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In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which
is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of
constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting
the subproblem structure while solving it. The global convergence theory is based on recent results regarding approxi-
mate Karush-Kuhn-Tucker optimality conditions for NLSDPs, which are stronger than the usually employed Fritz John
optimality conditions. Additionally, we approach the problem of covering a given object with a fixed number of balls with
a minimum radius, where we exploit some convex algebraic geometry tools, such as Stengle’s Positivstellensatz and its
variations, which allows for a much more general model. Preliminary numerical experiments are presented.
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1 Introduction
Augmented Lagrangian methods for nonlinear semidefinite programming that consider quadratic penalty and modified
barrier functions have already been introduced in [60] and [25], respectively. Convergence theories of both methods rely
on constraint qualifications such as the constant positive linear dependence (CPLD), Mangasarian-Fromovitz constraint
qualification (MFCQ), or non-degeneracy. The Augmented Lagrangian method introduced in the present work extends
the results presented in [60, 25] by using the sequential optimality condition introduced in [4], that does not require the
use of constraint qualifications.

Sequential optimality conditions [5] have played a major role in extending and unifying global convergence results for
several classes of algorithms for nonlinear programming and other classes of problems. In particular, we present a more
general version of the algorithm from [4] by allowing arbitrarily constrained subproblems in the Augmented Lagrangian
framework. Namely, instead of penalizing all the constraints, we assume the constraints can be divided in two sets: one set
of constraints that will be penalized and other that will be kept as constraints for the subproblems. Allowing constrained
subproblems is an important algorithmic feature due to the ability to explore good subproblem solvers. See [1, 16]. We
introduce this algorithm with a clear application in mind namely the so-called covering problem, where a new model
based on convex algebraic geometry tools is introduced.

The covering problem consists of finding the centers and the minimal common radius of m balls whose union covers
a given compact set. This problem has several applications, such as finding the optimal broadcast tower distribution over
a region or the optimal allocation of Wi-Fi routers in a building, for example. Also, some specific cases have been solved
in the last few decades, for example T. Tarnai and Z. Gáspár in 1995 presented minimal coverings of a square with up
to ten circles (in [30]). Their results were generalized for rectangles by A. Heppes and H. Melissen in 1997 (see [37]),
when they found the best coverings of a rectangle with up to five equal circles and also, under some conditions, with seven
circles as well. Then, Melissen and Schuur in 2000 (see [46]) extended those results for six and seven circles, following
their previous work [45]. In the same year, K. Nurmela and P. Östergård presented numerical approximations of circle
coverings for a square with up to 30 equal circles, improving some of the previous ones until then (in [50]). Covering
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a unit circle with another set of n circles has been a matter of deep study for many years. K. Bezdek is responsible for
proving coverings for n = 5 and n = 6 (in [13, 14]) and the result is somewhat trivial for n∈ {1,2,3,4,7}. Then, coverings
of a unit circle with other eight, nine and ten circles were presented by Tóth (in [57]). Melissen and Nurmela have also
provided coverings with up to 35 circles (see [44, 49]). In 2014, Gáspár, Tarnai and Hincz (see [31, 32]) published a broad
paper in which they discuss recently developed techniques used to pursuit a slight variation of the covering problem,
where the radius is fixed.

One of the classical algorithmic approaches, introduced in [26] and later used in other relevant works (see, for example,
[61, 59]), involves approximating the compact set to be covered by a finite set of points (discretization) and then applying
a point covering algorithm. Usually the whole procedure leads to a min-max-min formulation, which needs further
treatment, such as smoothing. Discretizing a set is a laborous task itself and the quality of the approximation bounds the
quality of the solution. Our approach is intended to be an alternative method that aims to avoid discretization, where we
characterize a feasible covering by means of auxiliary semidefinite variables relying on a Positivstellensatz theorem.

In our model, only equality constraints will be penalized, hence avoiding eigenvalue computations in evaluating the
Augmented Lagrangian function, while the (linear) semidefinite constraints will be kept within the subproblems. Thus,
eigenvalues are computed in order to project onto the semidefinite cone in the application of the Spectral Projected
Gradient method [19] for solving the subproblems. Numerical experiments are still very preliminary, as the complexity
of the model increases rapidly with the increase of the degree of a polynomial needed in the formulation. However, we
illustrate the generality of the model by solving the problem of covering a heart-shaped figure.

In Section 2 we give some preliminaries on sequential optimality conditions, in Section 3 we define our Augmented
Lagrangian algorithm and prove its global convergence. In Section 4 we give our model to the covering problem. In
Section 5 we show our numerical experiments and in Section 6 we give some conclusions.

Notation: R is the set of real numbers, while R+ is the set of non-negative real numbers. Sm is the set of symmetric
m×m matrices over R. Sm

+ (correspondently, Sm
−) is the set of positive (negative) semidefinite m×m matrices over R, and

we denote A ∈ Sm
+ (A ∈ Sm

−) by A � 0 (A � 0). tr(A) denotes the trace of the matrix A. 〈A,B〉 := tr(AB) is the standard
inner product over Sm, and ‖A‖ :=

√
〈A,A〉 is the Frobenius norm on Sm. [a]+ := max{0,a},a ∈ R.

2 Preliminaries
In this section we introduce the notation that will be adopted throughout the paper. We also formally present the nonlinear
semidefinite programming problem, together with recently introduced optimality conditions. Let us consider the following
problem

Minimize
x∈Rn

f (x),

subject to G(x)� 0,
(1)

where f : Rn → R and G : Rn → Sm are continuously differentiable functions. The set F will denote the feasible set
F := {x ∈ Rn | G(x)� 0}. Throughout this paper G(x)� 0 will be called a semidefinite constraint and we will consider
this simplified version of a NLSDP where the equality constraints are omitted without loss of generality. Given a matrix
A ∈ Sm, let A = UΛUT be an orthogonal diagonalization of A, where Λ = diag(λU

1 (A), . . . ,λU
m (A)) is a diagonal matrix

and λU
i (A) is the eigenvalue of A at position i when A is orthogonally diagonalized by U . We omit U when the eigenvalues

considered in the diagonalization of A are in ascending order, namely, λ1(A) ≤ ·· · ≤ λm(A). The projection of A onto
Sm
+, denoted by [A]+, is given by [A]+ :=Udiag([λU

