two tangent unitary-diameter
balls with m = 2 balls. This case is not covered by the theory, as the trivial solution
satisfies neither Assumption 3.1 nor Assumption 3.7. Not satisfying Assumption 3.1
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0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m = 4 m = 9 m = 12

r

Fig. 7. Boxplot representation of the radii found in 100 runs of the ``two squares"" problem with
m \in \{ 4, 9, 12\} .

(a) h = 0.1 (b) h = 10 - 2 (c) h = 10 - 3 (d) h = 10 - 4

(e) h = 0.1 (f) h = 10 - 2 (g) h = 10 - 3 (h) h = 10 - 4

Fig. 8. Solutions found varying h \in \{ 0.1, 10 - 2, 10 - 3, 10 - 4\} , with \varepsilon feas = 0.1h and \varepsilon opt = 0.1,
in problems (a)--(d) ``two squares"" and (e)--(h) ``peaked star"" with m = 9.

by having two tangent balls is in fact not an issue, since Example 3.10 shows that (2.3)
still corresponds to \nabla G in this case. On the other hand, not satisfying Assumption 3.7
because the intersection of the balls' border and the border of A contains infinitely
many points does represent an issue. This is because Example 3.13 shows that, in this
case, \nabla G does not exist. Nevertheless, the depicted solution was found with a single
run of the method, i.e., only one random initial guess. This example illustrates that
a degenerate limit point does not affect the performance of the iterative optimization
process that stops in finite time with a prescribed tolerance ``before reaching the
degenerate point that exists in the limit.""
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Table 3
Numerical results obtained varying h \in \{ 0.1, 10 - 2, 10 - 3, 10 - 4\} , with \varepsilon feas = 0.1h and \varepsilon opt =

0.1, in problems ``two squares"" and ``peaked star"" with m = 9. In the last column, PMC stands for
``practical measurement of the complexity of Algorithm 4.1"" and corresponds to the total CPU time
divided by the number of calls to Algorithm 4.1.

Region A h r\ast | G(\bfitx \ast , r\ast )| trial outit innit Alg. 4.1 Alg. 4.2 CPU time PMC

1e - 1 0.2279 8.8e - 03 7 20 133 3147 217 0.01 3e - 06
1e - 2 0.2442 7.9e - 04 32 9 41 223 81 0.05 2e - 04
1e - 3 0.2474 5.9e - 05 70 11 45 197 94 3.18 2e - 02
1e - 4 0.2479 8.0e - 06 85 15 83 326 150 502.64 2e+00
1e - 1 0.0762 1.0e - 02 3 20 110 3894 193 0.01 3e - 06
1e - 2 0.1191 1.0e - 03 65 20 89 2386 175 0.19 8e - 05
1e - 3 0.1300 6.9e - 05 59 10 56 248 107 1.84 7e - 03
1e - 4 0.1325 8.4e - 06 7 11 79 317 137 224.49 7e - 01

Fig. 9. An example of a degenerate case: A is the union of two tangent unitary-diameter
balls to be covered by m = 2 balls. Even though this singular case is not covered by the theory, the
solution, which is the set A itself, was found with a single run of the method.

Table 4
Performance metrics of Algencan applied to the problem of covering America with m = 15, 20, 25.

Region A m r\ast trial outit innit Alg. 4.1 Alg. 4.2 CPU time

15 0.08556 182 20 95 1844 180 2.45
20 0.07459 1144 20 105 2806 190 3.77
25 0.06728 1440 20 87 2086 170 2.81

