MAT 461 – Tópicos de Matemática II Aula 7: Resumo de Probabilidade

Edson de Faria

Departamento de Matemática IME-USP

28 de Agosto, 2013

Probabilidade: uma Introdução / Aula 7

- Variáveis Aleatórias Contínuas
 - Definição e Exemplos
 - Distribuição acumulada de uma variável aleatória

Variáveis Aleatórias Contínuas

- Nesta aula introduziremos o importante conceito de variável aleatória contínua, e exploraremos suas propriedades.
- Tais variáveis aparecem naturalmente, não apenas na modelagem de fenômenos envolvendo grandezas aleatórias com um espectro contínuo de valores, mas também como limites de médias de variáveis aleatórias discretas.

Variáveis Aleatórias Contínuas: motivação

A título de motivação, consideremos o seguinte exemplo.

Exemplo (1)

Alice e Beto marcaram um encontro para amanhã à noite, entre 9:00 e 10:00 horas, em frente ao prédio da Gazeta. Sendo ambos pessoas a um só tempo impontuais e impacientes, combinaram que o primeiro a chegar esperará apenas 10 minutos; se o segundo não chegar nesse intervalo de tempo, o primeiro irá embora. Qual é a probabilidade de que o encontro se concretize?

- Este é um exemplo típico de situação que pode ser modelada com a introdução de variáveis aleatórias contínuas.
- De fato, se X e Y representam os instantes de chegada ao local do encontro de Alice e Beto, respectivamente, podemos considerar X e Y como variáveis aleatórias cujos valores se distribuem de maneira uniforme no intervalo de tempo que vai das 9:00 às 10:00 horas.
- A solução deste exemplo será apresentada mais adiante.

Variáveis Aleatórias Contínuas: definição

• Consideremos a definição formal de variável aleatória contínua.

Definição

Dizemos que uma variável aleatória $X:\Omega\to\mathbb{R}$ sobre um espaço de probabilidade (Ω,\mathcal{A},P) é contínua se existe uma função $f_X:\mathbb{R}\to\mathbb{R}$ integrável não-negativa tal que, para quaisquer a,b reais com a< b, temos

$$P[a < X < b] = \int_a^b f_X(t) dt.$$

A função f_X é chamada de densidade de probabilidade da variável aleatória X.

Note que

$$\int_{-\infty}^{+\infty} f_X(t) dt = P[-\infty < X < +\infty] = 1.$$

Exemplo (Distribuição uniforme)

Dizemos que uma variável aleatória X é uniformemente distribuida no intervalo (0,1) se X tem uma densidade f_X dada por

$$f_X(t) = \begin{cases} 1 & \text{se } 0 < t < 1 \\ 0 & \text{caso contrário} \end{cases}$$

• Note que, se X é uniformemente distribuida no intervalo (0,1), e 0 < a < b < 1, temos

$$P[a < X < b] = \int_a^b f_X(t) dt = \int_a^b 1 \cdot dt = b - a$$

Exemplo (Distribuição uniforme)

Mais geralmente, dizemos que uma variável aleatória X é uniformemente distribuida no intervalo (α, β) se X tem uma densidade f_X dada por

$$f_X(t) \ = \ egin{cases} rac{1}{eta - lpha} & ext{ se } lpha < t < eta \ 0 & ext{ caso contrário} \end{cases}$$

• Note que, se X é uniformemente distribuida no intervalo (α, β) , e $\alpha < a < b < \beta$, temos

$$P[a < X < b] = \int_a^b f_X(t) dt = \int_a^b \frac{1}{\beta - \alpha} \cdot dt = \frac{b - a}{\beta - \alpha}$$

Exemplo (Distribuição exponencial)

Dizemos que uma variável aleatória X é exponencial com parâmetro $\lambda > 0$ se X tem uma densidade f_X dada por

$$f_X(t) = \begin{cases} \lambda e^{-\lambda t} & \text{se } t \ge 0 \\ 0 & \text{se } t < 0 \end{cases}$$

- A distribuição exponencial é comumente utilizada para modelar situações em que estamos interessados no intervalo de tempo até a ocorrência de algum evento, tipicamente raro.
- Por exemplo, o tempo a partir de agora até a ocorrência do próximo abalo sísmico. Ou o tempo a partir de agora até o recebimento da próxima chamada telefônica.
- Num certo sentido, podemos dizer que a distribuição exponencial é um caso limite da distribuição de Poisson.