1 (A)]+, . . . , [λU
m (A)]+)UT , and is independent of the choice of U . The

derivative operator of the mapping G : Rn→ Sm at a point x ∈ Rn is given by DG(x) : Rn→ Sm, defined by DG(x)h :=
n

∑
i=1

Gi(x)hi, h ∈ Rn, where Gi(x) :=
∂G(x)

∂xi
∈ Sm, i = 1, . . . ,m, are the partial derivative matrices with respect to xi. In

addition, its adjoint operator is given by DG(x)∗ : Sm→ Rn with DG(x)∗Ω := (〈G1(x),Ω〉, . . . ,〈Gn(x),Ω〉)T , where Ω ∈
Sm. We denote the Lagrangian function at (x,Ω)∈Rn×Sm

+ by L(x,Ω) := f (x)+〈G(x),Ω〉 and the generalized Lagrangian
function at (x,λ ,Ω) ∈ Rn×R+×Sm

+ by

Lg(x,λ ,Ω) := λ f (x)+ 〈G(x),Ω〉.

In general, we use iterative algorithms for solving the nonlinear semidefinite programming problem [25, 24, 38, 60,
42, 62]. These algorithms must be able to identify good solution candidates for (1). By “good candidates” we mean
points that satisfy some necessary optimality condition. For instance, the Fritz John (FJ) necessary optimality condition
states that whenever x̄ ∈Rn is a local minimizer of (1), there exist so-called Fritz John multipliers (λ ,Ω) ∈R+×Sm

+, with
λ +‖Ω‖ 6= 0, such that

∇xLg(x̄,λ ,Ω) = 0 and 〈Ω,G(x̄)〉= 0. (2)
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Note that, in the particular case of λ = 1, the Fritz John condition coincides with the Karush-Kuhn-Tucker (KKT) con-
dition for NLSDPs. Although Fritz John is a useful optimality condition, there are some disadvantages in its use, for
instance, the multiplier associated with the objective function may vanish. In this case, the Fritz John condition would not
be very informative, as it would not depend on the objective function. The possibility of the multiplier associated with the
objective function vanishing can be avoided assuming that the Mangasarian-Fromovitz constraint qualification (MFCQ)
holds (also called Robinson’s CQ in the context of NLSDPs). We say that x̄ ∈F satisfies MFCQ if there exists a vector
h∈Rn such that G(x̄)+DG(x̄)h is negative definite [21]. Hence, the FJ optimality condition under the additional assump-
tion that MFCQ holds implies that the KKT condition is satisfied. That is, under MFCQ, every Fritz John multiplier is
also a Lagrange multiplier. In fact, one can prove that FJ is equivalent to the optimality condition “KKT or not-MFCQ”.
Most global convergence results for NLSDP methods assume that the problem satisfies MFCQ and proves that any fea-
sible limit point of a sequence generated by the algorithm satisfies the KKT condition. That is, feasible limit points of
sequences generated by it satisfy the FJ optimality condition. In this paper we will present an Augmented Lagrangian
algorithm with global convergence to an optimality condition strictly stronger than FJ.

This optimality condition is the Approximate-Karush-Kuhn-Tucker (AKKT) condition, which was defined for NLS-
DPs in [4] and is well-known in nonlinear programming [5, 53]. As the FJ condition, AKKT is an optimality condition
without the need of assuming a constraint qualification. Instead of considering the punctual verification of the KKT condi-
tion at a point x̄, one allows its approximate verification at a sequence xk→ x̄ with a corresponding (possibly unbounded)
dual sequence {Ωk} ⊂ Sm

+.
The formal definition is as follows:

Definition 2.1. (AKKT [4]) The feasible point x̄ ∈ F of (1) satisfies the Approximate-Karush-Kuhn-Tucker (AKKT)
condition if there exist sequences xk→ x̄ and {Ωk} ⊂ Sm

+ such that

∇ f (xk)+DG(xk)∗Ωk→ 0, (3)

λ
U
i (G(x̄))< 0⇒ λ

Sk
i (Ωk) = 0, for all i = 1, . . . ,m and sufficiently large k, (4)

where G(x̄) = Udiag(λU
1 (G(x̄)), . . . ,λU

m (G(x̄)))UT , Ωk = Skdiag(λ
Sk
1 (Ωk), . . . ,λ

Sk
m (Ωk))ST

k , with U and Sk orthogonal
matrices such that Sk→U.

The importance of the AKKT condition in the nonlinear programming literature is due to the large amount of first-
and second-order algorithms that generate AKKT sequences, thus extending global convergence results under constraint
qualifications strictly weaker than MFCQ [2, 3, 6, 7, 8, 9, 10, 11, 12, 18, 15, 16, 17, 28, 33, 35, 36, 43, 47, 58].

The definition of AKKT for nonlinear semidefinite programming is not straightforward from the definition known in
nonlinear programming. A key difference is that the approximate constraint matrix G(xk) and the Lagrange multiplier
approximation Ωk must be approximately simultaneously diagonalizable (this is the role of Sk → U in the definition),
which is necessary for pairing the corresponding eigenvalues.

In order to explain the relevance of Definition 2.1, let us say that an AKKT sequence {xk} is known, converging to an
AKKT point x̄, with a corresponding dual sequence {Ωk}, generated by an algorithm. A usual global convergence result
would be to say that x̄ is a FJ point, by dividing (3) by ‖Ωk‖ and taking the limit. The corresponding FJ multiplier (λ ,Ω)
may be such that λ = 0 provided that {Ωk} is unbounded. In order to avoid this situation and arrive at a KKT point, one
usually assumes that MFCQ holds. This is equivalent to saying that no FJ multiplier with λ = 0 may exist. By employing
the AKKT condition, one may allow the existence of FJ multipliers with λ = 0 (that is, MFCQ may fail) while still being
able to take the limit in (3) and proving that x̄ is a KKT point (under a constraint qualification weaker than MFCQ). This
is the case, for instance, when {Ωk} is bounded. Or, even in the unbounded case, one may be able to rewrite (3-4) with a
different sequence {Ω̃k} in place of {Ωk}, allowing the proof that x̄ is a KKT point. See [4]. Note that the FJ condition
is meaningful with respect to the objective function (that is, implies KKT) only when the set of Lagrange multipliers is
bounded (that is, MFCQ holds), while AKKT may imply KKT even when the set of Lagrange multipliers is unbounded.
Note also that boundedness or unboundedness of the Lagrange multiplier set at x̄ do not correspond, respectively, to
the boundedness or unboundedness of the dual sequence {Ωk}, as this sequence may be bounded even when the set of
Lagrange multipliers is unbounded (see, for instance, [22, 34]).

