
SIAM J. OPTIM. c© 2018 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 1367–1395

ON REGULARIZATION AND ACTIVE-SET METHODS WITH
COMPLEXITY FOR CONSTRAINED OPTIMIZATION∗

E. G. BIRGIN† AND J. M. MARTÍNEZ‡

Abstract. The main objective of this research is to introduce a practical method for smooth
bound-constrained optimization that possesses worst-case evaluation complexity O(ε−3/2) for finding
an ε-approximate first-order stationary point when the Hessian of the objective function is Lipschitz
continuous. As other well-established algorithms for optimization with box constraints, the algo-
rithm proceeds visiting the different faces of the domain aiming to reduce the norm of an internal
projected gradient and abandoning active constraints when no additional progress is expected in the
current face. The introduced method emerges as a particular case of a method for minimization
with linear constraints. Moreover, the linearly constrained minimization algorithm is an instance of
a minimization algorithm with general constraints whose implementation may be unaffordable when
the constraints are complicated. As a procedure for leaving faces, a different method is employed
that may be regarded as an independent device for constrained optimization. Such an indepen-
dent algorithm may be employed to solve linearly constrained optimization problems on its own,
without relying on the active-set strategy. A careful implementation and numerical experiments
show that the algorithm that combines active sets with leaving-face iterations is more effective than
the independent algorithm on which leaving-face iterations are based, although both exhibit similar
complexities O(ε−3/2).
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1. Introduction. In this paper, we address the problem of minimizing a smooth
and generally nonconvex function within a region of the Euclidean finite-dimensional
space. Initially, we present a cubic regularization algorithm with cubic descent that
finds an approximate first-order stationary point with arbitrary precision ε or a bound-
ary point of the feasible region with evaluation complexity O(ε−3/2). In addition,
complexity for finding second-order stationary points and convergence results are
presented. Secondly, we introduce an algorithm for minimization on arbitrary and
generally nonconvex regions defined by inequalities and equalities. The evaluation
complexity of this algorithm for finding first-order stationary points is also O(ε−3/2)
when one uses cubic regularization of the functional quadratic approximation. The
most general form, in which we use pth Taylor polynomials to define subproblems, has
complexity O(ε−(p+1)/p). A version of this algorithm for minimizing smooth functions
with linear constraints is introduced and implemented for the case p = 2. Moreover,
the problem of minimizing with linear constraints is also addressed in a different way.
Namely, we consider each face of the polytope as a finite-dimensional region within
which we may employ the algorithm first introduced in this paper. As mentioned
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above, such an algorithm either finds an approximate stationary point within the face
or finds a point on its boundary. Then, as a natural combination of the first two
algorithms so far introduced, we use the first one for minimizing within faces and the
second one for giving up constraints when the current face is exhausted. This gives
rise to a third algorithm with complexity O(ε−3/2) for finding ε-approximate first-
order stationary points. This method is implemented and compared with the second
one. Therefore, the present paper introduces an algorithm with complexity O(ε−3/2)
for finding approximate KKT points of linearly constrained optimization problems, as
a result of the manipulation of a theoretical algorithm for constrained optimization.
Theoretical algorithms for finding approximate KKT points of general nonlinear pro-
gramming problems with complexity O(ε−3/2) have already been introduced [9], but
practical counterparts are not yet known.

Several numerical optimization traditions converge on the present work. Algo-
rithms that use quadratic models for unconstrained problems and employ regularized
or trust-regions subproblems combined with actual-versus-predicted reduction or cu-
bic descent with proven complexity O(ε−3/2) were given in [15, 20, 21, 22, 31, 39,
47, 51]. Cubic regularization was introduced as a useful optimization tool in [45, 53].
The optimality of the complexity O(ε−3/2) was proved in [20]. The generalization of
cubic regularization to arbitrary (p + 1)th regularization was given in [10]. In [44],
the complexity (close to O(ε−2)) of quasi-Newton methods for unconstrained op-
timization was analyzed. The complexity of unconstrained optimization and some
constrained optimization algorithms assuming relaxed Lipschitz (Hölder) conditions
on the objective function was analyzed in [27, 43, 46]. The idea of minimizing on
polytopes using a fast algorithm within faces combined with a suitable procedure to
abandon exhausted faces is in the core of active-set methods for constrained opti-
mization and may be found in several textbooks [14, 40, 52]. Many algorithms for
solving general constrained optimization problems use subproblems that consist of
the minimization of combinations of objective and constraint functions subject to lin-
ear constraints [14, 40, 50, 52]. The combined algorithm presented here uses ideas
of [3, 4, 12, 13], where the algorithm for leaving faces is the spectral projected gra-
dient method [1, 16, 17, 18, 19]. In fact, Algorithm 4.1 presented in this work is
based on the active-set strategies [3, 4, 12, 13] that, for leaving faces, use, as well as
Algorithm 4.1, the comparison of different components of the projected gradient as in
[14, 33, 35, 41]. On the other hand, in Algorithm 2.1 (which is used within the faces
in Algorithm 4.1), successive iterates are computed using safeguarded regularization
whereas in [3] the trust-region approach is employed and [4, 12, 13] use a line search
approach. Moreover, Algorithm 4.1 introduced in this work and the algorithms intro-
duced in [3, 4, 12, 13] also differ in the way of reaching the boundary and in the fact
that the first one possesses a complexity analysis.

This paper is organized as follows. Section 2 introduces the cubic regularization
method that either finds an interior stationary point or stops at the boundary of
the feasible region. First- and second-order complexity results are presented. In
section 3, we introduce a model algorithm with (p+1)-regularized models for nonlinear
programming. In section 4, we describe the method for minimization with linear
constraints that combines the procedures of sections 2 and 3. In section 5, we compare
the combined algorithm with the method presented in section 3 with p = 2 and with
the method introduced in [3]. In section 6, we state some conclusions and lines for
future research.
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Notation. Given Ω ⊆ Rn, Int(Ω) denotes the set of interior points of Ω and Ω̄
denotes its closure; if Ω is convex, PΩ(x) denotes the Euclidean projection of x onto
Ω; ∇ and ∇2 are the gradient and Hessian operators, respectively; ‖ · ‖ denotes the
Euclidean norm; N = {0, 1, 2, . . . }; g(x) denotes the gradient of f(x) and H(x) denotes
its Hessian; λ1(H) denotes the leftmost eigenvalue of the symmetric matrix H; Hk

denotes H(xk); h′(x) denotes the Jacobian of h : Rn → Rq; if a ∈ R, [a]+ = max{a, 0};
and A† denotes the Moore–Penrose pseudoinverse of a matrix A.

2. Inner-to-the-face algorithm. Consider the problem

Minimize f(x) subject to x ∈ Ω.

We assume that Ω ⊂ Rn has nonempty interior and f : Rn → R. In this section, we
introduce an algorithm that finds an interior point that approximately satisfies first-
and second-order conditions for unconstrained minimization; or, alternatively, it finds
a point on the boundary of Ω. More precisely, either the algorithm generates a finite

sequence x0, x1, . . . , xk̂ such that the final point xk̂ is on the boundary of Ω, xk ∈
Int(Ω) for all k < k̂, and f(xk̂) < f(xk̂−1) < · · · < f(x0); or it generates an infinite
sequence {xk}∞k=0 ⊂ Int(Ω) such that {f(xk)} is strictly decreasing, g(xk) → 0, and
[−λ1(H(xk))]+ → 0 when k →∞.

In the algorithm, for a given iterate xk and a trial step strial, we consider the
interiority condition

(1) xk + strial ∈ Int(Ω)

and the sufficient descent condition

(2) f(xk + strial) ≤ f(xk)− α‖strial‖3.

The first step of the algorithm consists in computing, when possible, a solution strial

to the quadratic model

(3) Minimize g(xk)T s+
1

2
sTHks

and checking whether it satisfies (1), (2) or not. Step 2 (which is executed when the
first step is not successful) consists in, by increasing the regularizing parameter ρ in
a controlled way, finding a solution strial = strial(ρ) to the cubic regularized model

(4) Minimize g(xk)T s+
1

2
sTHks+ ρ‖s‖3

that satisfies (1), (2). The algorithm computes exact solutions to (4) with a regu-
larization parameter ρ that is not known a priori but belongs to a specified interval.
Exact solutions are affordable in this case and using them is crucial for the practical
performance of the algorithm. Step 3 consists in verifying whether the regularizing
parameter ρ happened to be too large or not. Completing the verification may require
the calculation of a point on the boundary of Ω and this task is performed at Step 4.
At the end, the computed new iterate may be a solution to (3) or (4) that belongs
to the interior of Ω and satisfies the sufficient descent condition or a point on the
boundary of Ω. In the latter case, the algorithm stops. The complete description of
the algorithm follows.
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Algorithm 2.1. Assume that x0 ∈ Int(Ω), α > 0, τ2 ≥ τ1 > 1 > τ0 > 0, M > 0,
ρ̂ini

0 ∈ (0,M/τ1], ν ∈ {0, 1}, and J ≥ 0 are given. Initialize k ← 0.

Step 1. Set j ← 0.
Step 1.1. If (3) is not solvable, go to Step 2.
Step 1.2. Define ρk,j = 0 and sk,j as a solution to (3).
Step 1.3. If (1) does not hold with strial = sk,j and j < J , compute, when possible,

a point w on the boundary of Ω. If f(w) < f(xk) then define xk+1 = w and
stop.

Step 1.4. If (1) and (2) hold with strial = sk,j, define sk = sk,j, ρk = ρk,j, x
k+1 =

xk + sk, and ρ̂ini
k+1 = ν τ0ρ̂

ini
k + (1 − ν) ρ̂ini

k , set k ← k + 1 and go to Step 1.
Otherwise, set j ← j + 1 (and continue at Step 2 below).

Step 2. Set ρ̂← ρ̂ini
k .

Step 2.1. Define sk,j as a solution to (4) with ρ = ρk,j for some ρk,j ∈ [τ1ρ̂, τ2ρ̂].
Step 2.2. If (1) does not hold with strial = sk,j and j < J , compute, when possible,

a point w on the boundary of Ω. If f(w) < f(xk) then define xk+1 = w and
stop.

