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Abstract. Dykstra’s algorithm is a suitable alternating projection scheme for solving the op-
timization problem of finding the closest point to one given in the intersection of a finite number
of closed and convex sets. It has been recently used in a wide variety of applications. However, in
practice, the commonly used stopping criteria are not robust and could stop the iterative process
prematurely at a point that does not solve the optimization problem. In this work we present a
counterexample to illustrate the weakness of the commonly used criteria, and then we develop ro-
bust stopping rules. Additional experimental results are shown to illustrate the advantages of this
new stopping criteria, including their associated computational cost.
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1. Introduction. We consider Dykstra’s algorithm for solving the optimization
problem

min
x∈Ω

‖x0 − x‖,(1)

where x0 is a given point, Ω is a closed and convex set, and ‖z‖2 = 〈z, z〉 defines a
real inner product in the space. The solution x∗ is called the projection of x0 onto Ω
and is denoted by PΩ(x0). Dykstra’s algorithm for solving (1) has been extensively
studied since it fits in many different applications (see [1, 2, 4, 8, 9, 11, 12, 13, 18, 21,
23, 24, 26, 28, 29]).

Here, we consider the case

Ω = ∩p
i=1Ωi,(2)

where Ωi are closed and convex sets in R
n for i = 1, 2, . . . , p and Ω �= ∅. Moreover, we

assume that for any z ∈ R
n the calculation of PΩ(z) is not trivial, whereas for each

Ωi, PΩi
(z) is easy to obtain, as in the case of a box, an affine subspace, or a ball.

Roughly speaking, Dykstra’s algorithm [2, 10] projects in a clever way onto each
of the convex sets individually to complete a cycle which is repeated iteratively. We
are mainly concerned with the criterion for stopping the process within a certain
previously established tolerance that indicates the distance of the current iterate to
the unique solution.

This paper is organized as follows. In section 2 we describe Dykstra’s alternating
projection method for solving (1) and (2) and discuss some of its properties. In section
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3 we discuss the difficulties with the typical and somehow informal stopping criteria
that are frequently associated with Dykstra’s algorithm. In section 4 we introduce
and analyze the new stopping criteria. In section 5 we draw some conclusions.

2. Dykstra’s algorithm. A suitable tool for solving (1) when Ω has the form
(2) is Dykstra’s alternating projection algorithm [2, 10], which will be described below.
Dykstra’s algorithm can also be obtained via duality [14, 20]. Also see Hildreth [22] for
the pioneer version on dual alternating projection methods for half spaces; Hildreth’s
algorithm has been extended for quadratic programming problems [24, 27].

Let us recall that for a given nonempty closed and convex set Ω of R
n and for

any x0 ∈ R
n, there exists a unique solution x∗ to problem (1), which is called the

projection of x0 onto Ω; it is denoted by PΩ(x0), and it is characterized by the
Kolmogorov’s criterion:

〈x0 − x∗, x∗ − x〉 ≥ 0 for all x ∈ Ω, x∗ ∈ Ω.(3)

Dykstra’s algorithm solves (1) and (2) by generating two sequences: the iterates
{xk

i } and the increments {yki }. These sequences are defined by the following recursive
formulae:

xk
0 = xk−1

p ,

xk
i = PΩi(x

k
i−1 − yk−1

i ), i = 1, 2, . . . , p,

yki = xk
i − (xk

i−1 − yk−1
i ), i = 1, 2, . . . , p,

(4)

for k = 1, 2, . . . with initial values x0
p = x0 and y0

i = 0 for i = 1, 2, . . . , p.
Remarks.
1. The increment yk−1

i associated with Ωi in the previous cycle is always sub-
tracted before projecting onto Ωi. Only one increment (the last one) for each
Ωi needs to be stored.

2. If Ωi is a closed affine subspace, then the operator PΩi is linear and is not
required, in the kth cycle, to subtract the increment yk−1

i before projecting
onto Ωi. Thus, for affine subspaces, Dykstra’s procedure reduces to the alter-
nating projection method of von Neumann [30]. To be precise, in this case,
PΩi(y

k−1
i ) = 0.