We summarize by noting that the following properties give the main reasons for using AKKT in our global convergence
results:

Theorem 2.1. ([4]) Let x̄ be a local minimizer of (1) . Then, x̄ satisfies AKKT.

Theorem 2.2. ([4]) Let x̄ be a feasible point of (1). If x̄ satisfies AKKT, then x̄ satisfies the FJ condition. The reciprocal
is not true.
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Usually, when proving that feasible limit points of a sequence generated by an algorithm satisfy AKKT, the sequences
{xk} and {Ωk} are explicitly generated by the algorithm. Hence, one may safely use these sequences for stopping the
execution of the algorithm. Given small tolerances εopt > 0, ε f eas > 0, εdiag > 0 and εcompl > 0, one may stop at iteration
k when

‖∇ f (xk)+DG(xk)∗Ωk‖ ≤ εopt , (5)

‖[G(xk)]+‖ ≤ ε f eas, (6)
‖Uk−Sk‖ ≤ εdiag, (7)

λ
Uk
i (G(xk))<−εcompl ⇒ λ

Sk
i (Ωk) = 0, i = 1, . . . ,m. (8)

For simplicitly, we say that xk satisfies the ε-KKT stopping criterion when (5-8) hold with εopt = ε f eas = εdiag = εcompl =
ε ≥ 0. In this case, the point xk together with a corresponding Ωk,Uk and Sk will be called an ε-KKT point. A point that
satisfies the stopping criterion with ε = 0 is precisely a KKT point, see [4]. Note that, from the compactness of the set of
orthogonal matrices, we can take, if necessary, a subsequence of the orthogonal matrices sequence {Uk} that converges
to U and define it as the original sequence. Thus, the limit ‖Uk−Sk‖ → 0 implies that Uk→U and Sk→U . Since {Ωk}
does not need to have a convergent subsequence, the inequality given by (7) expresses only a correspondence relation for
pairing the eigenvalues of G(xk) and Ωk.

We refer the reader to [4] for a detailed measure of the strength of AKKT, in comparison with FJ, together with a
characterization of the situation in which an AKKT point is in fact a KKT point. Also, we note that the developments
of this paper could be done with a different optimality condition presented in [4] (Trace-AKKT), which gives a simpler
stopping criterion than (5-8); however, an additional smoothness assumption on the function G would be needed, which
we have decided to avoid for simplicity.

3 An Augmented Lagrangian algorithm
Let us consider the following problem

Minimize
x∈Rn

f (x),

subject to x ∈Fu∩Fl ,
(9)

where Fu := {x ∈ Rn| G1(x) � 0} is the set of constraints in the upper-level and Fl := {x ∈ Rn| G2(x) � 0} the set
of constraints in the lower-level. We assume that f : Rn → R, G1 : Rn → Sm and G2 : Rn → Sm are all continuously
differentiable functions. The choice of which constraints will go to the upper-level and which ones will stay in the
lower-level can be done arbitrarily. Nevertheless, the two-level minimization technique is used, in general, when some
constraints are somewhat “easier” than the others. These constraints should be kept at the lower-level, which will not
be penalized. On the other hand, the difficult constraints will be maintained at the upper-level, that is, they will be
penalized with the use of the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian function for NLSDPs. Since
we do not restrict ourselves to which class of constraints will be kept at the lower level and which ones will be penalized,
we will be considering a large class of Augmented Lagrangian algorithms. More details of this technique applied to
nonlinear optimization problems can be found in [1, 18, 16]. If the problem has, in addition, equality constraints, they
may also be arbitrarily split in the upper and lower level sets and the algorithm and its global convergence proof can be
carried out with the necessary modifications. In particular, this is the technique we used in our numerical experiments
regarding the covering problem (more details in Section 5). Alternatively, one may incorporate an equality constraint

h(x) = 0 as the diagonal block
(

h(x) 0
0 −h(x)

)
� 0. Note that the independency of constraint qualifications means

that the optimality condition AKKT is valid regardless of the formulation, even though the sequences of multipliers may
not be the same. Also, the FJ optimality condition becomes trivially satisfied at all feasible points when an equality
constraint is treated as a negative semidefinite block matrix [4]. Next, we will present an Augmented Lagrangian method
for NLSDPs based on the quadratic penalty function. This is an extension of the algorithm defined in [4], where only
unconstrained subproblems were considered. For more details about the Augmented Lagrangian method for NLSDPs, see
[1, 25, 24, 38, 60, 55, 56, 62].

Let us take a penalty parameter ρ > 0. The Augmented Lagrangian function Lρ : Rn×Sm→R, a natural extension of
the Augmented Lagrangian function for nonlinear programming, penalizes the constraints at the upper-level and is defined
below:

Lρ(x,Ω) := f (x)+
1

2ρ

{
‖[Ω+ρG1(x)]+‖2−‖Ω‖2} . (10)
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The gradient with respect to x of the Augmented Lagrangian function above is given by:

∇xLρ(x,Ω) = ∇ f (x)+DG1(x)∗ [Ω+ρG1(x)]+ .

The formal statement of the algorithm is as follows:

Algorithm 1 Augmented Lagrangian Algorithm

Let τ ∈ (0,1), γ > 1, ρ1 > 0 and Ωmax ∈ Sm
+. Take a sequence of tolerances {εk} ⊂ R+. Define 0� Ω̄1 �Ωmax. Choose

an arbitrary starting point x0 ∈ Rn. Initialize k := 1 and ‖V 0‖ :=+∞.

Step 1: Find an εk-KKT point xk to the problem

Minimize Lρk(x,Ω̄
k) subject to x ∈Fl . (11)

Step 2: Define

V k :=
[

Ω̄k

ρk
+G1(xk)

]
+

− Ω̄k

ρk
.