Step 2.3. If (1) or (2) does not hold with strial = sk,j, set ρ̂← ρk,j, j ← j + 1 and
go to Step 2.1.

Step 3. If

(5) ρk,j ≤M orj = 0 or xk + sk,j−1 ∈ Int(Ω),

define sk = sk,j, ρk = ρk,j, x
k+1 = xk+sk, and ρ̂ini

k+1 = ν τ0ρk,j+(1−ν) ρ̂ini
k ,

set k ← k + 1 and go to Step 1.
Step 4. Compute w = xk + s on the boundary of Ω in such a way that s is a solution

to (4) with ρ ∈ [ρk,j−1, ρk,j). (If xk + sk,j−1 is on the boundary of Ω then
w = xk + sk,j−1 is the natural choice.)

Step 4.1. If f(w) < f(xk) then define xk+1 = w and stop. Otherwise, define sk =
sk,j, ρk = ρk,j, x

k+1 = xk + sk, and ρ̂ini
k+1 = ν τ0ρk,j + (1 − ν) ρ̂ini

k , set
k ← k + 1 and go to Step 1.

Algorithm 2.1 has been described in such a way that the only reason for stopping
is to find an iterate on the boundary of Ω. In any other case, the algorithm generates
an infinite sequence. Of course, in practice, stopping criteria are necessary (and they
will be defined later) but, in theory, we are interested on the behavior of the potentially
infinite sequence of iterates.

At Step 1.1, (3) is solvable if and only if Hk is positive definite or Hk is positive
semidefinite and g(xk) belongs to the range space ofHk. Note also that, at Step 2.1, we
solve the cubic regularization problem (4) with a regularization parameter ρ which
is a priori unknown and may take any value between τ1ρ̂ and τ2ρ̂. This may be
done using a root-finding process that aims to compute the quadratic regularization
parameter that corresponds to a cubic regularization one between the given bounds
(see [15] for details). Recall that, as shown in [21, Thm. 3.1], the set of solutions to
cubic regularized problems, varying ρ, coincides with the set of solutions to quadratic
regularized problems, varying σ.

At Steps 1.3 and 2.2, there exists the possibility of computing a magical step w−xk
whose definition may depend on characteristics of Ω. Since, in practice, magical steps
may rely on computing projections, we have in mind the case in which projecting
onto Ω is an affordable task, like it is, for example, in boxes, balls, and spheres. This



REGULARIZATION AND ACTIVE-SET METHODS 1371

means that, if (1) does not hold with strial = sk,j , we may define w as the projection
of xk+sk,j onto Ω. This trick has been proved to be very useful in practice. A similar
device is used in [49]. The number of magical steps per iteration is limited to J .

When the algorithm arrives to Step 3, a point xk+sk,j such that (1) and (2) hold
with strial = sk,j has been computed. If, in addition, ρk,j ≤M , xk+sk,j is accepted as
the new iterate. The obvious question is why we do not accept the trial point xk+sk,j ,
in spite of it being interior and satisfying the sufficient descent condition, when (5)
does not hold. The reason is that, since ρk,j > M could be very big, sk,j could be
unacceptably small and, so, sufficient descent could not mean satisfactory descent.
This situation may only happen when j > 0 and xk + sk,j−1 /∈ Int(Ω), which means
that the previous trial point at the present iteration was rejected without testing its
functional value because it was not interior. Accepting xk + sk,j as a new iterate
or not involves computing an additional point at the boundary of Ω and this task is
performed at Step 4.

The explanation that follows, related to the computation of a point on the bound-
ary of Ω at Step 4, requires some background on trust-region and regularization
subproblems, which may be found, for example, in [29, 15, 21, 47]. Step 4 starts
with xint = xk + sint ∈ Int(Ω), which satisfies (2), and xout = xk + sout /∈ Int(Ω),
where sint = sk,j and sout = sk,j−1 are solutions to (4) with ρ = ρint = ρk,j and
ρ = ρout = ρk,j−1, respectively, and ρint > ρout ≥ 0. This means that both sint

and sout come from solving quadratic regularization problems with regularization pa-
rameters σint = 3‖sint‖ρint and σout = 3‖sout‖ρout, respectively, with σint ≥ σout ≥ 0
(see [47, Lem. 2.3]). If xout is in the border of Ω then, at Step 4, we may define
w = xout and there is nothing else to be done. Therefore, from now on we assume
that xout /∈ Ω. If σint = σout, we are in the so-called hard-case of the trust-region
literature [29]. In this case, all the points in the segment [sint, sout] are solutions
to (4) for values of ρ between ρint and ρout. Therefore, there is a point sbound on the
segment [sint, sout] such that sbound solves (4) for some ρ between ρout and ρint and
w = xk + sbound is on the boundary of Ω. Such sbound may be obtained by means
of bisection on the segment [sint, sout] or analytically computed if the constraints are
simple enough. If σint > σout and sout is of the form sout = −(Hk + σoutI)†g(xk),
we necessarily have that sint = −(Hk + σintI)−1g(xk) and the required point on the
boundary may be found by bisection on the interval [σout, σint]. Finally, it may be
that σint > σout and sout is of the form sout = −(Hk + σoutI)†g(xk) + tv with t > 0,
where v is an eigenvector of Hk associated with its leftmost eigenvalue. This is also a
hard-case situation. We handle it testing whether the point xk−(Hk+σoutI)†g(xk) is
interior to Ω or not. If it is interior, the required point on the boundary may be found
by bisection on the segment [−(Hk + σoutI)†g(xk), sout] or analytically computed if
the constraints are simple enough. Otherwise, the boundary point may be obtained
by bisection on the interval [σout, σint].

Remark 2.1. An attentive reader may observe that, when we rely on a bisection-
like process, the required point w on the boundary is obtained only in the limit, and
not in a finite number of steps. This minor problem may be solved as follows. Assume
that [xint, xout] is the segment whose extremes are computed by the bisection proce-
dure and that ‖xint−xout‖ ≤ τsmall‖xint−xk‖3. At Step 4, we compute w ∈ [xint, xout]
such that w is on the boundary of Ω. Note that w may be analytically computed if
the constraints are simple enough. In Remark 2.2, which follows Lemma 2.2, we show
that this modification does not affect the theoretical proofs.
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Assumption A1. There exists L > 0 such that for all xk computed by Algo-
rithm 2.1 and all strial considered at (2) we have that

(6) f(xk + strial) ≤ f(xk) + g(xk)T strial +
1

2
(strial)THks

trial + L‖strial‖3.

Lemma 2.1. Suppose that Assumption A1 holds. If ρk,j ≥ L + α then (2) holds
with strial = sk,j.

Proof. If ρk,j ≥ L+ α, by Assumption A1, we have that

f(xk + sk,j) ≤ f(xk) + g(xk)T sk,j + 1
2
(sk,j)THks

k,j + L‖sk,j‖3

= f(xk) + g(xk)T sk,j + 1
2
(sk,j)THks

k,j + (L+ α)‖sk,j‖3 − α‖sk,j‖3

≤ f(xk) + g(xk)T sk,j + 1
2
(sk,j)THks

k,j + ρk,j‖sk,j‖3 − α‖sk,j‖3.

Since sk,j being a solution to (4) with ρ = ρk,j implies that

g(xk)T sk,j +
1

2
(sk,j)THks

k,j + ρk,j‖sk,j‖3 ≤ 0,

(2) follows from the last inequality.

Lemma 2.2. Suppose that Assumption A1 holds. Then, the sequence {xk} gener-
ated by Algorithm 2.1 is well defined. Moreover, if the algorithm does not stop at a
boundary point at iteration k (in which case ρk is undefined), we have that

(7) ρk ≤ max{M, τ2(L+ α)}.

Proof. Proving that the sequence {xk} is well defined consists in showing that,
given xk ∈ Int(Ω), the point xk+1 is computed in finite time. If xk+1 is a solution
to (3) computed at Step 1 or it is a point in the boundary of Ω computed at Steps 1.3,
2.2, or 4, we are done since those calculations involve a finite number of operations
by definition. We now assume that xk+1 = xk + sk,j and sk,j is a solution to (4) with
ρ = ρk,j (computed at Step 3). Since xk is interior, for ρk,j large enough we have
that xk + sk,j is interior too, meaning that (1) holds with strial = sk,j . Moreover, by
Lemma 2.1, if ρk,j ≥ L+α then (2) holds with strial = sk,j . Thus, since the updating
rule of ρk,j implies that ρk,j →∞ when j →∞, we have that xk + sk,j satisfying (1),
(2) with strial = sk,j is found in finite time.

Let us now prove the boundedness of ρk. If ρk = ρk,j is defined at Step 3 then
we have that ρk ≤ M . Assume now that ρk = ρk,j is defined at Step 4.1. By the
definition of the algorithm, we have that ρk,j ∈ [τ1ρk,j−1, τ2ρk,j−1]. Moreover, the
point w on the boundary of Ω was rejected. This point is of the form w = xk + sw
with sw being a solution to (4) with ρw satisfying ρk,j−1 ≤ ρw < ρk,j . The point w
was rejected because f(w) ≥ f(xk), which means that (2) with strial = sw does not
hold. Therefore, by Lemma 2.1, we have that ρw 6≥ L+α. Thus, ρk,j−1 < L+α and,
in consequence, ρk,j < τ2(L+ α) as we wanted to prove.

Remark 2.2. Assume that the point w on the boundary is computed as described
in Remark 2.1. Let γ > 0 be a Lipschitz constant for the objective function f . Then,
in the case that f(w) ≥ f(xk), we have that

‖w − xint‖ ≤ ‖xout − xint‖ ≤ τsmall‖xint − xk‖3.
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Then,
f(xint) ≥ f(xk)− τsmallγ‖xint − xk‖3.

This means that xint is a solution to the cubic regularized subproblem that does not
satisfy the sufficient descent condition related to α = τsmallγ. Then, by Lemma 2.1,
xint comes from a regularization parameter ρ smaller than L + τsmallγ. Then, as in
Lemma 2.2, we would have ρk ≤ τ2(L + τsmallγ). This is enough to complete the
complexity proofs.

The proofs of the next two lemmas are standard and may be essentially found,
for example, in [24] and [51].

