MAT 5798 – Medida e Integração Terceira Lista de Exercícios

Prof. Edson de Faria

6 de Junho de 2014

1 Teoremas de Fubini e Lebesgue-Radon-Nikodym

1. Considere a identidade

$$\frac{1}{x} = \int_0^\infty e^{-xy} \, dy \; ,$$

válida para todo x > 0.

(i) Use a identidade acima e o teorema de Fubini para calcular a integral

$$\iint_{R} e^{-xy} \sin x \, dx dy \; ,$$

onde $R = [0, b] \times [0, \infty)$, de duas maneiras diferentes.

(ii) Deduza de (i) que

$$\lim_{b \to \infty} \int_0^b \frac{\sin x}{x} \, dx = \frac{\pi}{2} \; .$$

(iii) A função $g:[0,\infty)\to\mathbb{R}$ dada por

$$g(x) = \frac{\sin x}{x} \ \forall x \neq 0 ; \ g(0) = 1 ,$$

é integrável em $[0,\infty)$? Justifique.

2. Seja μ uma medida de Borel *finita* em \mathbb{R} , e seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por $f(x) = \mu((-\infty, x])$. Prove que para todo $c \in \mathbb{R}$ temos

$$\int_{\mathbb{R}} [f(x+c) - f(x)] dx = c\mu(\mathbb{R}) .$$

3. Dê exemplo de uma função $f:[0,1]\times[0,1]\to\mathbb{R}$ integrável Lebesgue tal que

$$\int_0^a \left[\int_0^1 f(x, y) \, dy \right] \, dx = 0 \quad ; \quad \int_0^1 \left[\int_0^b f(x, y) \, dy \right] \, dx = 0$$

para quaisquer $0 \le a, b \le 1$ e que no entanto seja $n\tilde{a}o$ nula num conjunto de medida (bidimensional) de Lebesgue positiva.

4. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ a função dada por:

$$f(x,y) \ = \ \left\{ \begin{array}{ll} 1 & \text{se } x \geq 0 \text{ e } x \leq y < x+1 \ ; \\ -1 & \text{se } x \geq 0 \text{ e } x+1 \leq y < x+2 \ ; \\ 0 & \text{nos demais pontos} \ (x,y) \end{array} \right.$$

Prove que as funções $x \mapsto f(x,y)$ (para cada $y \in \mathbb{R}$) e $y \mapsto f(x,y)$ (para cada $x \in \mathbb{R}$) são integráveis Lebesgue, e que as integrais iteradas de f existem mas são distintas, isto é,

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) \, dx \, dy \neq \int_{\mathbb{R}} \int_{\mathbb{R}} f(x,y) \, dy \, dx .$$

Por que isto não contradiz o teorema de Fubini?

5. Sejam X=Y=[0,1] e seja $\mathcal B$ a σ -álgebra de Borel de [0,1]. Considere os espaços de medida $(X,\mathcal B,\mu)$ e $(Y,\mathcal B,\nu)$, onde μ é a medida de Lebesgue e ν é a medida da contagem. Se $\Delta=\{(x,x):x\in[0,1]\}\subset X\times Y$ é a diagonal, mostre que a integral de χ_Δ no espaço produto,

$$\int_{X\times Y} \chi_{\Delta} d(\mu\otimes\nu) ,$$

bem como as integrais iteradas

$$\int_X \int_Y \chi_{\Delta}(x,y) \, d\nu(y) \, d\mu(x) \quad , \quad \int_Y \int_X \chi_{\Delta}(x,y) \, d\mu(x) \, d\nu(y) \ ,$$

são todas distintas. Por que isto não contradiz o teorema de Fubini?

6. Seja (X, \mathcal{A}) um espaço mensurável e sejam ν uma medida com sinal *finita* e μ uma medida positiva, ambas definidas em (X, \mathcal{A}) . Prove que $\nu \ll \mu$ se e somente se para todo $\epsilon > 0$ existe $\delta > 0$ tal que

$$\forall E \in \mathcal{A}, \ \mu(E) < \delta \implies |\nu(E)| < \epsilon.$$

7. Mostre que a conclusão do exercício 6 pode ser falsa se a medida com sinal ν não for finita. [Sugestão: Considere X=(0,1) com a σ -álgebra de Borel e tome $d\nu(x)=dx/x$ e $d\mu(x)=dx$.]