If ‖V k‖ ≤ τ‖V k−1‖, define ρk+1 := ρk, otherwise define ρk+1 := γρk.
Step 3: Compute

Ω
k :=

[
Ω̄

k +ρkG1(xk)
]
+
,

and define Ω̄k+1 := Proj(Ωk) as the orthogonal projection of Ωk onto {X ∈ Sm|0� X �Ωmax}.
Step 4: Set k := k+1, and go back to Step 1.

Note that, in Step 3 of the algoritm above, we take the Lagrange multiplier approximation for the next subproblem as
the projection of the natural update of Ωk onto a “safeguarded box” as in [18]. This means that when the penalty parameter
is too large, the method reduces to the external penalty method. The penalty parameter is updated using the joint measure
of feasibility and complementarity for the conic constraint defined by V k. Note that V k = 0 implies the sequence xk is
feasible and the complementarity condition holds. Therefore, if ‖V k‖ is sufficiently reduced, the algorithm keeps the
previous penalty parameter unchanged and increases it otherwise. In Step 1, we assume that an unspecified algorithm
for solving the subproblem (11) returns an εk-KKT point at each iteration k, where εk is the tolerance for stopping the
execution of the subproblem solver. Taking into account our global convergence results, a natural stopping criterion for
Algorithm 1 is to stop when xk and the corresponding dual approximations satisfy ε-KKT for the original problem (9), for
some ε > 0.

Let us now show that the algorithm tends to find feasible points. Namely, the following result shows that Algorithm 1
finds AKKT points of an infeasibility measure of the upper-level constraints restricted to the lower-level constraints.

Theorem 3.1. Let εk→ 0+. Assume that x̄ ∈ Rn is a limit point of a sequence {xk} generated by Algorithm 1. Then, x̄ is
an AKKT point of the infeasibility optimization problem

Minimize
x∈Rn

P(x) := ‖[G1(x)]+‖2 subject to x ∈Fl . (12)

Proof. Since xk is an εk-KKT sequence, from (11) we have that

‖∇xLρk(x
k,Ωk)+DG2(xk)∗Ωk‖ ≤ εk, (13)

‖[G2(xk)]+‖ ≤ εk, (14)
‖Uk−Sk‖ ≤ εk, (15)

λ
Uk
i (G2(xk))≤−εk⇒ λ

Sk
i (Ωk) = 0. (16)

where Uk and Sk are orthogonal matrices that diagonalize G2(xk) and Ω
k, respectively. From (14) we have that x̄ ∈Fl .

Now, let us consider two cases: the first when {ρk} is unbounded and the second when {ρk} is bounded.

(i) If the penalty parameter {ρk} is unbounded, let us define

δ
k := ∇ f (xk)+DG1(xk)∗[Ω̄k +ρkG1(xk)]++DG2(xk)∗Ωk.

From (13) we have ‖δ k‖ ≤ εk. Dividing δ k by ρk,

δ k

ρk
=

∇ f (xk)

ρk
+DG1(xk)∗

[
Ω̄k

ρk
+G1(xk)

]
+

+DG2(xk)∗
Ω

k

ρk
,
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since
δ k

ρk
→ 0 and ∇ f (xk)→ ∇ f (x̄), we have that

DG1(xk)∗Ωk
1 +DG2(xk)∗Ωk

2→ 0

where, Ωk
1 :=

[
Ω̄k

ρk
+G1(xk)

]
+

and Ωk
2 :=

Ω
k

ρk
. Furthermore, from (15) and from the compactness of the orthogonal

matrices set we can take a subsequence {Uk}k∈N that converges to U and define it as the original sequence such that
Sk →U and Uk →U . Then, if λU

i (G2(x̄)) < 0 we have that λ
Uk
i (G2(xk)) < −εk for all sufficiently large k; which

implies, from (16), that λ
Sk
i (Ωk

2) = 0.

(ii) If the penalty parameter {ρk} is bounded, that is, for k ≥ k0 the penalty parameter remains unchanged and then
V k→ 0. The sequence {Ω̄k} is bounded, then, there is an Ω̄ ∈ Sm

+ such that

Ω̄ = limΩ̄
k = lim

[
Ω̄

k +ρk0G1(xk)
]
+
= limΩ

k =
[
Ω̄+ρk0G1(x̄)

]
+
.

Since Ω̄ ∈ Sm
+, we can take a diagonalization

Ω̄ = [Ω̄+ρk0G1(x̄)]+ = Rdiag([λ R
1 ]+, . . . , [λ

R
m ]+)R

T ,

with RRT = I . Moreover,
Ω̄+ρk0G1(x̄) = Rdiag(λ R

1 , . . . ,λ
R
m)R

T .

In this way,
G1(x̄) = (1/ρk0)Rdiag((λ R

1 − [λ R
1 ]+), . . . ,(λ

R
m− [λ R

m ]+))R
T ,

thus, G1(x̄) � 0 and since x̄ ∈Fl it follows that x̄ is a global minimizer of the optimization problem (12) and, in
particular, an AKKT point.

Let us now show that if, in addition, the limit point x̄ is feasible for (9), then x̄ is in addition an AKKT point for (9).
In fact, {xk} is an associated AKKT sequence and {Ωk} is its corresponding dual sequence.

Theorem 3.2. Let εk→ 0+. Assume that x̄∈Fu∩Fl is a feasible limit point of a sequence {xk} generated by Algorithm 1.
Then, x̄ is an AKKT point of problem (9).

Proof. Let x̄ ∈Fu ∩Fl be a limit point of a sequence {xk} generated by Algorithm 1. Let us assume without loss of
generality that xk→ x̄. From Step 1 of the algorithm we have that

lim
k→∞

∇ f (xk)+DG1(xk)∗Ωk +DG2(xk)∗Ωk = 0,

where
Ω

k :=
[
Ω̄

k +ρkG1(xk)
]
+
.

Now, let us prove the complementarity condition in AKKT, both for the upper-level and the lower-level constraints.
For this, we will use appropriate orthogonal matrices Sk, Rk, Uk, Zk, R and U which diagonalize Ω

k, Ωk, G2(xk), G1(xk),
G1(x̄) and G2(x̄) respectively such that Sk→U and Rk→ R. Note that, similarly to what was done in Theorem 3.1, xk is
an εk-KKT point for problem (11). Then, by Step 2 of Algorithm 1 we get that

‖∇xLρk(x
k,Ωk)+DG2(xk)∗Ωk‖ ≤ εk, (17)

‖[G2(xk)]+‖ ≤ εk, (18)
‖Uk−Sk‖ ≤ εk, (19)

λ
Uk
i (G2(xk))≤−εk⇒ λ

Sk
i (Ωk) = 0. (20)

(i) If ρk→+∞, for the upper-level constrants, since the sequence {Ω̄k} is bounded, we have that
Ω̄k

ρk
+G1(xk)→G1(x̄).