3. For k = 1, 2, . . . and i = 1, 2, . . . , p, it is clear from (4) that the following
relations hold:

xk−1
p − xk

1 = yk−1
1 − yk1 ,(5)

xk
i−1 − xk

i = yk−1
i − yki ,(6)

where x0
p = x0 and y0

i = 0 for all i = 1, 2, . . . , p.
For the sake of completeness we now present the key theorem associated with

Dykstra’s algorithm.
Theorem 2.1 (Boyle and Dykstra [2]). Let Ω1, . . . ,Ωp be closed and convex sets

of R
n such that Ω = ∩p

i=1Ωi �= ∅. For any i = 1, 2, . . . , p and any x0 ∈ R
n, the

sequence {xk
i } generated by (4) converges to x∗ = PΩ(x0) (i.e., ‖xk

i − x∗‖ → 0 as
k → ∞).

3. Difficulties with some commonly used stopping criteria. In some ap-
plications it is possible to obtain a somehow natural stopping rule, associated with the
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problem at hand. For example, when solving a linear system, Ax = b, by alternating
projection methods [3, 15], the residual vector (r(x) = b − Ax) is usually available
and yields some interesting and robust stopping rules. Another example appears in
image reconstruction for which a good and feasible image tells the user that it is time
to stop the process [5, 6]. Similar circumstances are present in some other specific
applications (e.g., molecular biology [18, 19]).

However, in general, this is not the case, and we are left with the information
produced only by the internal computations, i.e., the sequence of iterates and per-
haps the sequence of increments, and some inner products. For this general case, a
popular stopping rule is to monitor the subsequence of projections onto one particular
convex set, Ωi, and stop the process when the distance, in norm, of two consecutive
projections is less than or equal to a previously established tolerance [16, 17, 21, 28].

Another commonly used criterion, which is claimed to improve the previous one
(e.g., [2, 12, 18, 29]), is to somehow compute an average of all the projections at
each cycle of projections and then stop the process when the distance, in norm, of
two consecutive average projections is less than or equal to a previously established
tolerance.

Finally, we would like to mention that another criterion, which is also designed
to improve either of the two criteria above, is to check any of the previously described
rules during N consecutive cycles, where N is a fixed positive integer.

None of these stopping rules is a trustworthy choice. The example below es-
tablishes that they can fail even for a two-dimensional problem (see Figures 1 and
2).

To illustrate the difficulties with the previously described stopping criteria, con-
sider the closed and convex set Ω = Ω1 ∩ Ω2, where Ω1 = {x ∈ R

2 | x1 + x2 ≥ 10} is
a half space and Ω2 = {x ∈ R

2 | 3 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4} is a box. This closed and
convex set in R

2 is shown in Figure 1.
Let x0 = (−49, 50)T , and let us use Dykstra’s algorithm to find the closest point

to x0 in Ω. In Figure 2 we can see the first two cycles of this convergent process.
Since y0

1 = y0
2 = 0 (null initial increments), for the first cycle we project x0 onto

Ω1 to obtain p2 = x1
1 = (−44.5, 54.5)T and then we project p2 onto Ω2 to obtain

p3 = x1
2 = (3, 4)T . For the second cycle, the increments are not null (y1

1 = (4.5, 4.5)T

and y1
2 = (47.5,−50.5)T ), and we start from p3. First we project p4 = p3 − y1

1 onto
Ω1 to obtain p5 = x2

1. Then we project p6 = p5 − y1
2 onto Ω2 to obtain p3 again.

Hence x2
2 = x1

2. The increment associated with Ω2 is large enough to take the iterate
back to the quadrant where the projection onto the box is again p3. As can be seen
in Table 1, this phenomenon will occur until cycle 32, i.e., p3 = x1

2 = x2
2 = · · · = x32

2 .
Moreover, by choosing x0 far enough, we can guarantee that this misleading event

can be repeated for as many cycles as any previously established positive integer N .
Eventually the size of the increments will be reduced and convergence to x∗ will be
observed.