As a final illustration of the applicability of the proposed approach, Table 4 and
Figure 10 show the application of the approach, with h = 10 - 3, \varepsilon feas = 0.1h, and
\varepsilon opt = 0.1, but considering 2,000 initial guesses instead of 100, to the covering of
the union of three nonoverlapping polygons that represent a sketch of America (a
large nonconvex polygon represents the continent, while two small convex polygons
represent Cuba and Tierra del Fuego in the south of Argentina) [5, section 13.2] with
m = 15, 20, 25 balls. In all three instances, the feasibility tolerance \varepsilon feas = 0.1h = 10 - 4

was reached. On the other hand, in all three cases the method stopped because it
reached the maximum of 20 outer iterations. (The same behavior can be observed in
a few instances of other considered problems.) This means that the desired optimality
tolerance \varepsilon opt was not achieved. This could be a practical effect of reaching a solution
at which \nabla G is not well-defined. Solving instances with a larger number of balls or
with more complex regions A faces two challenges of different natures. On the one
hand, the larger the number of balls, the smaller the optimal radius, and a smaller
optimal radius requires a smaller h to avoid very rough approximations. (Recall that
the algorithm that approximates the constraint G has time complexity O(1/h2).) On
the other hand, finding global solutions to more difficult instances (i.e., instances
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(a) m = 15, r \approx 0.08556 (b) m = 20, r \approx 0.07459 (c) m = 25, r \approx 0.06728

Fig. 10. Solutions found for covering region America with m = 15, 20, 25.

with more balls) might require a more elaborated ad hoc technique than the simple
multistart strategy adopted in the presented numerical experiments, including, for
example, good quality initial guesses. Moreover, having at hand good quality initial
guesses would require studying alternative nonlinear minimization methods because
loosing feasibility of a potentially feasible initial guess is intrinsic to the AL approach
and to most of the practical nonlinear programming solvers.

6. Conclusions and future works. From the shape optimization perspective,
the present work contributes to the study of shape sensitivity analysis with non-
smooth domains defined as the union of balls intersected with the domain to be
covered. Studying and generalizing these techniques to three dimensions and to other
types of nonsmooth domains will be a subject of future research. Regarding the cov-
ering problem, the numerical computation of the integrals defining the problem and
its derivatives, as well as the availability of first-order information only, impaired the
computation of precise solutions that may be required in some applications or for aca-
demic purposes. Therefore, a line for future research consists in deriving analytical
expressions for second-order derivatives that would allow the application of quadrat-
ically convergent optimization methods. In some particular cases, like, for example,
when the region A to be covered is a ball or a polygon, the objective function and its
first- and second-order derivatives can be computed exactly using Voronoi diagrams.

Two related problem can also be tackled with the approach introduced in the
current work. In one of them, each ball can have its own radius ri and the goal may
be minimizing the sum of the balls' perimeters, which is proportional to

\sum m
i=1 ri, or

the sum of the balls' areas, which is proportional to
\sum m

i=1 r
2
i . Redefining \Omega (\bfitx , \bfitr ) :=

\cup mi=1B(xi, ri) and G(\bfitx , \bfitr ) := Vol(A \setminus \Omega (\bfitx , \bfitr )), where \bfitr := \{ ri\} mi=1, expressions and
algorithms to approximate G(\bfitx , \bfitr ) and \nabla G(\bfitx , \bfitr ) can be easily obtained with minor
modifications to the introduced approach; see Remark 2.1. In the second related
problem, the radius r common to all balls is fixed and the goal is to find the smallest
m \in \{ 1, 2, . . . \} and centers x1, . . . , xm such that the balls cover a given region A. In
this case, for a fixed radius r and a fixed number of balls \=m, we define Gr, \=m(\bfitx ) :=
Vol(A \setminus \Omega r, \=m(\bfitx )). The reasonable approach consists in starting with a large \=m and,
while an \bfitx \ast such that Gr, \=m(\bfitx \ast ) = 0 is found, reducing \=m by one. The feasible point
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\bfitx \ast may be found by minimizing Fr, \=m(\bfitx ) := 1
2\| Gr, \=m(\bfitx )\| 22, whose gradient is given by

\nabla Fr, \=m(\bfitx ) = Gr, \=m(\bfitx )\nabla Gr, \=m(\bfitx ).
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