Let us take a diagonalization
Ω̄k

ρk
+G1(xk) = Rkdiag(λ k

1 , . . . ,λ
k
m)R

T
k .
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Taking a subsequence if necessary, let us take a diagonalization

G1(x̄) = Rdiag(λ1, . . . ,λm)RT ,

where Rk→ R, λ k
i → λi for all i. Then,

Ω
k = [Ω̄k +ρkG1(xk)]+ = Rkdiag(ρk[λ

k
1 ]+, . . . ,ρk[λ

k
m]+)R

T
k .

Now, assume that λ R
i (G1(x̄)) = λi < 0. Then, λ k

i < 0 for all sufficiently large k; which implies that λ
Rk
i (Ωk) =

ρk[λ
k
i ]+ = 0. Furthermore, from (19) and from the compactness of the orthogonal matrices set we can take a

subsequence {Uk}k∈N that converges to U and define it as the original sequence such that Sk→U and Uk→U . For
the lower-level constraints note that, if λU

i (G2(x̄))< 0 we have λ
Uk
i (G2(xk))<−εk for k large enough and then by

(20) it follows that λ
Sk
i (Ωk) = 0.

(ii) If {ρk} is bounded, for the upper-level constraints, analogously to what was done in Theorem 3.1, for k ≥ k0 we
have that V k→ 0. Thus,

Ω̄ = limΩ̄
k = lim

[
Ω̄

k +ρk0G1(xk)
]
+
= limΩ

k =
[
Ω̄+ρk0G1(x̄)

]
+
.

Writing the orthogonal decomposition of the matrix Ωk we have

Ω
k = [Ω̄k +ρk0G1(xk)]+ = Rkdiag([λ

Rk
1 ]+, . . . , [λ

Rk
m ]+)RT

k ,

and taking a subsequence if necessary

Ω̄ = [Ω̄+ρk0G1(x̄)]+ = Rdiag([λ R
1 ]+, . . . , [λ

R
m ]+)R

T ,

where Rk→ R, λ
Rk
i → λ R

i for all i . Moreover,

Ω̄+ρk0G1(x̄) = Rdiag(λ R
1 , . . . ,λ

R
m)R

T .

In this way,
G1(x̄) = (1/ρk0)Rdiag((λ R

1 − [λ R
1 ]+), . . . ,(λ

R
m− [λ R

m ]+))R
T ,

and then, λ R
i (G1(x̄)) =

λ R
i − [λ R

i ]+
ρk0

. If λ R
i (G1(x̄)) < 0, we have that λ R

i < [λ R
i ]+; hence, [λ R

i ]+ = 0. Then, λ
Rk
i <

0 for all sufficiently large k; which implies that λ
Rk
i (Ωk) = [λ

Rk
i ]+ = 0. Furthermore, from (19) and from the

compactness of the orthogonal matrices set we can take a subsequence {Uk}k∈N that converges to U and define it as
the original sequence such that Sk→U and Uk→U . Now, for the lower-level constraints note that, if λU

i (G2(x̄))< 0
then λ

Uk
i (G2(xk))<−εk for k large enough; which implies by (20), λ

Sk
i (Ωk) = 0.

Note that for proving the first theorem, concerning feasibility of limit points, one could relax the condition in (13)
by replacing {εk} by a bounded sequence {ε̃k}, not necessarily converging to zero, while keeping εk→ 0+ in conditions
(14-16). This allows including, without further analysis, an adaptive computation of ε̃k := ϕ(‖[G1(xk−1)]+‖), for some
ϕ(t)→ 0+ as t→ 0+.

4 The covering problem
In this section we present a new approach to the so-called covering problem. It consists of computing the smallest
collection of m closed balls with common radius, such that their union contains a given compact set.

The problem will be an NLSDP of the following form:

Minimize f (r,c1, . . . ,cm,S1, . . . ,Sp),

subject to H(r,c1, . . . ,cm,S1, . . . ,Sp) = 0,
r ≥ 0, Si � 0, i = 1, . . . , p,

(21)

where r ∈ R,c j ∈ Rn, j = 1, . . . ,m, Si ∈ SN , i = 1, . . . , p and f and H are continuously differentiable functions, where H
takes values on RW .
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The nonlinear equality constraints defined by H will be penalized (upper-level constraints) while the non-negative
constraints r ≥ 0 and the conic ones Si � 0, i = 1, . . . , p, will be kept as constraints in the subproblems (lower-level con-
straints). Hence, since the projection of (r,S1, . . . ,Sp) onto the lower-level feasible set can be computed from a spectral
decomposition of each variable, namely, ([r]+, [S1]+, . . . , [Sp]+), we will solve each subproblem by the Spectral Projected
Gradient (SPG) method [19, 20]. In the nonlinear programming case, an Augmented Lagrangian method where subprob-
lems are solved by the SPG method was previously considered in [27]. We start by describing our model of the covering
problem, by means of convex algebraic geometry tools, which is interesting in its own in the sense that it allows dealing
with this difficult problem in its full generality, without resorting to discretizations.

Let V ⊂Rn be a compact set to be covered with m balls. Let c1, . . . ,cm ∈Rn be the centers and
√

r the common radius
of the balls, to be determined, where r > 0. We use the notation R[x] := R[x1, . . . ,xn] for the ring of real polynomials in n
variables. The i-th closed ball will be denoted by

Bi[ci,r] := {x ∈ Rn | pi(x,ci,r)6 0},

where pi(x,ci,r) := ‖x− ci‖2
2 − r ∈ R[x], for i = 1, . . . ,m, and their union will be denoted by B[c1, . . . ,cm,r]. More

specifically, we intend to compute a solution to the following problem:

Minimize
ci∈Rn,r∈R

r,

subject to V ⊆B[c1, . . . ,cm,r],

r > 0.