4. Robust stopping criteria. In order to develop robust stopping criteria for
Dykstra’s algorithm, we first need to establish an interesting inequality that is ob-
tained after a close inspection of the proof of the Boyle–Dykstra convergence theorem.

Theorem 4.1. Let x0 be any element of R
n. Consider the sequences {xk

i } and
{yki } generated by (4) and define ck as

ck =

k∑

m=1

p∑

i=1

‖ym−1
i − ymi ‖2 + 2

k−1∑

m=1

p∑

i=1

〈ymi , xm+1
i − xm

i 〉.(7)



1408 ERNESTO G. BIRGIN AND MARCOS RAYDAN

Fig. 1. Feasible set Ω = Ω1 ∩ Ω2 in R
2.

Then, in the kth cycle of Dykstra’s algorithm,

‖x0 − x∗‖2 ≥ ck.(8)

Moreover, at the limit when k goes to infinity, equality is attained in (8).

Proof. In the proof of Theorem 2.1, the following equation is obtained for k > 1
(Boyle and Dykstra [2]; see also Deutsch [7, Lemma 9.19]):

‖x0 − x∗‖2 = ‖xk
p − x∗‖2 +

k∑

m=1

p∑

i=1

‖ym−1
i − ymi ‖2

+ 2

k−1∑

m=1

p∑

i=1

〈xm
i−1 − ym−1

i − xm
i , xm

i − xm+1
i 〉

+ 2

p∑

i=1

〈xk
i−1 − yk−1

i − xk
i , x

k
i − x∗〉,

(9)
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Fig. 2. First two cycles of Dykstra’s algorithm to find the projection of x0 = (−49, 50)T onto
Ω = Ω1 ∩ Ω2.

where all terms involved are nonnegative for all k. Recall that xm
0 = xm−1

p , and y0
i = 0

for all i. From (9) we obtain

‖x0 − x∗‖2 ≥
k∑

m=1

p∑

i=1

‖ym−1
i − ymi ‖2

+ 2

k−1∑

m=1

p∑

i=1

〈xm
i−1 − ym−1

i − xm
i , xm

i − xm+1
i 〉.

(10)

Finally, (8) is obtained by substituting (5) and (6) in (10).
Clearly, in (9) all terms on the right-hand side are bounded. In particular, using

(5) and (6), the fourth term can be written as 2
∑p

i=1〈yki , xk
i − x∗〉, and using the

Cauchy–Schwarz inequality and Theorem 2.1, we notice that it vanishes when k goes
to infinity. Similarly, the first term in (9) tends to zero when k goes to infinity, and
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so at the limit equality is attained in (8).
Let us now write ck as follows:

ck = ckL + ckS ,

where

ckL =

k∑

m=1

cmI ,(11)

cmI =

p∑

i=1

‖ym−1
i − ymi ‖2,(12)

and

ckS = 2

k−1∑

m=1

p∑

i=1

〈ymi , xm+1
i − xm

i 〉.

Both ckL and ckS are monotonically nondecreasing by definition. However, in the ex-
ample shown in the previous section, it can be seen that the sequence of projections
{xm

i } onto Ωi could remain constant for several consecutive cycles, and hence ckS
could also remain constant for the same consecutive cycles. On the other hand, if
the p increments yki , i = 1, 2, . . . , p, also remain constant for two consecutive cycles m
and m + 1, then, by (4), all the forthcoming projections and forthcoming increments
(for all k ≥ m + 1) will remain the same, proving that we have already obtained the
solution vector x∗. Hence, unless the solution has been attained, at least one of the
increments must change (Table 1 illustrates this fact), and so ck+1

I will be strictly pos-

itive and ck+1
L = ckL + ck+1

I > ckL, i.e., ckL must increase monotonically. This argument
establishes the following result.