Lemma 2.3. If sk = 0 then g(xk) = 0 and Hk is positive semidefinite.

Proof. Since

∇
[
g(xk)T s+

1

2
sTHks

]∣∣∣∣
s=0

= g(xk)

and ∇2[g(xk)T s+ 1
2s
THks]|s=0 = Hk, if sk = 0 solves (3) then we have that g(xk) = 0

and Hk is positive semidefinite.
The gradient of the objective function that defines (4) is g(xk) + Hks + 3ρ‖s‖s.

Therefore, if sk = 0 is a solution to (4) then we have that g(xk) = 0. Moreover, for
all s ∈ Rn, we must have

1

2
sTHks+ ρ‖s‖3 ≥ 0,

otherwise sk = 0 would not be a solution to (4). Then, for all s 6= 0,

1

2

sTHks

‖s‖2
+ ρ‖s‖ ≥ 0.

In particular, if s 6= 0 is an eigenvector associated with λ1(Hk), it turns out that

1

2
λ1(Hk) + ρ‖s‖ ≥ 0.

Taking limits for s→ 0 it follows that λ1(Hk) ≥ 0 as we wanted to prove.

Lemma 2.4. Suppose that Assumption A1 holds, that Algorithm 2.1 generates an
infinite sequence {xk}∞k=0, and that {f(xk)}∞k=0 is bounded below. Then,

(8) lim
k→∞

‖sk‖ = 0

and

(9) lim
k→∞

[−λ1(Hk)]+ = 0.

Proof. Since {f(xk)} is bounded below, (8) follows from the fulfillment of the
sufficient descent condition (2) with strial = sk for all k.

Moreover, sk is a minimizer of g(xk)s + 1
2s
THks + ρk‖s‖3 and, by Lemma 2.3,

Hk is positive semidefinite if sk = 0. If sk 6= 0, the Hessian of the cubic function
g(xk)s+ 1

2s
THks+ ρk‖s‖3 must be positive semidefinite. This Hessian is

Hk + 3ρk

(
sk(sk)T

‖sk‖
+ ‖sk‖I

)
.
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Thus, [
−λ1

(
Hk + 3ρk

sk(sk)T

‖sk‖
+ ‖sk‖I

)]
+

≥ 0.

Since sk → 0 and, by Lemma 2.2, ρk is bounded, we have that (9) holds.

Assumption A2. Assumption A1 holds and, for all xk and sk computed by Algo-
rithm 2.1,

(10) ‖g(xk + sk)‖ ≤ (L+ 3ρk)‖sk‖2.

A sufficient condition for the fulfillment of Assumption A2 comes from assuming
that g(xk + sk) is well represented by its linear approximation, namely,

(11) ‖g(xk + sk)− g(xk)−H(xk)sk‖ ≤ L‖sk‖2.

In this case, Assumption A2 holds due to the gradient annihilation of the subproblem
at Step 2. Moreover, a sufficient condition for the fulfillment of both Assumptions A1
and A2 is the fulfillment of a Lipschitz condition by the Hessian H(x). It is interesting
to note that Assumption A2 requires (10) to be verified only with respect to incre-
ments sk that satisfy the interiority and the sufficient descent conditions, whereas
Assumption A1 requires (6) to hold at every trial increment strial. This remark is re-
lated to the weak-Lipschitz condition and the concept of path of iterates in [23, 25, 30].

Lemma 2.5. Suppose that Assumption A2 holds. Then, for all xk and sk gener-
ated by Algorithm 2.1 such that xk+1 = xk + sk ∈ Int(Ω), we have that

(12) f(xk+1) ≤ f(xk)− α
(

‖g(xk+1)‖
L+ 3 max{M, τ2(L+ α)}

)3/2

.

Proof. By Assumption A2 and Lemma 2.2, we have that

(13) ‖g(xk+1)‖ ≤ (L+ 3 max{M, τ2(L+ α)})‖sk‖2.

Thus, (12) follows from (13) and the fact that (2) holds with strial = sk.

Theorem 2.1. Suppose that Assumption A2 holds and let ftarget ∈ R, εg > 0,
and εh > 0 be arbitrary. Let ρmax = max{M, τ2(L + α)}. Then, the number of
iterations at which

f(xk) > ftarget and ‖g(xk)‖ > εg

is, at most,

(14) κ1 =

⌊(
f(x0)− ftarget

α

)(
εg

L+ 3ρmax

)−3/2
⌋

and the number of iterations at which

f(xk) > ftarget and λ1(Hk) < −εh

is, at most,

(15) κ2 =

⌊(
f(x0)− ftarget

α

)(
εh

6ρmax

)−3
⌋
.
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Moreover, when ν = 0, the number of functional evaluations per iteration is bounded
by

(16) J +

⌊
logτ1

(
ρmax

ρ̂ini
0

)⌋
+ 2

and, when ν = 1, the total number of functional evaluations performed at iterations
at which

f(xk) > ftarget and ‖g(xk)‖ > εg

is, at most,

(17)

⌊
logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣κ1

⌋
+ (J + 2)(κ1 + 1)

and the total number of functional evaluations performed at iterations at which

f(xk) > ftarget and λ1(Hk) < −εh

is, at most,

(18)

⌊
logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣κ2

⌋
+ (J + 2)(κ2 + 1).

Proof. The maximum number of iterations (14) follows directly from Lemma 2.5.
The step sk is a minimizer of g(xk)T s+ 1

2s
THks+ ρk‖s‖3, where, by Lemma 2.2,

ρk ≤ ρmax. Thus, if sk 6= 0, the Hessian of g(xk)T s + 1
2s
THks + ρk‖s‖3 is positive

semidefinite at s = sk. By direct calculations, we see that this Hessian is given by

Hk + 3ρk

[
sk(sk)T

‖sk‖
+ ‖sk‖I

]
.

Let vk be an eigenvector of Hk associated with λ1(Hk) and ‖vk‖ = 1. Then, by the

positive definiteness of Hk + 3ρ[ s
k(sk)T

‖sk‖ + ‖sk‖I], we have that

0 ≤ vTk

(
Hk + 3ρk

[
sk(sk)T

‖sk‖ + ‖sk‖I
])
vk

≤ λ1(Hk) + 3ρk
[
(vTk sk)2/‖sk‖+ ‖sk‖

]
≤ λ1(Hk) + 3ρk

[
‖sk‖2/‖sk‖+ ‖sk‖

]
≤ λ1(Hk) + 6ρmax‖sk‖.

Thus, ‖sk‖ ≥ −λ1(Hk)/(6ρmax) or, equivalently, −‖sk‖3 ≤ (λ1(Hk)/(6ρmax))3. Thus,
since (2) with strial = sk holds for all k, we have that

f(xk+1) ≤ f(xk)− α‖sk‖3 ≤ f(xk) + α ([λ1(Hk)]/(6ρmax))
3
,

from which (15) follows.
Regarding the number of functional evaluations, let us consider first the case

ν = 0. In order to establish the number of functional evaluations per iteration k, first
note that, while the interiority condition (1) is not being satisfied with strial = sk,j , on
the one hand there is no need to check whether the descent condition (2) holds with
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strial = sk,j and, on the other hand, simple decrease may be checked at no more than J
magical steps. This means that, at every iteration k, while (1) does not hold with
strial = sk,j , at most J functional evaluations are performed. Once (1) is satisfied, the
limit (16) on the number of functional evaluations follows from the boundedness of ρk
for all k, given by Lemma 2.2, the fact that ρk,0 = 0 by definition, and the updating
rules for ρk,j that guarantee that (a) if (3) is solvable then ρk,j ≥ 2j−1ρ̂ini

k = 2j−1ρ̂ini
0

for all j ≥ 1 and (b) if (3) is not solvable then ρk,j ≥ 2j ρ̂ini
k = 2j ρ̂ini

0 for all j ≥ 0.
Let us consider now the case in which ν = 1. Let jk be such that ρk = ρk,jk . By

the definition of the algorithm, the number of functional evaluations at iteration k is
smaller than or equal to J + jk + 2. In order to establish a limit on the total number
of functional evaluations, we will construct a bound for

∑k
`=0 j` for any k ≥ 0.

By the definition of the algorithm, for all k ≥ 0, we have that (a) if jk = 0 then
ρ̂ini
k+1 = τ0ρ̂

ini
k ; (b) if jk > 0 and (3) is not solvable then ρ̂ini

k+1 = τ0ρk,jk ≥ τ0τ
jk+1
1 ρ̂ini

k ;

and (c) if jk > 0 and (3) is solvable then ρ̂ini
k+1 = τ0ρk,jk ≥ τ0τ

jk
1 ρ̂ini

k . This means that,

for all k ≥ 0, ρ̂ini
k+1 ≥ τ0τ

jk
1 ρ̂ini

k . Therefore, an inductive argument shows that, for all
k ≥ 0,

(19) ρ̂ini
k+1 ≥ τk0 τ

(
∑k

`=0 j`)
1 ρ̂ini

0 .

On the other hand, since, for all k ≥ 0, by Lemma 2.2, ρk,jk = ρk ≤ ρmax, we have
that

(20) ρ̂ini
k+1 ≤ τ0ρmax ≤ ρmax.

Therefore, by (19) and (20), for all k ≥ 0, we have that

k∑
`=0

j` ≤
⌊

logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣ k⌋ .
Thus, for all k ≥ 0,

k∑
`=0

(J + j` + 2) ≤
⌊

logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣ k⌋+ (J + 2)(k + 1),

and, replacing k with κ1 in (14) and with κ2 in (15), we obtain the desired results (17)
and (18), respectively. This completes the proof.

Theorem 2.2. Suppose that Assumption A2 holds and that the sequence {f(xk)}
generated by Algorithm 2.1 is bounded. Then, either the sequence stops at some bound-

ary point xk̂ such that f(xk̂) < f(xk̂−1) < · · · < f(x0) or an infinite sequence is
generated such that

lim
k→∞

‖g(xk)‖ = 0 and lim
k→∞

[−λ1(Hk)]+ = 0.