Exemplo (2)

Suponha que o tempo de funcionamento de uma lâmpada (em horas) até queimar é uma variável aleatória exponencial X com densidade dada por

$$f_X(t) = egin{cases} \lambda e^{-t/1\,000} & ext{se } t \geq 0 \ 0 & ext{se } t < 0 \end{cases}$$

para um certo $\lambda > 0$. Qual é a probabilidade de que

- A lâmpada funcione entre 500 e 1 500 horas até queimar?
- A lâmpada funcione por menos de 1 000 até queimar?

Solução:

Como devemos ter

$$1 = \int_{-\infty}^{\infty} f_X(t) dt = \lambda \int_{0}^{\infty} e^{-t/1000} dt ,$$

concluimos facilmente que $1\,000\lambda=1$, ou seja, $\lambda=1/1\,000$.

Portanto, temos:

$$P[500 < X < 1500] = \int_{500}^{1500} \frac{1}{1000} e^{-t/1000} dt$$
$$= -e^{-t/1000} \Big|_{500}^{1500} = e^{-\frac{1}{2}} - e^{-\frac{3}{2}} \simeq 0.384.$$

Isto responde a primeira pergunta do enunciado.

Analogamente, temos

$$P[X < 1\,000] = \int_0^{1\,000} \frac{1}{1\,000} e^{-t/1\,000} dt = -e^{-t/1\,000} \Big|_0^{1\,000}$$
$$= 1 - e^{-1} \simeq 0.633.$$

 Em outras palavras, há uma probabilidade de 63.3% de que a lâmpada funcione no máximo 1000 horas até queimar, e isto responde a segunda pergunta do enunciado.

Não é exagero dizer que a distribuição definida a seguir é a mais importante em modelagem probabilística.

Exemplo (Distribuição normal)

Dizemos que uma variável aleatória X é normal com parâmetros $\mu \in \mathbb{R}$ e $\sigma > 0$ se X tem uma densidade f_X dada por

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

Para que esta definição seja consistente, é necessário que

$$\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{(t-\mu)^2}{2\sigma^2}}dt = 1.$$

• Isto de fato é verdade, e se segue da identidade:

$$\int_{-\infty}^{\infty} e^{-y^2/2} dy = \sqrt{2\pi} .$$

- A distribuição normal aparece naturalmente na modelagem dos mais variados fenômenos, sendo a mais útil das distribuições probabilísticas.
- O principal motivo é o fato de que as médias de uma seqüência de variáveis aleatórias independentes e igualmente distribuidas convergem para uma distribuição normal.
- Este fato, cujo enunciado correto será dado mais tarde, é conhecido como o Teorema Central do Limite.
- Veremos adiante que os parâmetros μ e σ de uma distribuição normal são exatamente a média e o desvio padrão, respectivamente, da variável aleatória normal correspondente.
- Uma variável aleatória normal com $\mu=0$ e $\sigma=1$ é chamada de variável normal padrão.

Distribuição acumulada de uma variável aleatória

Definição

A distribuição acumulada de uma variável aleatória X é a função $F_X: \mathbb{R} \to \mathbb{R}$ dada por

$$F_X(x) = P[X \leq x]$$
.

 Observamos que, se X é uma variável aleatória contínua com densidade f_X, então:

$$F_X(x) = P[-\infty < X \le x] = \int_{-\infty}^x f_X(t) dt$$

• Assim, vemos que a distribuição acumulada de uma variável aleatória contínua X é uma função derivável, com $F_X'(x) = f_X(x)$.