Theorem 4.2. Consider the sequences {xk
i } and {yki } generated by (4), and ck,

ckL, and ckI as defined in (7), (11), and (12), respectively. For any k ∈ N, if xk �= x∗,
then ck+1

I > 0 and, hence, ckL < ck+1
L and ck < ck+1.

We can combine the results established in Theorems 4.1 and 4.2 to propose robust
stopping criteria. Notice that {ckL} and {ck} are monotonically increasing and con-
vergent, and also that {ckI} converges to zero (again illustrated in Table 1). Therefore
we can stop the process when

ckI =

p∑

i=1

‖yk−1
i − yki ‖2 ≤ ε

or, similarly, when

ck − ck−1 = ckI + 2

p∑

i=1

〈yk−1
i , xk

i − xk−1
i 〉 ≤ ε,(13)

where ε > 0 is a sufficiently small tolerance. As ck may grow fast, computing ck−ck−1

may give inaccurate results due to loss of accuracy in a floating point representation
and, hence, cancellation. So, for the criterion in (13), testing convergence with the
second expression is recommended. In Table 1 we can observe the robustness of
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Table 1

Dykstra’s algorithm for the projection of x0 = (−49, 50)T onto Ω = Ω1 ∩Ω2 (see Figures 1 and
2). Note that the sum of the distances among consecutive increments, ckI , is a strictly positive quan-
tity which goes to zero when the method arrives at the solution. This fact warrants the monotonic
increase of ckL and, as a consequence, of ck.

Current iterate Proposed stopping criteria

k xk
p ck ckL ckI

0 (−4.900E+01, 5.000E+01) 0.0000000E+00 0.0000000E+00
1 ( 3.000E+00, 4.000E+00) 4.8470000E+03 4.8470000E+03 4.8470000E+03
2 ( 3.000E+00, 4.000E+00) 4.8560000E+03 4.8560000E+03 9.0000000E+00
3 ( 3.000E+00, 4.000E+00) 4.8650000E+03 4.8650000E+03 9.0000000E+00
4 ( 3.000E+00, 4.000E+00) 4.8740000E+03 4.8740000E+03 9.0000000E+00
5 ( 3.000E+00, 4.000E+00) 4.8830000E+03 4.8830000E+03 9.0000000E+00
6 ( 3.000E+00, 4.000E+00) 4.8920000E+03 4.8920000E+03 9.0000000E+00
7 ( 3.000E+00, 4.000E+00) 4.9010000E+03 4.9010000E+03 9.0000000E+00
8 ( 3.000E+00, 4.000E+00) 4.9100000E+03 4.9100000E+03 9.0000000E+00
9 ( 3.000E+00, 4.000E+00) 4.9190000E+03 4.9190000E+03 9.0000000E+00