Proof. If the sequence stops at a boundary point xk̂ then f(xk̂) < f(xk̂−1) <
· · · < f(x0) follows by the definition of the algorithm. Assume that the sequence does
not stop at a boundary point. Since the sequence is bounded, by continuity, there
exists fbound ∈ R such that f(xk) > fbound for all k. Define ftarget = fbound. Let
ε > 0 be arbitrary. By Theorem 2.1, taking εg = ε we see that there exists k0 such
that, for all k ≥ k0, ‖g(xk)‖ ≤ ε. The fact that limk→∞[−λ1(Hk)]+ = 0 has been
proved in Lemma 2.4. This completes the proof.
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3. High-order algorithms for constrained optimization. Consider the
problem

(21) Minimize f(x) subject to x ∈ D,

where D ⊂ Rn represents an arbitrary set. In this section, we introduce a class of
methods for solving (21). The algorithms to be introduced in this section can be used
in connection with the algorithm introduced in section 2 in different ways. Therefore,
this class of algorithms may be seen as independent procedures for solving the main
problem (21) or as auxiliary devices for continuing Algorithm 2.1 when “a face” of D
should be abandoned.

Algorithm 3.1 below is a high-order algorithm in which each iteration is defined
by the approximate minimization of the pth Taylor approximation of the function f
around the iterate xk as in [10]. In [10], only unconstrained problems are considered
and acceptance of trial points is based on the comparison of actual and predicted
reductions, whereas here we use cubic descent with safeguards. If f : Rn → R with
continuous derivatives up to order p ∈ {1, 2, 3, . . .}, the Taylor polynomial of order p
may be written in the form

(22) Tp(x, s) =

p∑
j=1

Pj(x, s),

where Pj(x, s) is an homogeneous polynomial of degree j given by

(23) Pj(x, s) =
1

j!

(
s1

∂

∂x1
+ · · ·+ sn

∂

∂xn

)j
f(x).

For example, T1(x, s) = g(x)T s and T2(x, s) = g(x)T s+ 1
2s
TH(x)s.

Algorithm 3.1. Assume that p ∈ {1, 2, 3, . . . }, α > 0, ρmin > 0, β > 0, εd > 0,
τ2 ≥ τ1 > 1, θ > 0, and x0 ∈ D are given. Initialize k ← 0.

Step 1. Set ρ← 0.
Step 2. Compute strial ∈ Rn such that

(24) xk + strial ∈ D

and

(25) Tp(x
k, strial) + ρ‖strial‖p+1 ≤ 0.

Step 3. Test the conditions

(26) f(xk + strial) ≤ f(xk)− α‖strial‖p+1

and

(27) f(xk + strial) ≤ f(xk)− βε(p+1)/p
d .

If (26) holds, accept the step strial. If only (27) holds, accept strial or not
according to criteria that will be specified later. If strial is accepted, define
sk = strial, ρk = ρ, and xk+1 = xk + sk, set k ← k + 1 and go to Step 1.
Otherwise, update ρ← max{ρmin, τρ} with τ ∈ [τ1, τ2] and go to Step 2.
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Algorithm 3.1 is analogous to the main algorithm of [46]. In [46], only Hölder
conditions on the pth derivatives are used, instead of the Lipschitz conditions employed
in Algorithm 3.1. Very likely both Algorithms 2.1 and 3.1, as well as the combined
Algorithm 4.1 (which will be presented in the next section), may be adapted, relaxing
Lipschitz continuity to Hölder continuity. However, the adaptation involves technical
difficulties that are beyond the scope of the present paper. Condition (27) is not
necessary for proving any of the theoretical results of Algorithm 3.1. This condition
has been used in [6] and [7]. As will be seen later, it is an option to (26) that may
be useful in cases in which an approximate solution to the subproblem (28) below is
computationally hard to obtain.

The trial increment strial is intended to be an approximate solution to the sub-
problem

(28) Minimize Tp(x
k, s) + ρ‖s‖p+1 subject to xk + s ∈ D.

Differently from Algorithm 2.1, in Algorithm 3.1, we do not compute exact solutions
to the regularized problem (28). This is because, due to the presence of constraints
in this subproblem, exact solutions are not easily available. The condition (25) is the
minimal condition that should be imposed on an approximate solution to (28) in order
to obtain meaningful results, although an obvious choice that satisfies (24) and (25)
is strial = 0, which is not useful at all and will be discarded later. On the other hand,
note that (24) imposes full-precision feasibility on the approximate solutions strial

to (28) and, thus, it imposes some conditions on the kind of feasible sets D that can
be tackled in practice.

Lemma 3.1. Assume that the sequence {xk} is generated by Algorithm 3.1. If
{f(xk)} is bounded below then

lim
k→∞

‖sk‖ = 0.

Proof. If f is bounded below, the number of iterations at which sk = strial sat-
isfies (27) is obviously finite. Therefore, after a finite number of iterations, all the
accepted iterates satisfy (26). The proof follows straightforwardly from the hypothe-
ses of the lemma and (26).

The following assumption coincides with Assumption A1 in the case in which
p = 2.

Assumption A1. There exists L > 0 such that for all xk computed by Algo-
rithm 3.1 and all strial considered at (26) we have that

f(xk + strial) ≤ f(xk) + Tp(x
k, strial) + L‖strial‖p+1.

Lemma 3.2. Suppose that Assumption A1 holds. If the regularization parameter
ρ in (25) satisfies ρ ≥ L+α then a trial step strial that satisfies (25) also satisfies the
sufficient descent condition (26).

Proof. By Assumption A1,

f(xk + strial) ≤ f(xk) + Tp(x
k, strial) + L‖strial‖p+1

= f(xk) + Tp(x
k, strial) + ρ‖strial‖p+1 − ρ‖strial‖p+1 + L‖strial‖p+1.

Then, by (25),

f(xk + strial) ≤ f(xk)− ρ‖strial‖p+1 + L‖strial‖p+1.

Therefore, if ρ ≥ L+ α, (26) holds.
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Assumption A2. Assumption A1 holds and, for all xk and sk computed by Algo-
rithm 3.1 such that sk = strial satisfies (26), we have that

(29) ‖g(xk + sk)−∇sTp(xk, sk)‖ ≤ L‖sk‖p.

Assumptions A1 and A2 are satisfied if the pth derivatives of f satisfy a Lipschitz
condition (see [10]). As in the case of Assumptions A1 and A2, observe that Assump-
tion A1 must hold for every trial increment strial, whereas Assumption A2 must hold
only at the accepted increments sk.

Assumption A3. The set D is defined by

(30) D = {x ∈ Rn | hi(x) ≤ 0 for all i = 1, . . . , q},

where the functions hi are continuously differentiable. Moreover, every feasible point
of (30) satisfies a constraint qualification.

Assumption A3 implies that, for any function ϕ : Rn → R, if z is a minimizer
of ϕ subject to z ∈ D, associated KKT conditions hold. For the sake of simplicity
and without loss of generality, we formulated the definition of D only in terms of
inequality constraints. Implicitly, we assume that if equality constraints are present,
they are expressed as pairs of inequalities.

For all x ∈ D, we define

L(D,x) = {z ∈ Rn | hi(x) + h′i(x)(z − x) ≤ 0 for all i = 1, . . . , q}.

We say that L(D,x) is the linear approximation of D around x. Given x ∈ D and
a function ϕ, we define ∇Dϕ(x) = PL(D,x)(x − ∇ϕ(x)) − x. This notion has been
introduced by Dunn [36, 37, 38] and used several times in the optimization literature.
See, for example, [28]. Direct calculations show that x satisfies the KKT conditions
of the problem of minimizing ϕ onto D if and only if ∇Dϕ(x) = 0. If there exists
xk → x∗ such that ∇Dϕ(xk) → 0, we say that x∗ satisfies the approximate gradient
projection (AGP) sequential optimality condition [2, 48]. A worst-case complexity
analysis for a constrained optimization algorithm that uses ∇D may be found in [26].

Assumption A4. There exists θ > 0 such that, for all k ∈ N, sk satisfies

(31) f(xk + sk) ≤ f(xk)− βε(p+1)/p
d

or

(32)
∥∥∥∇D [Tp(xk, x− xk) + ρ‖x− xk‖p+1

] ∣∣
x=xk+sk

∥∥∥ ≤ θ‖sk‖p.
Assumption A4 with (32) states that the accepted increment sk satisfies, ap-

proximately, an AGP optimality condition. If the constraints satisfy some constraint
qualification, every minimizer of (28) satisfies the AGP condition and, consequently,
also fulfills (32). Therefore, (32) states the degree of accuracy with which one wishes
to solve the subproblems. Note that Assumption A4 eliminates the possibility of tak-
ing sk = strial = 0. Note also that the degree of accuracy (32) is required not for all
the subproblems but only to the ones that, ultimately, define algorithmic progress.
Condition (31) (or (27)) is an alternative to the combination of (26) plus (32) for
the case in which, in practice, the algorithm that solves the subproblems (28) has
difficulties in satisfying (32).
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Lemma 3.3. Suppose that Assumptions A2, A3, and A4 hold and that the se-
quence {xk} is generated by Algorithm 3.1. Then, at each iteration k such that
sk = strial satisfies (26) and (32), we have that

(33)
∥∥∇Df(xk + sk)

∥∥ ≤ (L+ τ2 (L+ α) (p+ 1) + θ) ‖sk‖p.