(22)

In order to rewrite this problem in a tractable form, we assume that there exists a set of v polynomials, namely
{g1, . . . ,gv} ⊂ R[x], such that

V = {x ∈ Rn | g1(x)> 0, . . . ,gv(x)> 0},

that is, V is a closed basic semialgebraic set. Then V ⊆B[c1, . . . ,cm,r] if, and only if,

K [c1, . . . ,cm,r] := {x ∈ Rn | pi(x)> 0,g j(x)> 0,∀i ∈ {1, . . . ,m},∀ j ∈ {1, . . . ,v}}= /0.

The set K [c1, . . . ,cm,r] represents the region of V not covered by B[c1, . . . ,cm,r]. Note that the inequalities pi(x) > 0
can be replaced by pi(x)> 0 and p(x) := ∏

m
i=1 pi(x) 6= 0. To simplify the notation, let us define qi := pi, for i = 1, . . . ,m,

and qm+i = gi, for i = 1, . . . ,v, with η := m+ v. Hence,

K [c1, . . . ,cm,r] = {x ∈ Rn | qi(x)> 0, p(x) 6= 0,∀i ∈ {1, . . . ,η}}. (23)

Then, we can rewrite (22) as

Minimize
ci∈Rn,r∈R

r,

subject to K [c1, . . . ,cm,r] = /0,
r > 0.

(24)

At first glance, formulation (24) may not seem so pleasant, but fortunately there are several results from the last few
decades which manage to give infeasibility certificates for basic semialgebraic sets, in particular, for K [c1, . . . ,cm,r].
Before introducing them, we recall two redundancy sets for the solutions of systems of polynomial inequalities. The set
of all polynomials in n variables of degree at most 2d that can be written as a sum of squares (s.o.s.) of other polynomials
will be denoted by Σn,2d , and Σn :=

⋃
d∈N Σn,2d .

Definition 4.1. The quadratic module generated by q1, . . . ,qη is the set

qmodule(q1, . . . ,qη) := {s0 +q1s1 + · · ·+qη sη | si ∈ Σn,∀i ∈ {1, . . . ,η}}.

Definition 4.2. The preorder generated by q1, . . . ,qη is the set

preorder(q1, . . . ,qη) := {s0 +∑
i

qisi +∑
i 6= j

qiq jsi j + ∑
i 6= j 6=k

qiq jqksi jk + . . .},

where each of the 2η terms is free of squares and si, si j etc. are all s.o.s. of polynomials. To put it briefly,

preorder(q1, . . . ,qη) =

{
∑

Λ⊆{1,...,η}
(sΛ ∏

i∈Λ

qi) | sΛ ∈ Σn,∀Λ⊆ {1, . . . ,η}

}
.
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The next result, introduced in [54], provides infeasibility certificates for K [c1, . . . ,cm,r].

Theorem 4.1 (Stengle’s Positivstellensatz). The set K [c1, . . . ,cm,r] is empty if, and only if, there exist P∈ preorder(q1, . . . ,qη)
and an integer b≥ 0 such that

P+ p2b = 0.

In [23], it was proved that deciding whether a polynomial is an s.o.s. or not is intrinsically related to the possibility of
finding a positive semidefinite matrix that represents it, in the following sense:

Theorem 4.2 (Gram representation). Define N :=
(n+d

d

)
. A real polynomial s of degree 2d is an s.o.s. polynomial if, and

only if, there exists a real symmetric N×N (Gram) matrix S� 0 such that

s = [x]Td S[x]d ,

where [x]d := (1,x1,x2, . . . ,xn,x1x2, . . . ,xd
n)

T is a (lexicographically) ordered array containing every monomial of degree
at most d.

Thus, based on [51], for every fixed degree d > 0 and b≥ 0, (24) can be written in the form

Minimize
ci∈Rn,r∈R

r,

subject to coeffs

(
p2b + ∑

Λ⊆{1,...,η}
[x]Td SΛ[x]d ∏

i∈Λ

qi

)
= 0,

SΛ ∈ SN
+,∀Λ⊆ {1, . . . ,η},

r > 0,

(25)

where coeffs(p) represents the vector of coefficients of the polynomial p. Formulation (25) is an NLSDP with 2η matrix
variables and, even if the fixed degrees do not lead to a Positivstellensatz certificate of emptyness for every feasible
covering, they work for sufficiently large ones and thus bound the quality of the solution. In a similar fashion of Lasserre
hierarchy for s.o.s. optimization, one can solve (25) starting from d = 1 and then increasing it until the desired accuracy is
obtained. This procedure is expected to stop in a few levels, even though the known bounds for d are unpracticably large.
Technical details can be found in [39, 40].

Although the formulation presented above is the most desired one in terms of corresponding exactly to the true cover-
ing problem, it involves a very large number of variables and constraints. The difficulty appears due to the presence of the
unusual requirement p(x) 6= 0 in the definition of the set K [c1, . . . ,cm,r] in (23). In our experiments, we will deal with
a simplified version of the problem where this requirement is dropped. The corresponding model is then much simpler.
This situation corresponds to the problem of covering a compact set with open balls. That is, let us consider the problem
of finding a minimal covering for V made of open balls with common radius, namely, for

Bi(ci,r) := {x ∈ Rn | pi(x,ci,r)< 0}, i = 1, . . . ,m,

their union will be denoted by B(c1, . . . ,cm,r). Then V ⊆B(c1, . . . ,cm,r) if, and only if, the set

K (c1, . . . ,cm,r) := {x ∈ Rn | qi(x)> 0,∀i ∈ {1, . . . ,η}} (26)

is empty. Of course, the problem

Minimize
ci∈Rn,r∈R

r,

subject to K (c1, . . . ,cm,r) = /0,
r > 0,

(27)

has no solution, but every strictly feasible covering of (24) is also feasible in (27). There is a simplified Positivstellen-
satz for this case, assuming an additional hypothesis over K (c1, . . . ,cm,r). The set qmodule(q1, . . . ,qη) is said to be
archimedean if there is a polynomial p ∈ qmodule(q1, . . . ,qη) such that {x ∈ Rn | p(x)> 0} is compact or, equivalently,
if there exists M > 0 such that bM(x) := M−‖x‖2

2 ∈ qmodule(q1, . . . ,qη).