10 ( 3.000E+00, 4.000E+00) 4.9280000E+03 4.9280000E+03 9.0000000E+00
11 ( 3.000E+00, 4.000E+00) 4.9370000E+03 4.9370000E+03 9.0000000E+00
12 ( 3.000E+00, 4.000E+00) 4.9460000E+03 4.9460000E+03 9.0000000E+00
13 ( 3.000E+00, 4.000E+00) 4.9550000E+03 4.9550000E+03 9.0000000E+00
14 ( 3.000E+00, 4.000E+00) 4.9640000E+03 4.9640000E+03 9.0000000E+00
15 ( 3.000E+00, 4.000E+00) 4.9730000E+03 4.9730000E+03 9.0000000E+00
16 ( 3.000E+00, 4.000E+00) 4.9820000E+03 4.9820000E+03 9.0000000E+00
17 ( 3.000E+00, 4.000E+00) 4.9910000E+03 4.9910000E+03 9.0000000E+00
18 ( 3.000E+00, 4.000E+00) 5.0000000E+03 5.0000000E+03 9.0000000E+00
19 ( 3.000E+00, 4.000E+00) 5.0090000E+03 5.0090000E+03 9.0000000E+00
20 ( 3.000E+00, 4.000E+00) 5.0180000E+03 5.0180000E+03 9.0000000E+00
21 ( 3.000E+00, 4.000E+00) 5.0270000E+03 5.0270000E+03 9.0000000E+00
22 ( 3.000E+00, 4.000E+00) 5.0360000E+03 5.0360000E+03 9.0000000E+00
23 ( 3.000E+00, 4.000E+00) 5.0450000E+03 5.0450000E+03 9.0000000E+00
24 ( 3.000E+00, 4.000E+00) 5.0540000E+03 5.0540000E+03 9.0000000E+00
25 ( 3.000E+00, 4.000E+00) 5.0630000E+03 5.0630000E+03 9.0000000E+00
26 ( 3.000E+00, 4.000E+00) 5.0720000E+03 5.0720000E+03 9.0000000E+00
27 ( 3.000E+00, 4.000E+00) 5.0810000E+03 5.0810000E+03 9.0000000E+00
28 ( 3.000E+00, 4.000E+00) 5.0900000E+03 5.0900000E+03 9.0000000E+00
29 ( 3.000E+00, 4.000E+00) 5.0990000E+03 5.0990000E+03 9.0000000E+00
30 ( 3.000E+00, 4.000E+00) 5.1080000E+03 5.1080000E+03 9.0000000E+00
31 ( 3.000E+00, 4.000E+00) 5.1170000E+03 5.1170000E+03 9.0000000E+00
32 ( 3.000E+00, 4.000E+00) 5.1260000E+03 5.1260000E+03 9.0000000E+00
33 ( 3.500E+00, 4.000E+00) 5.1347500E+03 5.1337500E+03 7.7500000E+00
34 ( 4.750E+00, 4.000E+00) 5.1394375E+03 5.1384375E+03 4.6875000E+00
35 ( 5.375E+00, 4.000E+00) 5.1406094E+03 5.1396094E+03 1.1718750E+00
36 ( 5.688E+00, 4.000E+00) 5.1409023E+03 5.1399023E+03 2.9296875E−01
37 ( 5.844E+00, 4.000E+00) 5.1409756E+03 5.1399756E+03 7.3242188E−02
38 ( 5.922E+00, 4.000E+00) 5.1409939E+03 5.1399939E+03 1.8310547E−02
39 ( 5.961E+00, 4.000E+00) 5.1409985E+03 5.1399985E+03 4.5776367E−03
40 ( 5.980E+00, 4.000E+00) 5.1409996E+03 5.1399996E+03 1.1444092E−03
41 ( 5.990E+00, 4.000E+00) 5.1409999E+03 5.1399999E+03 2.8610229E−04
42 ( 5.995E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 7.1525574E−05
43 ( 5.998E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.7881393E−05
44 ( 5.999E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 4.4703484E−06
45 ( 5.999E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.1175871E−06
46 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 2.7939677E−07
47 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 6.9849193E−08
48 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.7462298E−08
49 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 4.3655746E−09
50 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.0913936E−09
51 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 2.7284841E−10
52 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 6.8212103E−11
53 ( 6.000E+00, 4.000E+00) 5.1410000E+03 5.1400000E+03 1.7053026E−11

our proposed criteria for the example described in Figures 1 and 2. Notice that,
indeed, ck and ckL are monotonically increasing during the process and that they stop
growing only when the method arrives at the solution x∗, when ck reveals the optimal
Euclidean distance ‖x0 − x∗‖2. Notice also that ckI tends to zero as k goes to ∞.

The computation of ckI involves the squared-norm ‖yk−1
i −yki ‖2 for i = 1, 2, . . . , p.
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By (6), yki = yk−1
i +v, where v = xk

i −xk
i−1 is a temporary n-dimensional array needed

in the computation of Dykstra’s algorithm. Thus, the computational cost involved in
the calculation of ckI is just the cost of the extra inner product 〈v, v〉 at each iteration.