Proof. By the definition of ∇D, we have that

(34)

‖∇Df(xk + sk)−∇DTp(xk, x− xk)|x=xk+sk‖

= ‖PL(D,xk+sk)

[
(xk + sk)− g(xk + sk)

]
−

PL(D,xk+sk)

[
(xk + sk)−∇Tp(xk, x− xk)|x=xk+sk

]
‖

≤ ‖(xk + sk)− g(xk + sk)−
(
(xk + sk)−∇Tp(xk, x− xk)|x=xk+sk

)
‖

= ‖g(xk + sk)−∇Tp(xk, x− xk)|x=xk+sk‖ ≤ L‖sk‖p,

where the first inequality follows from the contraction property of projections and the
last inequality follows from Assumption A2. This means that

‖∇Df(x
k + sk)‖

≤ L‖sk‖p + ‖∇DTp(x
k, x− xk)|x=xk+sk‖

≤ (L+ θ)‖sk‖p + ρ‖∇D

[
‖x− xk‖p+1

]
|x=xk+sk‖

= (L+ θ)‖sk‖p + ρ‖PL(D,xk+sk)

[
(xk + sk)−∇

[
‖x− xk‖p+1

]
|x=xk+sk

]
− (xk + sk)‖

≤ (L+ θ)‖sk‖p + ρ‖(xk + sk)−∇
[
‖x− xk‖p+1

]
|x=xk+sk − (xk + sk)‖

= (L+ θ)‖sk‖p + ρ‖∇
[
‖x− xk‖p+1

]
|x=xk+sk‖

= (L+ θ + ρ(p+ 1))‖sk‖p,

where the first inequality follows from (34), the second inequality follows from (32),
and the third inequality follows from the fact that xk + sk belongs to L(D,xk + sk)
and, therefore, for any z ∈ Rn, PL(D,xk+sk)(z) is closer to xk+sk than z itself. Finally,
by Lemma 3.2, we have that ρ ≤ τ2(L+ α), which implies the desired result.

Lemma 3.4. Suppose that Assumptions A2, A3, and A4 hold and that the se-
quence {xk} is generated by Algorithm 3.1. Then, at each iteration k such that
sk = strial satisfies (26) and (32), we have that

(35) f(xk+1) ≤ f(xk)− α
(

‖∇Df(xk+1)‖
L+ τ2 (L+ α) (p+ 1) + θ

)(p+1)/p

.

Proof. The result follows straightforwardly from Lemma 3.3 and (26).

Theorem 3.1. Suppose that Assumptions A2, A3, and A4 hold and that the se-
quence {xk} is generated by Algorithm 3.1. Let ftarget ∈ R and εd, εg > 0 be arbitrary.
Then, the number of iterations k such that sk = strial satisfies (26) and (32) and

f(xk) > ftarget and ‖∇Df(xk+1)‖ ≥ εg

is not greater than

(36)

⌊(
f(x0)− ftarget

)( αp/(p+1)εg
L+ τ2 (L+ α) (p+ 1) + θ

)−(p+1)/p
⌋
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and the number of iterations k such that (31) holds and f(xk) > ftarget is not greater
than

(37)

⌊(
f(x0)− ftarget

) (
βp/(p+1)εd

)−(p+1)/p
⌋
.

Moreover, the number of functional evaluations per iteration is bounded above by⌊
logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1.

Finally, if {f(xk)} is bounded below, the number of iterations at which (31) holds
is finite and

(38) lim
k→∞

‖∇Df(xk+1)‖ = 0.

Proof. The bounds (36) and (37) on the number of iterations follow from Lemma
3.4 and (31), respectively. The bound on the number of functional evaluations per
iteration follows from the updating rule for ρ and Lemma 3.2, while (38) follows from
Lemma 3.4 and the boundedness of {f(xk)}.

Assumption A5. For all k ∈ N, sk is a global minimizer of Tp(x
k, s) + ρk‖s‖p+1

subject to xk + s ∈ D.

If the constraints h(x) ≤ 0 satisfy a constraint qualification, the global minimizers
to the subproblem satisfy the KKT conditions and, so, Assumption A5 implies (32)
in Assumption A4.

Theorem 3.2. Suppose that Assumption A2, A3, A4, and A5 hold and that the
sequence {xk} is generated by Algorithm 3.1. Let x∗ be a limit point of {xk}. Then,
there exists ρ∗ ∈ [0, τ2(L + α)] such that s = 0 is a global minimizer of Tp(x

∗, s) +
ρ∗‖s‖p+1 subject to x∗ + s ∈ D.

Proof. By Lemma 3.2, ρk ∈ [0, τ2(L + α)] for all k ∈ N. Therefore, there exists
ρ∗ ∈ [0, τ2(L+ α)] and an infinite sequence of indices K such that

lim
k∈K

ρk = ρ∗ and lim
k∈K

xk = x∗.

Let s ∈ Rn be arbitrary and such that xk + s ∈ D. By Assumption A5, we have
that

Tp(x
k, sk) + ρk‖sk‖p+1 ≤ Tp(xk, s) + ρk‖s‖p+1.

Taking limits in this inequality for k ∈ K and using the continuity of the derivatives
of f up to order p, the fact that, by Lemma 3.1, sk → 0 and ρk → ρ∗, we obtain that

Tp(x
∗, 0) + ρ∗‖0‖p+1 ≤ Tp(x∗, s) + ρ∗‖s‖p+1.

Since s satisfying x∗ + s ∈ D is arbitrary, we obtain the desired result.

Recall that, if a point x∗ is an unconstrained local minimizer of a function f ,
we have that such a point is p-stationary. A point x ∈ Rn is said to be q-order
stationary (with 1 ≤ q ≤ p) if it is (q − 1)-order stationary and, for all v ∈ Rn such
that P0(x, v) = · · · = Pj−1(x, v) = 0, one has that Pj(x, v) ≥ 0. By convention,
we say that every point x ∈ Rn is 0-order stationary and P0(x, v) = 0. Note that
p-stationarity may hold at points that are not minimizers at all. For example, x = 0
is p-stationary for the univariate function −xp+1 for all p ≥ 1 but is not a local
minimizer for any p.
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Corollary 3.1. Assume that q = 0 (that is, D = Rn and the problem is un-
constrained). Under the hypotheses of Theorem 3.2, the limit point x∗ is m-order
stationary for all m ≤ p.

Proof. By Theorem 3.2, s = 0 is q-order stationary for the function Tp(x
∗, s) +

ρ∗‖s‖p+1. But the conditions of q-order stationarity of this function at s = 0 are the
same as the ones of f at x∗ since all their derivatives up to order p coincide.

An m-order stationary condition for local minimization of ϕ(x) subject to x ∈ D
is a property that involves derivatives up to order m of ϕ as well as properties of D
and must be satisfied by any local minimizer of ϕ. Since, for all m ≤ p, the m-order
partial derivatives of f at x∗ coincide with those of Tp(x

∗, s) + ρ∗‖s‖p+1 at s = 0, we
may extend Corollary 3.1 to the constrained optimization case as follows.

Corollary 3.2. Under the hypotheses of Theorem 3.2, the limit point x∗ is m-
order stationary for all m ≤ p.

4. Linearly constrained optimization. In this section, we consider the prob-
lem

(39) Minimize f(x) subject to x ∈ D,

where D ⊂ Rn is a polytope defined by

D = {x ∈ Rn | (ai)Tx ≤ bi for all i = 1, . . . , q}.

Algorithm 3.1 may be used as an independent algorithm to tackle the linearly con-
strained optimization problem (39) or it may be employed as the leaving-faces ingre-
dient of an active-set strategy as in [3, 4, 12, 13, 14]. In [3, 4, 12, 13, 14], when the
leaving-face criterion holds, the current face of a feasible set is abandoned using an it-
eration of the SPG method. However, the SPG method is also a competitive algorithm
for solving large-scale problems with simple constraints. In the same sense, a single
iteration of Algorithm 3.1 will be used here to leave faces, although Algorithm 3.1
may be considered as an independent algorithm for solving (39).

Given I ⊆ {1, . . . , q}, we define the (open) face FI by

FI =
{
x ∈ D | (ai)Tx = bi if i ∈ I and (ai)Tx < bi if i 6∈ I

}
.

Note that D is the union of the sets FI for I ⊆ {1, . . . , q} and I1 6= I2 implies that
FI1 ∩FI2 = ∅. We define VI as the smallest affine subspace in which a nonempty face
FI is contained and SI as the corresponding parallel linear subspace; we define nI as
the dimension of VI . Then, either a nonempty face FI is a single point or VI may
be parameterized in terms of nI ≥ 1 “free” parameters y ∈ RnI . Moreover, when a
nonempty face FI is not a single point, the interior of FI is nonempty in terms of the
variables y. Assume that the columns of QI ∈ Rn×nI are orthonormal and that SI
is parameterized as the set of linear combinations QIy with y ∈ RnI . Given x̂ ∈ VI ,
every element x ∈ VI can be expressed in the form x = x̂+QIy. Define

f̂(x̂; y) = f(x̂+QIy).

Then, ∇f̂(x̂; y) = QTI ∇f(x̂+QIy) = QTI g(x) and ∇2f̂(x̂; y) = QTI ∇2f(x̂+QIy)QI =
QTI H(x)QI . In the algorithm described in the present section, if the current iterate xk

belongs to a face FI and some criterion is satisfied, the computation of xk+1 consists
in performing an iteration of Algorithm 2.1 for the minimization of f̂(xk; y) within
F̄I (the closure of FI), which is a polytope in the space RnI .
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We now consider the projection of g(x) onto SI , which is given by

gI(x) = QIQ
T
I g(x),

and, for all x ∈ FI , the projection of gI(x) onto F̄I , which is given by

ḡI(x) = PF̄I
(x− gI(x))− x.

Note that, if x = x̂+QIy,

‖ḡI(x)‖ ≤ ‖gI(x)‖ = ‖∇f̂(x̂; y)‖,

where the inequality follows from the contraction property of projections and the
equality holds by the definition of gI . For any x ∈ D, since D being a polytope
implies that L(D,x) = D, we define

gP (x) = ∇Df(x) = PD(x− g(x))− x.

Given an iterate xk ∈ FI , the test that determines whether the current face FI still
deserves to be explored or should be abandoned involves a fraction r ∈ (0, 1) and the
quantities ‖ḡI(xk)‖ and ‖gP (xk)‖. If

‖ḡI(xk)‖ ≥ r‖gP (xk)‖

then, as already mentioned above, xk+1 is computed by performing an iteration of
Algorithm 2.1 minimizing f̂(xk; y) within F̄I . Otherwise, it is time to abandon the face
and the new iterate xk+1 is computed by performing a single iteration of Algorithm 3.1
(with p = 2) applied to the minimization of f(x) within D. The complete description
of the algorithm follows.

Algorithm 4.1. Let x0 ∈ D, α > 0, and r ∈ (0, 1) be given. Set k ← 0.

Step 1. Let FI be the face that contains xk. Consider the test

(40) ‖ḡI(xk)‖ ≥ r‖gP (xk)‖.