Theorem 4.3 (Putinar’s Positivstellensatz). Given p ∈ R[x], suppose that K (c1, . . . ,cm,r) is a compact set and that
qmodule(q1, . . . ,qη) is archimedean. If p(x) is positive on K (c1, . . . ,cm,r), then p ∈ qmodule(q1, . . . ,qη).

See [52] for details.
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Corollary 4.1. Suppose that K (c1, . . . ,cm,r) is a compact set. Then K (c1, . . . ,cm,r) is empty if, and only if, −1 ∈
qmodule(q1, . . . ,qη ,bM), for some M > 0 such that K (c1, . . . ,cm,r)⊆ {x ∈ R | bM(x)> 0}.

Proof. If there are s0, . . . ,sη ,sM ∈ Σn such that s0+q1s1+ · · ·+qη sη +bMsM =−1, then K (c1, . . . ,cm,r) must be empty.
Otherwise, for any x ∈K (c1, . . . ,cm,r),

0 6 s0(x)+q1(x)s1(x)+ · · ·+qη(x)sη(x)+bM(x)sM(x)< 0

would hold, as K (c1, . . . ,cm,r) = {x ∈ Rn | bM(x) > 0,qi(x) > 0,∀i ∈ {1, . . . ,η}}. Conversely, if K (c1, . . . ,cm,r) is
empty, the polynomial p : x 7→ p(x) = −1 is strictly positive on K (c1, . . . ,cm,r); this is a vacuous truth. Hence −1 ∈
qmodule(q1, . . . ,qη ,bM), since qmodule(q1, . . . ,qη ,bM) is archimedean.

When V is defined by at least one polynomial gi such that {x ∈ Rn | gi(x) > 0} is compact; for example, when V
is a closed ball or a solid heart-shaped figure, then K (c1, . . . ,cm,r) is empty if, and only if, −1 ∈ qmodule(q1, . . . ,qη).
Moreover, similarly to Stengle’s theorem, Putinar’s result leads to a reformulation of (27) as an NLSDP of the following
form

Minimize
ci∈Rn,r∈R

r,

subject to coeffs(s0 + s1q1 + · · ·+ sη qη +1) = 0,

Si ∈ SN
+,∀i ∈ {0, . . . ,η},

r > 0,

(28)

where each polynomial si, with i ∈ {0, . . . ,η}, is to be understood as the polynomial si(x) := [x]Td Si[x]d . The problem has
η +1 matrix variables, which is much better than 2η from (25). We expected that an algorithm that aims at solving (28)
would find a good approximation to a solution of (25), hence this is the formulation we use in our numerical experiments.

5 Numerical experiments
In this section, we give some implementation details for the application to the covering problem. We build the model
based on Putinar’s Positivstellensatz described in (28) using the MATLAB package YALMIP (more details in [41]). It
has a structure made to represent semidefinite variables symbolically, called sdpvar, and a function to extract coefficients
of polynomials even when they are symbolic. This is useful because the polynomial variables x1, . . . ,xn are only used
for ordering and grouping the problem variables. In general, finding a closed expression for each coefficient of the
polynomials defined by the Positivstellensatz is not a simple task; also, we make use of a gradient-based (first order)
method, which requires the partial derivatives of each coefficient with respect to the relevant variables, which we present
below.

Define X2d := [x]d [x]td , then the partial derivatives of the coefficients of Putinar’s polynomial are given as follows:

• Derivative with respect to the radius:

∂

∂ r
coeffs(s0 + s1q1 + · · ·+ sη qη +1) = coeffs(−

m

∑
k=1
〈Sk,X2d〉).

• Derivatives with respect to the centers:

∂

∂ci j
coeffs(s0 + s1q1 + · · ·+ sη qη +1) = coeffs(2(ci j− x j)〈Si,X2d〉),

for all (i, j) ∈ {1, . . . ,m}×{1, . . . ,n}.

• Derivatives with respect to the Gram matrices:

∂

∂S(i, j)k

coeffs(s0 + s1q1 + · · ·+ sη qη +1) = coeffs(qkX (i, j)
2d ),

for all k ∈ {0, . . . ,η} and (i, j) ∈ {1, . . . ,N}×{1, . . . ,N}, with g0 := 1.
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The extracted coefficients are then written in the form H(y) and its jacobian matrix JH(y), where y := (r,c,S)T is a
vector of variables that stores r,ci j and S(i, j)k in array form.

Next, we give some general numbers. Recall that N =
(n+d

d

)
. Then, for the Putinar model, we have N(N+1)

2 (η +1)+
nm+1 real variables and one integer parameter d, the degree of Putinar’s polynomial is dP := 2d+maxi∈{1,...,η}{deg(qi)},
so the number of nonlinear equality constraints is

(n+dP
dP

)
. Note that only mn+ 1 variables are geometrically relevant (c

and r), while the remaining ones (S) are feasibility certificates.
The nonlinear constraints H(y) = 0 will be penalized, while the (convex) semidefinite constraints will be kept within

the subproblems, that is, at each iteration, we solve the problem

Minimize
y∈RN

L
ρk(y,λ k) := f (y)+

1
2ρk

{
‖λ k +ρ

kH(y)‖2
}
,

subject to Si � 0,∀i ∈ {0, . . . ,η},
r > 0,

(29)

where y = (r,c,S)T and f (y) = r. We employ the Spectral Projected Gradient (SPG) method [19] for solving the Aug-
mented Lagrangian subproblems (29) with its recommended parameters.

Let us now describe some details about the implementation.

1. Modelling part: The inputs are the dimension n, the number of balls m, half of the fixed degree for the s.o.s.
polynomials d, and the chosen version of the Positivstellensatz; in case of Stengle’s, choosing a degree b is also
required. The code then writes the functions H(y) and JH(y) in the format of a Fortran subroutine supported by the
Fortran implementation [1] of the Augmented Lagrangian with subproblems solved by SPG. This modelling code
was done in MATLAB 2015a using YALMIP - version R20180926. We used BLAS/LAPACK version 3.8.0. We
make use of the Fortran compiler gfortran 7.3.0 with the optimization flag -O3.

2. Solving part: The initial penalty parameter is ρ0 = 2 and if the infeasibility in iteration k is larger than ρfrac := 0.9
times the infeasibility in iteration k−1, then the penalty parameter is multiplied by ρmult := 1.05. Else, it remains
unchanged. In our tests we considered the initial Lagrange multipliers approximations for the equality constraints
as λ 0 := 0.