Distribuição acumulada de uma variável aleatória

- Quando conhecemos a distribuição acumulada de uma variável aleatória, podemos calcular facilmente certas probabilidades associadas àquela variável.
- Por exemplo, temos

$$P[a < X \le b] = F_X(b) - F_X(a)$$

- Quais são as distribuições acumuladas das variáveis aleatórias introduzidas acima?
- Se X é uma variável aleatória uniforme no intervalo (α, β) , é fácil ver que

$$F_X(x) = \begin{cases} 0 & \text{se } x \le \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{se } \alpha < x < \beta \\ 1 & \text{se } x \ge \beta \end{cases}$$

• Por outro lado, se X é uma variável aleatória exponencial com parâmetro $\lambda > 0$, então

$$F_X(x) = \begin{cases} 0 & \text{se } x \le 0 \\ 1 - e^{-\lambda x} & \text{se } x > 0 \end{cases}$$

 Quando X é uma variável aleatória normal, infelizmente não podemos calcular explicitamente a integral que nos fornece a distribuição acumulada, a saber

$$F_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

Isto se deve ao fato de que a função e^{-y^2} não possui primitiva que possa ser expressa em termos de funções elementares. Mas é perfeitamente possível calcular, para qualquer x dado, o valor numérico aproximado da integral acima.

 Muitos valores da distribuição acumulada da normal padrão encontram-se tabelados na maioria dos bons livros de probabilidade e/ou estatística.¹

¹Veja por exemplo S. Ross, *A first course in Probability*, 8th. ed., Prentice Hall (2010), página 201.

Esperança de uma variável aleatória contínua

Por analogia com o caso discreto, definimos a esperança de uma variável aleatória contínua da seguinte maneira.

Definição

Se X é uma variável aleatória contínua com densidade f_X , definimos a esperança de X por

$$E[X] = \int_{-\infty}^{\infty} t f_X(t) dt ,$$

desde que, obviamente, a integral no segundo membro exista.

Exemplo

Seja X uma variável aleatória contínua cuja densidade é dada por:

$$f_X(t) = \begin{cases} 2t & \text{se } 0 \le t \le 1 \\ 0 & \text{caso contrário} \end{cases}$$

Calcule E[X].

Solução: Temos

$$E[X] = \int_{-\infty}^{\infty} t f_X(t) dt = \int_{0}^{1} 2t^2 dt = \frac{2}{3}.$$

Às vezes, para calcularmos E[X] precisamos primeiramente conhecer a distribuição acumulada de X. Vejamos um exemplo simples.

Exemplo

Seja X uma variável aleatória uniformemente distribuida no intervalo [0,1]. Calcule $E[e^X]$.

Solução:

- Seja $Y = e^X$; queremos calcular E[Y].
- Lembremos que a densidade de X é dada por

$$f_X(t) = egin{cases} 1 & ext{se } 0 \leq t \leq 1 \\ 0 & ext{case contrário} \end{cases}$$

• Calculemos primeiramente a distribuição acumulada de Y, a saber $F_Y(x) = P[Y \le x]$.

- Observe que X nunca assume valores negativos; portanto, Y não assume valores < 1, ou seja, $P[Y \le x] = 0$, para todo x < 1.
- Quando $1 \le x \le e$, temos por outro lado

$$P[Y \le x] = P[e^X \le x] = P[X \le \ln x]$$

= $\int_0^{\ln x} f_X(t) dt = \int_0^{\ln x} 1 dt = \ln x$.

- Observe que $P[Y \le e] = 1$; portanto, $P[Y \le x] = 1$ para todo $x \ge e$.
- Assim, vemos que

$$F_Y(x) = \begin{cases} 0 & \text{se } x < 1 \\ \ln x & \text{se } 1 \le x \le e \\ 1 & \text{se } x > e \end{cases}$$

- Derivando a função distribuição acumulada, obtemos a densidade de Y; ou seja, $f_Y(t) = F_Y'(t)$.
- Neste caso específico, como $(\ln x)' = \frac{1}{x}$, obtemos

$$f_Y(t) \ = \ egin{cases} rac{1}{t} & ext{ se } 1 \leq t \leq e \ 0 & ext{ caso contrário} \end{cases}$$

Portanto, concluimos finalmente que

$$E[e^{X}] = E[Y] = \int_{-\infty}^{\infty} t \, f_{Y}(t) \, dt$$
$$= \int_{1}^{e} t \cdot \frac{1}{t} \, dt = \int_{1}^{e} dt = e - 1 \simeq 1.718 \, .$$

O cálculo efetuado no exemplo acima poderia ter sido obtido de maneira mais direta mediante a seguinte proposição geral.