Step 1.1. If (40) holds, compute xk+1 performing one iteration of Algorithm 2.1

applied to the minimization of f̂(xk; y) subject to xk +QIy ∈ F̄I .
Step 1.2. If (40) does not hold, compute xk+1 performing one iteration of Algo-

rithm 3.1 with p = 2 applied to the minimization of f(x) subject to x ∈ D.
Step 2. Update k ← k + 1 and go to Step 1.

Conditions similar to (40) for deciding to remain on faces have been used in
[41] and works of Dostal [32, 33, 34, 35] and also by other authors (see [14] and the
references therein). In the theorem below, there is some abuse of notation when the
results of applying Algorithm 2.1 to the minimization of f(x) subject to x ∈ Ω are

considered valid for the application of Algorithm 2.1 to the minimization of f̂(xk; y)
subject to xk +QIy ∈ F̄I . Of course, both problems are of the same type. Avoiding
this abuse of notation would involve restating all the assumptions and results in
section 2.

Theorem 4.1. Suppose that Assumptions A2, A2 (with p = 2), A3, and A4
hold and that the sequence {xk} is generated by Algorithm 4.1. Let ftarget ∈ R and
εg = εd > 0 be arbitrary. Then, the number of iterations k such that

f(xk) > ftarget and ‖gP (xk+1)‖ > εg
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is not greater than
(41)

κ =

⌊
(f(x0)− ftarget)(q + 2) min

{
α2/3εg

L+3τ2(L+α)+θ ,
α2/3rεg

L+3 max{M,τ2(L+α)} , β
2/3εg

}−3/2
⌋

;

the number of functional evaluations per iterations is bounded above by

(42) max

{⌊
logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1, J +

⌊
logτ1

(
τ2(L+ α)

ρ̂ini
0

)⌋
+ 2

}
when Algorithm 2.1 is used with ν = 0; and the total number of functional evaluations
is bounded above by

(43) (κ+ 1)

(⌊
logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1 + logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣+ (J + 2)

)
when Algorithm 2.1 is used with ν = 1. Finally, if {f(xk)} is bounded below, the
number of iterations at which (31) holds is finite and

(44) lim
k→∞

‖gP (xk+1)‖ = 0.

Proof. If (40) does not hold, xk+1 is computed performing an iteration of Algo-
rithm 3.1 with p = 2 and then, by Lemma 3.4, we have that

(45) f(xk+1) ≤ f(xk)− α
(

‖gP (xk+1)‖
L+ 3τ2 (L+ α) + θ

)3/2

or f(xk+1) ≤ f(xk)− βε3/2.

Assume now that xk ∈ FI , that xk+1 = xk + QI ỹ was computed by performing an
iteration of Algorithm 2.1 applied to the minimization of f̂(xk; y) subject to xk+QIy ∈
F̄I , and that xk+1 belongs to FI and not to F̄I \FI (i.e., the boundary of FI). Assume,
in addition, that

(46) ‖ḡI(xk+1)‖ ≥ r‖gP (xk+1)‖.

Then, by Lemma 2.5,

(47) f̂(xk; ỹ) ≤ f̂(xk; 0)− α

(
‖∇f̂(xk; ỹ)‖

L+ 3 max{M, τ2(L+ α)}

)3/2

.

Since f̂(xk; ỹ) = f(xk+1), f̂(xk; 0) = f(xk), ‖∇f̂(xk; ỹ)‖ = ‖gI(xk+1)‖ ≥ ‖ḡI(xk+1)‖,
and we are assuming that ‖ḡI(xk+1)‖ ≥ r‖gP (xk+1)‖, (47) implies that

(48) f(xk+1) ≤ f(xk)− α
(

r‖gP (xk+1)‖
L+ 3 max{M, τ2(L+ α)}

)3/2

.

Inequalities (45) and (48) show the decrease in the objective function that is
obtained when, at iteration k, the new iterate xk+1 is computed, respectively, by
(a) a single iteration of Algorithm 3.1 or (b) a single iteration of Algorithm 2.1 that
computes an iterate that belongs to the interior of the current face and such that (46)
holds. There are two cases that were not considered yet. Let FI be the face to
which xk belongs. The first case corresponds to the case in which xk+1 is computed
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by a single iteration of Algorithm 2.1 and xk+1 belongs to the boundary of the current
face, i.e., xk+1 ∈ F̄I \ FI . In this case, (47) may not hold and only a simple decrease
of the form f(xk+1) < f(xk) is granted. The second case corresponds to the case in
which xk+1 ∈ FI is also computed by a single iteration of Algorithm 2.1 but

(49) ‖ḡI(xk+1)‖ 6≥ r‖gP (xk+1)‖.

In this case, (47) still holds, but due to (49), the functional decrease O(‖gP (xk+1)‖3/2)
can not be established.

In order to cope with this state of facts, we will consider a sequence of q + 3
consecutive iterates x`, x`+1, . . . , x`+q+2 aiming to establish that the decrease from
f(x`) to f(x`+q+2) is O(‖gP (x`+j)‖3/2) for some j between 1 and q + 2. Since, by
the definition of the algorithms, we have that f(x`) < f(x`+1) < · · · < f(x`+q+2), it
would be enough to establish that there exists j, 1 ≤ j ≤ q+2, such that the decrease
from f(x`+j−1) to f(x`+j) is O(‖gP (x`+j)‖3/2). We will denote by FI`+j

the face to

which x`+j belongs for j = 0, 1, . . . , q + 2. The analysis will be divided into three
possible cases.

(a) There exists j, 1 ≤ j ≤ q + 2, such that x`+j was computed performing an
iteration of Algorithm 3.1.

(b) There exists j, 1 ≤ j ≤ q + 2, such that x`+j was computed performing an
iteration of Algorithm 2.1 and

(50) x`+j ∈ FI`+j−1
and ‖ḡI`+j

(x`+j)‖ ≥ r‖gP (x`+j)‖.

(c) For all j, 1 ≤ j ≤ q + 2, x`+j was computed performing an iteration of
Algorithm 2.1 and (50) does not hold, i.e.,

x`+j ∈ F̄I`+j−1
\ FI`+j−1

or ‖ḡI`+j
(x`+j)‖ 6≥ r‖gP (x`+j)‖.

In cases (a) and (b), the desired decrease is given by (45) and (48), respectively. Let us
analyze case (c). If ‖ḡI`+j

(x`+j)‖ 6≥ r‖gP (x`+j)‖ for some 1 ≤ j ≤ q + 1 then, by the

definition of Algorithm 4.1, the iterate x`+j+1 is computed performing an iteration of
Algorithm 3.1, which is a contradiction. Therefore, in case (c) we must have that for
all j, 1 ≤ j ≤ q+ 1, x`+j was computed performing an iteration of Algorithm 2.1 and
x`+j ∈ F̄I`+j−1

\ FI`+j−1
. But, in this case, each iterate has at least one more active

constraint than the previous iterate, meaning that x`+q+2 should have at least q + 1
active constraints, which is a contradiction because the problem being solved has q
constraints. This means that case (c) can never occur and the desired decrease was
established.

Up to now, we have proved that, for any given q + 3 consecutive iterates x`,
x`+1, . . . , x`+q+2, it must follow that
(51)

f(x`+q+2) ≤ f(x`)−min
{
α2/3‖gP (x`+j)‖
L+3τ2(L+α)+θ ,

α2/3r‖gP (x`+j)‖
L+3 max{M,τ2(L+α)} , β

2/3εg

}3/2

for some j between 1 and q + 2, from which (41) follows.
Let us now consider the number of functional evaluations. If Algorithm 2.1 is

used with ν = 0 then (42) follows from Theorems 2.1 and 3.1, which exhibit the
bound on the number of functional evaluations per iteration of Algorithms 2.1 with
ν = 0 and 3.1, respectively. Assume now that Algorithm 2.1 is used with ν = 1. Let
κ1, κ2 ≥ 0 satisfying κ1 +κ2 ≤ κ be the number of iterations of Algorithms 3.1 and 2.1
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executed by Algorithm 4.1. Moreover, let κ2,i ≥ 0 be the number of consecutive
iterations of Algorithm 2.1 that are executed in between the (i − 1)th and the ith
iterations of Algorithm 3.1 for i = 2, . . . , κ1, while κ2,1 ≥ 0 and κ2,κ1+1 ≥ 0 are,
respectively, the number of consecutive iterations of Algorithm 2.1 before the first and
after the last iteration of Algorithm 3.1. Clearly,

∑κ1+1
i=1 κ2,i = κ2. By Theorem 3.1,

each iteration of Algorithm 3.1 consumes no more than

(52)

⌊
logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1

functional evaluations, while, by Theorem 2.1, each group of consecutive κ2,i iterations
of Algorithm 2.1 consumes no more than

(53)

⌊
logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣κ2,i

⌋
+ (J + 2)(κ2,i + 1)

functional evaluations for i = 1, . . . , κ1 + 1. Summing (52) and (53), we have that the
total number of functional evaluations consumed by Algorithm 4.1 is bounded above
by

κ1

(⌊
logτ1

(
τ2(L+ α)

ρmin

)⌋
+ 1

)
plus

(54)

κ1+1∑
i=1

(⌊
logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣κ2,i

⌋
+ (J + 2)(κ2,i + 1)

)
,

where κ2 =
∑κ1+1
i=1 κ2,i and κ1 + κ2 ≤ κ. Distributing, it is easy to see that (54) is

smaller than or equal to

(55) (κ1 + 1) logτ1

(
ρmax

ρ̂ini
0

)
+
∣∣logτ1(τ0)

∣∣κ2 + (J + 2)(κ2 + κ1 + 1)

and, therefore, (43) follows from (52), (55), and the fact that κ1 + κ2 ≤ κ.
Finally, (44) follows from the boundedness of {f(xk)} and (51).