- 8. Sejam ν uma medida com sinal e μ uma medida positiva, ambas definidas num mesmo espaço mensurável (X, \mathcal{A}) . Prove que $\nu \ll \mu$ se e somente se $\nu^+ \ll \mu$ e $\nu^- \ll \mu$.
- 9. Seja ν uma medida com sinal num espaço mensurável (X, \mathcal{A}) . Prove que para todo $E \in \mathcal{A}$ temos:

$$|\nu|(E) \ = \ \sup \left\{ \ \left| \int_E f \, d\nu \right| \ : \ f \ \text{mensurável} \, , \ |f| \le 1 \right\} \, \, .$$

10. Regra da cadeia para a derivada de Radon-Nikodym. Dados um espaço mensurável (X, \mathcal{A}) e três medidas positivas μ , ν , ρ definidas nesse mesmo espaço, suponha que $\nu \ll \mu$ e $\rho \ll \nu$. Prove que $\rho \ll \mu$ e que

$$\frac{d\rho}{d\mu} = \frac{d\rho}{d\nu} \cdot \frac{d\nu}{d\mu} \ .$$

11. Esperança condicional. Sejam (X, \mathcal{A}, μ) um espaço de medida e $\mathcal{B} \subset \mathcal{A}$ uma sub- σ -álgebra. Suponha que f é uma função não-negativa \mathcal{A} -mensurável, e seja ν_f a medida definida em (X, \mathcal{B}) dada por

$$\nu_f(B) = \int_B f \, d\mu \; , \quad \forall \; B \in \mathcal{B} \; .$$

Seja $\mu_* = \mu|_{\mathcal{B}}$ a restrição da medida μ à sub- σ -álgebra \mathcal{B} .

- (i) Prove que $\nu_f \ll \mu_*$;
- (ii) Seja $g=d\nu_f/d\mu_*$ a derivada de Radon-Nikodym de ν_f em relação a μ_* , e observe que g é $\mathcal B$ -mensurável. Prove que

$$\int_B g \, d\mu \ = \ \int_B f \, d\mu \ , \quad \forall \ B \in \mathcal{B} \ .$$

A função g é chamada de esperança condicional de f com relação a \mathcal{B} , e escrevemos $g = \mathbb{E}(f|\mathcal{B})$.

(iii) Se f é integrável em (X, \mathcal{A}, μ) mas não necessariamente não-negativa, definimos:

$$\mathbb{E}(f|\mathcal{B}) \ = \ \mathbb{E}(f^+|\mathcal{B}) - \mathbb{E}(f^-|\mathcal{B}) \ .$$

Prove que $f = \mathbb{E}(f|\mathcal{B})$ se e somente se f é \mathcal{B} -mensurável.

(iv) Prove que se h é uma outra função \mathcal{B} -mensurável tal que $\int_B h \, d\mu = \int_B f \, d\mu$ para todo $B \in \mathcal{B}$, então $h \equiv \mathbb{E}(f|\mathcal{B})$ em μ -qtp.

2 Função maximal de Hardy-Littlewood

12. Seja $f \in L^1(\mathbb{R}^n)$ e suponha que f $n\tilde{a}o$ é nula em λ -qtp. Prove que existe uma constante c>0 tal que

$$f^*(x) \geq \frac{c}{|x|^n} , \quad \forall |x| \geq 1 ,$$

onde $f^* = \mathcal{M}f$ é a função maximal de Hardy-Littlewood associada a f. Deduza que f^* não é integrável.

13. Seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por

$$f(x) = \begin{cases} \frac{1}{|x|(\log|x|)^2} & \text{se } 0 < |x| \le \frac{1}{2} ,\\ 0 & \text{caso contrário } . \end{cases}$$

- (a) Prove que f é integrável.
- (b) Prove que existe uma constante c > 0 tal que

$$f^*(x) \ge \frac{c}{|x| \log\left(\frac{1}{|x|}\right)}, \quad \forall \ 0 < |x| \le \frac{1}{2}.$$

(c) Deduza que $f^* = \mathcal{M}f$ não é localmente integrável neste exemplo.

3 Diferenciabilidade, funções de variação limitada e funções absolutamente contínuas

Nos exercícios abaixo, denotamos por BV[a,b] a classe de todas as funções $f:[a,b] \to \mathbb{R}$ que têm $variação\ limitada\ em\ [a,b]$. A saber, se $a \le x_0 < x_1 < \cdots < x_N \le b$ e $\mathcal{P} = \{x_0, x_1, \ldots, x_N\}$, escrevemos

$$Var(f; \mathcal{P}) = \sum_{i=1}^{N} |f(x_i) - f(x_{i-1})|,$$

e definimos a variação de f em [a,b] como sendo $Var(f) = \sup_{\mathcal{P}} Var(f;\mathcal{P})$. Se $Var(f) < \infty$, dizemos que f tem $variação\ limitada$.

Se $f:[a,b]\to\mathbb{R}$, dizemos que f é absolutamente contínua se para todo $\epsilon>0$ existe $\delta>0$ tal que, se $(a_i,b_i),\ i=1,2,\ldots,N$ são sub-intervalos de

[a,b] dois a dois disjuntos e $\sum_{i=1}^{N}(b_i-a_i)<\delta$, então $\sum_{i=1}^{N}|f(a_i)-f(b_i)|<\epsilon$. Denotamos por AC[a,b] a classe das funções absolutamente contínuas definidas em [a,b]. observe que toda função absolutamente contínua é necessariamente uniformemente contínua.

- **14.** Prove que toda função de variação limitada $f \in BV[a,b]$ pode ser escrita sob a forma $f = \varphi \psi$, com $\varphi, \psi : [a,b] \to \mathbb{R}$ funções monótonas não-decrescentes.
- 15. Seja $f:[a,b]\to\mathbb{R}$ uma função Lipschitziana, isto é, tal que

$$|f(x) - f(y)| < M|x - y|$$

para alguma constante positiva M. Prove que $f \in BV[a, b]$.

16. Sejam $\alpha, \beta > 0$ e considere a função $f: [0,1] \to \mathbb{R}$ dada por f(0) = 0 e

$$f(x) = x^{\alpha} \sin\left(\frac{1}{x^{\beta}}\right), \ \forall x \neq 0.$$

- (a) Determine todos os valores de α, β para os quais $f \in BV[0, 1]$.
- (b) Verifique que se $\alpha = 2$ e $\beta = \frac{3}{2}$, então $f \in BV[0,1]$, f' existe mas é ilimitada em [0,1].
- 17. Mostre que BV[a,b] é uma álgebra sobre os reais. Em outras palavras, mostre que se $f,g \in BV[a,b]$ e $\alpha \in \mathbb{R}$, então as funções $\alpha f, f+g$ e fg estão em BV[a,b].
- **18.** Prove que toda função absolutamente contínua em [a,b] é de variação limitada em [a,b], ou seja, $AC[a,b] \subset BV[a,b]$.
- **19.** Se $f \in AC[a, b]$, escreva $f = \varphi \psi$ como no exercício 14 (com φ, ψ monótonas não-decrescentes). Prove que φ e ψ são absolutamente contínuas.
- **20.** Seja $F:[a,b]\to\mathbb{R}$ uma função não-decrescente. Como vimos em aula, F é derivável em Lebesgue quase todo ponto. Prove que

$$\int_a^b F'(x) dx \le F(b) - F(a) .$$

Dê um exemplo para mostrar que a desigualdade acima pode ser estrita.

21. Suponha que $F:[a,b]\to\mathbb{R}$ é absolutamente contínua. Prove que F'(x) existe em Lebesgue-qtp $x\in[a,b]$ e que

$$\int_a^b F'(x) dx = F(b) - F(a) .$$