The computation of ck involves the calculation of ckI plus an extra term. The
computational of this extra term is also small and involves an inner product and
the difference of two vectors per iteration. But, in contrast with the computation
of ckI , which does not require additional savings, the computation of the extra term
requires saving p extra n-dimensional arrays (the same amount of memory required
in Dykstra’s algorithm to save the increments). Thus, the computation of ck requires
some additional calculations and memory savings, and hence it is more expensive.
However, it also has the advantage of revealing the optimal distance, ‖x0 − x∗‖2,
which could be of interest in some applications.

We close this section with some comments concerning the behavior of the new
stopping criteria when the problem is not feasible. First of all, due to errors or noise
in the given data, it is not always known a priori whether the intersection set Ω is
nonempty. Therefore, it is an interesting issue in real applications. In the case of
(Ω = ∅), there is no solution and we know from Theorem 4.2 that the sequences
{ckL} and {ck} are monotonically increasing. Moreover, under some mild assumptions
on the sets Ωi, the sequences {xk

i } converge for 1 ≤ i ≤ p, and there exists a real
constant δ > 0 such that

∑p
i=1 ‖xk

i−1 − xk
i ‖2 ≥ δ for all k. A discussion on this topic

is presented in [1, section 6], including a notion of distance between all the sets Ωi

(see also [25]). Now using (6), we obtain

p∑

i=1

‖xk
i−1 − xk

i ‖2 =

p∑

i=1

‖yk−1
i − yki ‖2 = ckI .

Therefore, the sequence {ckI} remains bounded away from zero, whereas {ckL} and
{ck} tend to infinity. Consequently, none of the new proposed stopping criteria will
be satisfied for any k.

Regarding the mild assumptions discussed in [1, 25], for which the sequences
{xk

i } converge for 1 ≤ i ≤ p, and ckI ≥ δ for all k, we can list the following cases
that appear frequently in applications: (a) at least one of the sets Ωi is bounded, (b)
all of them are polyhedral, and (c) there exists zi ∈ Ωi such that ‖zi − zj‖ equals
the distance between Ωi and Ωj for all possible 1 ≤ i, j ≤ p. In other words, if
any of these cases holds and one of the new proposed stopping rules is used, then
Dykstra’s algorithm stops only if a solution of (1) is reached. In that sense, they
are robust stopping criteria. Nevertheless, there are cases, also discussed in [1, 25],
for which the distance is not attained, and they establish that ‖xk

i ‖ tend to +∞
for 1 ≤ i ≤ p. In the presence of one of these cases, the stopping rules may stop
erroneously due to the numerical cancellation of very large numbers. For example,
consider the following two convex sets: Ω1 = {(x, y)T ∈ R

2 | x > 0 and y ≥ M +1/x}
and Ω2 = {(x, y)T ∈ R

2 | x > 0 and y ≤ −M − 1/x}, where M > 0 is a fixed real
constant. None of the conditions above ((a), (b), or (c)) holds in this case, and in fact,
the iterates tend to (+∞,M)T and (+∞,−M)T , respectively. In theory, ckI > 2M for
all k, and our stopping criteria would not be satisfied. In practice, however, the size
of the iterates could be very large, and cancellation might occur, producing a floating
point representation of ckI very close to zero.

5. Conclusions. We pointed out that the frequently used stopping criteria for
Dykstra’s algorithm are not trustworthy and showed a two-dimensional example, using
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a box and a half space, in which these rules fail to detect convergence of Dykstra’s
iterative procedure.

We introduced robust stopping criteria and applied them to an example in which
the commonly used criteria failed. We proved that our criteria are well defined and
that one of the sequences involved, {ck}, converges to the distance among the point
to be projected and its projection. We also established that if there is no solution
(empty intersection), then under mild assumptions the new criteria are not satisfied.
Finally, we elaborated on the computational cost of the proposed stopping rules.

Acknowledgment. We are indebted to two anonymous referees, whose com-
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