5. Numerical experiments. We implemented Algorithms 2.1, 3.1 (for the p =
2 case only), and 4.1 in Fortran 90, for the particular case in which the feasible set D is
given by D = {x ∈ Rn | ` ≤ x ≤ u}, where `, u ∈ Rn, `i ≤ ui (i = 1, . . . , n), and `i and
ui may be ∓∞ for some i, i.e., for box-constrained minimization. In Algorithm 2.1
(Step 2.1), a solution to (4) is computed using the method introduced in [15]. The
increment strial in Algorithms 3.1 is computed by approximately solving (28) by the
projected-gradient method (see, for example, [5, sect. 2.3]). It is worth noting that,
in practice, we enforce the satisfaction of Assumption A4 with sk = strial. With
this objective, we impose a maximum number of iterations to the projected-gradient
method applied to (28). If the projected-gradient method stops satisfying (32) with
sk = strial and (26) holds then the step strial is accepted. If the projected-gradient
method reaches the maximum number of iterations but (31) holds with sk = strial (or,
equivalently, strial satisfies (27)) then the step strial is accepted. In any other case,
we proceed, as already described in Algorithm 3.1, by increasing the regularizing
parameter ρ. Note that, with these choices, Assumption A4 is satisfied.

In the numerical experiments, following [15], we considered α = 10−8, M = 103,
τ1 = 2, τ2 = 50, and ρmin = 10−6 in Algorithm 2.1. Values of J ∈ {0, 1, 10},
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which correspond to no magical steps, a single magical step per iteration, and at
most 10 magical steps per iterations, respectively, will be tested. In Algorithm 3.1,
we arbitrarily considered α = 10−8, ρmin = 10−6, τ1 = τ2 = 10, θ = 1, and β = 1.
In Algorithm 4.1, we arbitrarily considered α = 10−8 and r = 0.1. As a stopping
criterion for Algorithms 3.1 and 4.1, we considered the condition

(56) ‖gP (xk)‖∞ ≤ ε

with ε = 10−6. It should be noted that none of these parameters were subject to
tuning at all. All of them were chosen because they seemed to be “natural choices”
and the intention of the numerical experiments below is not to deliver the most robust
or efficient version of the proposed method but to illustrate its practical behavior in
terms of consumption of functional evaluations.

We performed numerical experiments considering all the 105 bound-constrained
problems from the CUTEst [42] collection (version 1.1, June 17, 2013) with less than
10,000 variables (considering the default dimension of the problems). All tests were
conducted on a computer with 3.5 GHz Intel Core i7 processor and 16GB 1600 MHz
DDR3 RAM memory, running OS X Yosemite (version 10.10.5). Codes were compiled
by the GFortran Fortran compiler of GCC (version 7.2.0) with the -O3 optimization
directive enabled.

The focus of the numerical experiments is to evaluate the performance of the
proposed methods in terms of number of functional evaluations. With this purpose,
we evaluated Algorithms 3.1 and 4.1 with J ∈ {0, 1, 10}. Preliminary numerical
experiments showed that Algorithm 4.1 is more efficient when Algorithm 2.1 uses the
strategy given by ν = 1 for updating the regularization parameter. (A comparison of
these two strategies in the context of unconstrained minimization can be found in [8].)
It should be noted that both strategies (ν = 0 and ν = 1) consider as first trial at
every iteration the null regularization parameter. For this reason, the efficiency of the
strategy given by ν = 1 is not related to the lack of a lower bound on the regularization
parameter, but it is due to the fact that each iteration starts with a regularization
parameter that is close to the one that was successful in the previous iteration, saving
functional evaluations. Algorithm 4.1 was also compared with the active-set method
for bound-constrained minimization introduced in [3] named Betra. As already
mentioned in the introduction, Betra uses a trust-region strategy within the faces
and spectral projected gradients for leaving faces. Therefore, Algorithm 4.1 could be
seen as the method as close as possible to Betra that possesses worst-case evaluation
complexity results and, thus, the results of this comparison could be interpreted as
an answer to the question as to whether it is profitable or not to develop practical
methods possessing worst-case evaluation complexity theoretical results.

In order to make the experiments affordable, a CPU time limit of one hour was
applied to each pair algorithm/problem. Since the analysis of the performance was
based on functional evaluations, problems in which at least one of the methods fails
in satisfying the stopping criterion (56) within the CPU time limit will be (reported
and) eliminated from the comparison.

We first analyze the performance of Algorithm 4.1 varying J ∈ {0, 1, 10}. Al-
gorithm 4.1 with J ∈ {0, 1, 10} satisfied the stopping criterion (56) within the CPU
time limit in 90, 97, and 97 problems, respectively. Eliminating the problems in
which at least one of the variants failed (in satisfying the stopping criterion within
the CPU time limit), we obtain a subset with 90 problems. (Detailed informa-
tion regarding the performance of each method on each problem can be found at
http://www.ime.usp.br/∼egbirgin/.) For a given problem, let f1, f2, and f3 be the

http://www.ime.usp.br/~egbirgin/
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Fig. 1. Performance profile analyzing the influence of the magical steps (varying J ∈ {0, 1, 10})
in the efficiency of Algorithm 4.1.

value of the objective function at the final iterate delivered by each variant of Algo-
rithm 4.1, respectively. Following [11], we will say that the methods being compared
found equivalent solutions if

fi − fbest

max{1, |fbest|}
≤ 10−4 for i = 1, 2, 3,

where fbest = min{f1, f2, f3}. Applying this criterion to the 90 problems in which
the three variants of Algorithm 4.1 satisfied the stopping criterion within the imposed
CPU time limit, we obtain that they found equivalent solutions in 81 problems. The
efficiencies of the variants are compared using these 81 problems in the performance
profile displayed in Figure 1 (see color figures in the online version), while Table 1
shows the details of the performance of the methods in the other 105 − 81 = 24
problems (in which at least one of the methods did not satisfy the stopping criterion
within the imposed CPU time limit or the three methods satisfied the stopping crite-
rion but they found nonequivalent solutions). In the table, “SC” stands for stopping
criterion, “CO” means that the stopping criterion (56) was satisfied, “TE” means
that the CPU time limit was achieved, and “UN” means that the method stopped
because an iterate xk satisfying f(xk) ≤ −1010 was found (suggesting that the objec-
tive function is unbounded from below within the feasible region D). It is not easy
to make conclusions on the robustness of the methods from the figures in the table
that correspond to problems in which at least one of the methods did not satisfy
the stopping criterion within the limit imposed on the CPU time. This is because,
doing that, we take the risk of attributing lack of robustness to a method due to
something that, in fact, may be lack of efficiency. Therefore, we restrict ourself to
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Table 1
Performance of Algorithm 4.1 with J ∈ {0, 1, 10} in the problems in which at least one of

the three variants did not satisfy the stopping criterion within the CPU time limit or they found
nonequivalent solutions.

Problem
Algorithm 4.1 with J = 0 Algorithm 4.1 with J = 1 Algorithm 4.1 with J = 10

f(xk) ‖gP (xk)‖∞ SC f(xk) ‖gP (xk)‖∞ SC f(xk) ‖gP (xk)‖∞ SC

BIGGSB1 1.543684e−02 8.9e−07 CO 1.500000e−02 2.2e−16 CO 1.500000e−02 2.2e−16 CO

BQPGAUSS -3.529664e−01 3.0e−02 TE -3.595735e−01 1.1e−02 TE -3.595015e−01 9.1e−02 TE

CHENHARK -1.690100e+00 3.0e−01 TE -1.999996e+00 3.5e−04 TE -1.999995e+00 3.8e−04 TE

HADAMALS 1.136748e+02 4.3e−12 CO 1.259669e+02 3.0e−09 CO 1.805902e+02 1.5e−07 CO

HARKERP2 1.992050e+09 3.2e+01 TE -5.000000e−01 4.3e−13 CO -5.000000e−01 4.3e−13 CO

MAXLIKA 1.136307e+03 8.4e−08 CO 1.136307e+03 1.2e−07 CO 1.149346e+03 1.6e−10 CO

PALMER4 2.424016e+03 7.1e−07 CO 2.285383e+03 2.6e−12 CO 2.285383e+03 2.6e−12 CO

PALMER5A 2.594999e−02 2.8e+00 TE 2.594999e−02 2.8e+00 TE 2.594999e−02 2.8e+00 TE

PALMER5E 2.081326e−02 4.9e+00 TE 2.081326e−02 4.9e+00 TE 2.081326e−02 4.9e+00 TE

PALMER8E 6.339306e−03 3.3e−08 CO 6.339306e−03 3.3e−08 CO 6.340519e−01 1.4e−10 CO

POWELLBC 3.102475e+05 4.5e−08 CO 3.102862e+05 6.9e−11 CO 3.348701e+05 1.4e−07 CO

QRTQUAD -2.648253e+11 1.0e+01 UN -2.648253e+11 1.0e+01 UN -2.648253e+11 1.0e+01 UN

S368 -7.500000e−01 5.4e−09 CO -1.000000e+00 7.8e−12 CO -1.000000e+00 1.8e−12 CO

SCOND1LS 6.862749e+04 7.1e+02 TE 6.862749e+04 7.1e+02 TE 6.862749e+04 7.1e+02 TE

SINEALI -9.978692e+04 1.6e−12 CO -9.960170e+04 4.6e−09 CO -9.960170e+04 4.6e−09 CO

TORSION2 -1.899696e−01 9.0e−04 TE -4.302758e−01 2.2e−16 CO -4.302758e−01 2.2e−16 CO

TORSION4 -3.032020e−01 1.9e−03 TE -1.216956e+00 1.7e−16 CO -1.216956e+00 1.7e−16 CO

TORSION6 -4.674420e−01 3.8e−03 TE -2.863378e+00 1.7e−16 CO -2.863378e+00 1.7e−16 CO

TORSIONB -3.429606e−01 6.3e−04 TE -4.182962e−01 3.4e−09 CO -4.182962e−01 3.4e−09 CO

TORSIOND -6.029582e−01 1.8e−03 TE -1.204209e+00 2.2e−16 CO -1.204209e+00 2.2e−16 CO

TORSIONF -9.292051e−01 3.8e−03 TE -2.850248e+00 2.2e−16 CO -2.850248e+00 2.2e−16 CO

WALL10 -3.198632e+05 9.9e−02 TE -3.171402e+05 9.7e−02 TE -4.559541e+05 2.5e−05 TE

WALL20 -1.339585e+01 8.4e−01 TE -1.339585e+01 8.4e−01 TE -1.339585e+01 8.4e−01 TE

WEEDS 2.587277e+00 4.1e−11 CO 2.587277e+00 4.1e−11 CO 9.205435e+03 8.5e−14 CO

analyzing problems Biggsb1, Hadamals, Maxlika, Palmer4, Palmer8e, Pow-
ellbc, S368, Sineali, and Weeds, which are the nine problems in which the three
methods satisfied the stopping criterion but found different solutions. In those prob-
lems, Algorithm 4.1 with J ∈ {0, 1, 10} found a final iterate with a smaller objective
functional value (than the one found by the other variants) in five, six, and four prob-
lems, respectively. The conclusion is that Algorithm 4.1 with J = 1 appears to be
the most robust and efficient version of Algorithm 4.1 and that it performs only a few
unsuccessful magical steps that require extra functional evaluations.