Proposição

Seja X uma variável aleatória contínua com densidade f_X , e seja $g: \mathbb{R} \to \mathbb{R}$ uma função real. Então

$$E[g(X)] = \int_{-\infty}^{\infty} g(t) f_Y(t) dt$$

No exemplo anterior, temos $g(t) = e^t$. Portanto, aplicando a proposição acima temos

$$E[e^X] = \int_{-\infty}^{\infty} e^t f_X(t) dt = \int_{0}^{1} e^t dt = e - 1,$$

em absoluta concordância com o resultado obtido anteriormente.

Variância de uma variável aleatória contínua

 A variância de uma variável aleatória contínua X é definida de maneira inteiramente análoga ao caso discreto:

$$Var(X) = E[(X - \mu)^2],$$

onde $\mu = E[X]$ é a média (ou valor esperado) de X.

• Portanto, pela proposição acima, temos:

$$\operatorname{Var}(X) = \int_{-\infty}^{\infty} (t - \mu)^2 f_X(t) dt.$$

- Como no caso discreto, vale a identidade $Var(X) = E[X^2] (E[X])^2$.
- Assim, quando dispomos da média μ , podemos, para obter a variância, simplesmente calcular:

$$E[X^2] = \int_{-\infty}^{\infty} t^2 f_X(t) dt$$

e subtrair μ^2 do resultado obtido.

Analisemos os três principais exemplos de variáveis aleatórias contínuas vistos até agora.

- **Distribuição uniforme:** Seja X uniformemente distribuida no intervalo (α, β) .
 - A esperança de X é:

$$\mu = E[X] = \int_{-\infty}^{\infty} t f_X(t) dt = \int_{\alpha}^{\beta} \frac{t}{\beta - \alpha} dt$$
$$= \frac{1}{2} \frac{\beta^2 - \alpha^2}{\beta - \alpha} = \frac{\alpha + \beta}{2}.$$

• A variância de X é obtida calculando-se:

$$E[X^2] = \int_{-\infty}^{\infty} t^2 f_X(t) dt = \int_{\alpha}^{\beta} \frac{t^2}{\beta - \alpha} dt$$
$$= \frac{1}{3} \frac{\beta^3 - \alpha^3}{\beta - \alpha} = \frac{\alpha^2 + \alpha\beta + \beta^2}{3}.$$

Portanto,

$$Var(X) = E[X^2] - \mu^2 = \frac{\alpha^2 + \alpha\beta + \beta^2}{3} - \left(\frac{\alpha + \beta}{2}\right)^2 = \frac{(\alpha - \beta)^2}{12}$$

- **Distribuição exponencial:** Seja X uma variável aleatória exponencial com parâmetro $\lambda > 0$.
 - A esperança de X é:

$$\mu = E[X] = \int_{-\infty}^{\infty} t f_X(t) dt = \int_{0}^{\infty} \lambda t e^{-\lambda t} dt$$

Integrando por partes, obtemos:

$$\mu = E[X] = \int_0^\infty e^{-\lambda t} dt = \left(\frac{e^{-\lambda t}}{-\lambda}\right)\Big|_0^\infty = \frac{1}{\lambda}$$

• A variância de X é obtida calculando-se:

$$E[X^2] = \int_{-\infty}^{\infty} t^2 f_X(t) dt = \int_{0}^{\infty} \lambda t^2 e^{-\lambda t} dt$$

$$= \left(-t^2 e^{-\lambda t}\right)\Big|_0^\infty + 2 \int_0^\infty t \, e^{-\lambda t} \, dt = \frac{2\mu}{\lambda} = \frac{2}{\lambda^2}$$

Ou seja, temos:

$$Var(X) = E[X^2] - \mu^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

• **Distribuição normal:** Seja agora X uma variável aleatória normal, com parâmetros $\mu \in \mathbb{R}$ e $\sigma > 0$. Mostraremos em aula que $E[X] = \mu$ e que $Var(X) = \sigma^2$.