The maximum number of outer iterations is fixed as OMAX = 2000 and the sum of all SPG iterations is limited to
T MAX = 106. The required decay of the objective function is εobj = 10−8 and the desired feasibility is εfeas = 10−8.
M is set to 10, as usual.

The program stops when either one of these occur:

• The objective function have not decreased enough, that is | f (yk)− f (yk−1)| < εobj, for Nstat = 5 consecutive
iterations and feasibility is at least what was required, that is, ‖H(yk)‖∞ < εfeas;

• The maximum number of outer iterations OMAX is reached;

• The maximum number of total SPG iterations T MAX is reached.

3. Computing a feasible initial covering: The initial point must also be provided by the user, in general, but in
two dimensions, our choice consists on placing the initial centers c0

1, . . . ,c
0
m over the vertices of an m-sided regular

polygon inscribed in the circle centered at the origin, with radius 0.5. The initial common radius for those circles is
defined as r0 := 1.0. The initial point does not need to be feasible nor close to a minimizer, but feasibility certificates
are computed (if they exist) by fixing (r0,c0

1, . . . ,c
0
m) in y and solving the following problem:

Minimize
Si∈SN

1
2
‖H(y)‖2

2,

subject to Si � 0,∀i ∈ {0, . . . ,η},
(30)

where y = (r,c,S)T . This is done using SPG itself, and since H(y) = coeffs(s0 + s1q1 + · · ·+ sη qη + 1) is now an
affine function of the variables in the entries of Si, the objective function of (30) is quadratic. Hence, this problem
is expected to be easily solved. In all tests made it has converged in a single iteration.

We cover the closed unit circle centered at the origin using three other circles. Due to rotation symmetry of the
solution, we arbitrarily fix one coordinate of a circle in order to guarantee unicity of solution. The optimal radius is given
by r? = 0.75. Below, we present a comparison between different degrees for this test case. Note that the model is sharper
with respect to the covering problem the larger the degree 2d is, hence we expect to approach r∗ with the increase of the
degree considered.
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2d Solution f (y) # Outer it. ‖H(y)‖∞

4 0.78433 257 8.4564D-09
6 0.77585 286 8.4115D-10
8 0.77426 342 3.4125D-09
10 0.77119 295 3.0167D-09
12 0.77121 343 1.7274D-09
14 0.76878 321 4.3909D-09
16 0.76767 306 1.6420D-09
18 0.76712 285 3.7080D-09

Table 1: Numerical results for Putinar’s Positivstellensatz.

Unfortunately, the experiment results were less satisfactory than what we expected, because the highest degree from
our tests, 2d = 18, demands some computational effort both for modelling and solving, but the computed approximation
is still quite far from the optimum. By avoiding discretizations, we expected to obtain an arbitrarily close approximation
for the actual solution in an acceptable amount of steps. This could not be verified in practice, even though there is
no theoretical impeditive at all. The objective function decreases quickly and monotonically in the first few iterations,
but slows down considerably after that (see Figure 1); feasibility follows a similar pattern. The issue found is that
subproblems are generally not being solved up to the desired tolerance for optimality at later iterations. This may be due
to the inherent difficulty of the subproblems, where a second-order method should probably perform better. Also, the
Augmented Lagrangian method seems to be very sensitive to the initial Lagrange multipliers approximation, which is not
clear how to compute them at this moment. It could also be the case that the true degree 2d at the solution r∗ is much
larger than what is computationally solvable.

Figure 1: Radius per iteration, up to 157, degrees 4 to 16, up to down.

We have also done extensive tests relaxing several stopping criteria for the SPG solver, allowing oversolving the
subproblems and iterating until the maximum number of outer iterations OMAX is reached, and also covering other
objects. In general, the results were not much better than what was obtained after stopping under the usual criteria. We
also performed some experiments with PENLAB (see [29]) via YALMIP, which is a general Augmented Lagrangian
method for nonlinear semidefinite programming, but the solver could not find even a feasible point. This might indicate
that our model provides problems that are inherently hard to solve. Let us recall that our model is very general, as it
allows problems in any dimension, shape of the object to be covered and number of balls. We even do not need to use
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Figure 2: Solution found by an Inexact Restoration method for covering a heart-shaped object.

balls to cover the given object. Any basic semialgebraic set can be used in place of a ball. We achieve this generality
while avoiding discretizations.

To exemplify the generality of the model, we present the following pictures illustrating the coverings obtained with
three and seven circles (with squared radii equal to 0.6505 and 0.3051, respectively) of a heart-shaped object described
by {(x,y) ∈ R2 | (x2 + y2−1)3− x2y3 6 0}.

Note that our model provides certificates of feasibility of the given solution and certificates of approximate optimality
via the approximate Lagrange multipliers, while we do not know any other technique for dealing with such problem
besides straightforward discretization. These experiments can be found in details in [48], where an Inexact Restoration
solver was implemented for the same model, but no proof of convergence was given.

6 Conclusions
We presented an Augmented Lagrangian method for solving nonlinear semidefinite programming problems which allows
constrained subproblems. Our global convergence proof is based on the AKKT optimality condition, which is strictly
stronger than the usually employed Fritz John optimality condition (or equivalently, where a KKT point is reached under
MFCQ). This algorithm was designed in order to approach the covering problem by means of convex algebraic geometry
tools, which provides a very general and versatile nonlinear semidefinite programming problem. The dimension and the
shape of the regions that build the covering are left as input for the user, even though those factors have a strong influence
on the problem structure. Some of the previous algorithms that aimed to cover arbitrary regions were developed for two
and three dimensions using sphere coverings; we offer an alternative for higher dimension and our model gives freedom
in the shape of the covering as well, not limited to balls. However, due to the size of the models and lack of information
about good Lagrange multipliers estimates, or geometric insight about the feasibility certificates S, we are still not able
to solve our model to a high accuracy. Further work should be done in order to compute these estimates and to presolve
the constraints, hopefully avoiding its inherent difficulty. We advocate that the model is interesting in its own due to
the use of somewhat heavy algebraic machinery. We believe that algebraic techniques can provide further insights for
solving difficult optimization problems without resorting to discretizations, and we hope our work may inspire further
investigations in this direction.
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