We now compare the performances of Algorithms 3.1 and 4.1 with J = 1. Al-
gorithm 3.1 satisfied the stopping criterion (56) within the CPU time limit in 87
problems (recall that this number is 97 for Algorithm 4.1 with J = 1). Both algo-
rithms succeeded in satisfying the stopping criterion within the CPU time limit in 87
problems and, among them, they found equivalent solutions in 79 problems. The
efficiency of both algorithms is compared considering these 79 problems in the perfor-
mance profile displayed in Figure 2 (see color figures in the online version). Details
of the performance of the methods in the other 105 − 79 = 26 problems are given
in Table 2. In the table, it can be seen that both methods satisfied the stopping
criterion but found nonequivalent solutions in the following eight problems: Camel6,
Chebyqad, Eg1, Hadamals, Palmer3, Palmer3e, Palmer4, and Palmer7a.
Algorithm 4.1 found smaller functional values in six cases and larger functional values
in two problems. The conclusion is that Algorithm 4.1 (with J = 1) appears to be
more efficient and robust than Algorithm 3.1.
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Fig. 2. Performance profile comparing the efficiency of Algorithms 3.1 and 4.1 with J = 1.
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Table 2
Performance of Algorithms 3.1 and 4.1 with J = 1 in the problems in which at least one of

them did not satisfy the stopping criterion within the CPU time limit or they found nonequivalent
solutions.

Problem
Algorithm 3.1 Algorithm 4.1 with J = 1

f(xk) ‖gP (xk)‖∞ SC f(xk) ‖gP (xk)‖∞ SC

3PK 1.724077e+00 5.3e−04 TE 1.720119e+00 1.6e−09 CO

BIGGSB1 1.924139e−02 2.9e−05 TE 1.500000e−02 2.2e−16 CO

BQPGAUSS -2.798142e−01 1.0e−01 TE -3.595735e−01 1.1e−02 TE

CAMEL6 -2.154638e−01 4.3e−11 CO -1.031628e+00 2.1e−07 CO

CHEBYQAD 1.030983e−02 9.9e−07 CO 4.513555e−03 5.4e−07 CO

CHENHARK -1.999541e+00 8.0e−05 TE -1.999996e+00 3.5e−04 TE

EG1 -1.429307e+00 8.6e−13 CO -1.132801e+00 6.3e−08 CO

GRIDGENA 2.352000e+04 8.4e−05 TE 2.352000e+04 4.8e−11 CO

HADAMALS 1.526408e+02 6.2e−09 CO 1.259669e+02 3.0e−09 CO

PALMER1E 8.352742e−04 2.8e−06 TE 8.352322e−04 4.4e−08 CO

PALMER2E 2.917189e−03 2.2e−03 TE 6.113360e−02 1.2e−09 CO

PALMER3 2.416980e+03 2.6e−08 CO 2.265958e+03 6.8e−07 CO

PALMER3E 5.074106e−05 6.8e−07 CO 7.086597e−02 3.3e−07 CO

PALMER4 2.424016e+03 1.1e−08 CO 2.285383e+03 2.6e−12 CO

PALMER5A 1.452576e−01 8.2e−04 TE 2.594999e−02 2.8e+00 TE

PALMER5B 2.116375e−02 5.1e−04 TE 9.752418e−03 1.5e−07 CO

PALMER5E 3.710294e−02 3.2e−05 TE 2.081326e−02 4.9e+00 TE

PALMER7A 2.792939e+01 5.8e−07 CO 1.033486e+01 2.8e−08 CO

PALMER7E 1.015391e+01 7.9e−06 TE 1.015390e+01 7.0e−09 CO

POWELLBC Infinity 1.0e+00 TE 3.102862e+05 6.9e−11 CO

QR3DLS 1.687343e−02 2.5e−03 TE 1.749783e−20 2.7e−09 CO

QRTQUAD -9.460519e+09 4.9e+04 TE -2.648253e+11 1.0e+01 UN

SCOND1LS 4.231559e+05 7.1e+02 TE 6.862749e+04 7.1e+02 TE

SINEALI -9.987336e+04 3.5e−06 TE -9.960170e+04 4.6e−09 CO

WALL10 -4.992176e+00 1.8e−01 TE -3.171402e+05 9.7e−02 TE

WALL20 -1.357148e+01 6.7e−01 TE -1.339585e+01 8.4e−01 TE

Finally, we compare the performances of Algorithm 4.1 with J = 1 and Betra.
Betra satisfied the stopping criterion (56) within the CPU time limit in 96 problems
(recall that this number is 97 for Algorithm 4.1 with J = 1). Both algorithms suc-
ceeded in satisfying the stopping criterion within the CPU time limit in 92 problems
and, among them, they found equivalent solutions in 83 problems. The efficiency
of both algorithms is compared considering these 83 problems in the performance
profile displayed in Figure 3 (see color figures in the online version). Details of the
performance of the methods in the other 105 − 83 = 22 problems are given in Ta-
ble 3. In this table, “LP” in the column related to the stopping criterion of Betra
means “lack of progress.” In the table, it can be seen that both methods satisfied the
stopping criterion but found nonequivalent solutions in the following nine problems:
Chebyqad, Deconvb, Hadamals, Maxlika, Palmer2e, Palmer3e, Palmer7a,
S368, and Sineali. Algorithm 4.1 found smaller functional values in six cases and
larger functional values in three problems. The conclusion is that Algorithm 4.1 (with
J = 1) appears to be more efficient and robust than Betra.
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Table 3
Performance of Algorithm 4.1 with J = 1 and Betra in the problems in which at least one of

them did not satisfy the stopping criterion within the CPU time limit or they found nonequivalent
solutions.

Problem
Algorithm 4.1 with J = 1 Betra

f(xk) ‖gP (xk)‖∞ SC f(xk) ‖gP (xk)‖∞ SC

BQPGAUSS -3.595735e−01 1.1e−02 TE -3.625778e−01 7.2e−13 CO

CHEBYQAD 4.513555e−03 5.4e−07 CO 9.055436e−03 5.9e−07 CO

CHENHARK -1.999996e+00 3.5e−04 TE -2.000000e+00 1.2e−12 CO

DECONVB 7.062747e−09 3.6e−07 CO 8.638251e−03 6.5e−09 CO

EXPLIN2 -7.199883e+07 9.8e−12 CO -7.199883e+07 1.9e−04 LP

HADAMALS 1.259669e+02 3.0e−09 CO 1.596622e+02 6.4e−11 CO

LINVERSE 6.810000e+02 2.8e−09 CO 6.820000e+02 2.3e−06 LP

MAXLIKA 1.136307e+03 1.2e−07 CO 1.149346e+03 7.6e−07 CO

PALMER2E 6.113360e−02 1.2e−09 CO 2.065035e−04 4.1e−07 CO

PALMER3E 7.086597e−02 3.3e−07 CO 5.074105e−05 9.1e−08 CO

PALMER4 2.285383e+03 2.6e−12 CO 2.327886e+03 1.5e+00 LP

PALMER5A 2.594999e−02 2.8e+00 TE 2.137729e−02 9.2e−07 CO

PALMER5E 2.081326e−02 4.9e+00 TE 2.071594e−02 2.9e−08 CO

PALMER7A 1.033486e+01 2.8e−08 CO 2.792939e+01 5.8e−11 CO

PALMER7E 1.015390e+01 7.0e−09 CO 1.015390e+01 1.6e−03 LP

POWELLBC 3.102862e+05 6.9e−11 CO 6.740747e+05 1.0e+00 TE

QRTQUAD -2.648253e+11 1.0e+01 UN -2.648567e+11 1.0e+01 LP

S368 -1.000000e+00 7.8e−12 CO -7.500000e−01 4.9e−09 CO

SCOND1LS 6.862749e+04 7.1e+02 TE 1.001405e+02 3.2e+01 TE

SINEALI -9.960170e+04 4.6e−09 CO -9.989947e+04 7.6e−09 CO

WALL10 -3.171402e+05 9.7e−02 TE -4.559540e+05 4.8e−01 LP

WALL20 -1.339585e+01 8.4e−01 TE -4.322414e+06 2.0e+01 LP

6. Conclusions. In this paper we introduced the following algorithms: (1) Algo-
rithm 2.1 addresses the minimization of f with general constraints finding an interior
point with sufficiently small gradient or a point on the boundary at which the function
decreases; (2) Algorithm 3.1 aims to minimize a function on an arbitrary domain using
a high-order Taylor-like model at each iteration; and (3) Algorithm 4.1 minimizes a
function with linear constraints employing Algorithm 2.1 within the faces and a single
iteration of Algorithm 3.1 (with p = 2) for discarding active constraints.

Algorithm 2.1 achieves the goal of finding an interior point with gradient norm
smaller than ε or a sufficiently good point on the boundary with complexity O(ε−3/2).
Algorithm 3.1 finds a point whose “continuous projected gradient” norm is smaller
than ε with complexity O(ε−(p+1)/p). Algorithm 4.1 finds a continuous projected
gradient norm smaller than ε, also with complexity O(ε−3/2).

The comparison of Algorithm 3.1 (with p = 2) against Algorithm 4.1 for solving
box-constrained optimization problems reveals that Algorithm 4.1 is more efficient
and robust, while the comparison of Algorithm 4.1 against Betra shows that Algo-
rithm 4.1 is also more efficient and robust than Betra, suggesting that developing
practical methods that possess worst-case evaluation complexity results may be prof-
itable.
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