Localização em Teoria de Anéis

Douglas de Araujo Smigly, Javier Sánchez Serdà (Orientador)

Instituto de Matemática e Estatística - Universidade de São Paulo

dsmigly@ime.usp.br - jsanchez@ime.usp.br

25° Simpósio Internacional de Iniciação Científica da Universidade de São Paulo

XXV SIICUSP

Introdução

Neste trabalho, dado um anel R, consideramos o problema de classificar os anéis R-épicos.

Definição 1 Seja R um anel. Um **anel com divisão** R-**épico** consiste em um anel com divisão D, juntamente com um homomorfismo $\varphi:R\to D$ de forma que D é gerado racionalmente pela $Im(\varphi)$.

Solução para o caso comutativo

A localização tem como objetivo construir a partir de certo anel R e um subconjunto multiplicativo S de R, um novo anel denominado RS^{-1} , que possua propriedades de interesse geral, onde todos os elementos de S sejam inversíveis.

Definição 2 Um subconjunto S de um anel R é dito **multiplicativo** quando as seguintes condições são satisfeitas:

$$1 \in S$$
; $\forall a, b \in S, ab \in S$.

Para fazer a construção de RS^{-1} , para um anel comutativo R, define-se uma relação de equivalência de pares $(x,y)\in R\times S$, dada por

$$(a,s) \equiv (b,t) \Leftrightarrow \exists u \in S \text{ tal que } (at-bs)u = 0$$

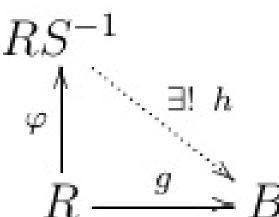
com o objetivo de obter "frações" a partir da definição acima. O anel RS^{-1} é definido como o conjunto das classes de equivalência de \equiv , onde denotamos convenientemente a classe de equivalência de (a,s) por $\frac{a}{s}$. Pode-se definir as operações + e \cdot dadas por:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$
 e $\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$

O anel RS^{-1} satisfaz a seguinte **propriedade universal**, que o caracteriza:

Teorema 1 Sejam R e B anéis, com R comutativo. Considere $g:R\to B$ um homomorfismo de anéis, tal que g(s) é uma unidade em B $\forall s\in S$. Então, $\exists !$ (existe um único) homomorfismo de anéis $h:RS^{-1}\to B$ tal que $g=h\circ\varphi$.

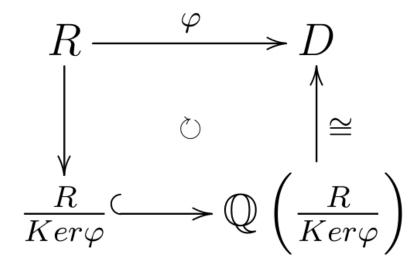
Tal propriedade pode ser melhor visualizada pelo seguinte diagrama comutativo:



Se R é um domínio de integridade e $S=R\setminus\{0\}$, então $S^{-1}R$ é um corpo, denominado **corpo de frações** representando por $\mathbb{Q}(R)$ e $R\hookrightarrow\mathbb{Q}(R)$.

Consideremos um anel R-épico $\varphi:R\to D$. Para essa situação, no anel com divisão R-épico, temos que $Ker\varphi$ é um ideal primo, e dessa forma podemos considerar $\frac{R}{Ker\varphi}$. Por sua vez, este é um domínio de integridade, e assim podemos construir $\mathbb{Q}\left(\frac{R}{Ker\varphi}\right)$, e $\mathbb{Q}\left(\frac{R}{Ker\varphi}\right)\cong D$

Podemos expressar o descrito a partir do seguinte diagrama:



Localização de Ore

Localização de Ore para monoides

Prosseguimos o estudo com a Localização de Ore, primeiramente abordando um monoide (R, \cdot) .

Definição 3 Um subconjunto multiplicativo $S \subset R$ é um **Conjunto de Denominadores à esquerda** se:

- (Condição de Ore à esquerda) Para todos elementos $s \in S$ e $r \in R$, é possível encontrar $s' \in S$ e $r' \in R$ de forma que seja satisfeito r's = s'r.
- (Reversibilidade à esquerda) Para todos $n_1, n_2 \in R$ e $s \in S$ que satisfaçam a condição de que $n_1s = n_2s$, existe um elemento $s' \in S$ de tal forma que $s'n_1 = s'n_2$.

Se S é Conjunto de Denominadores à esquerda, conseguimos construir um monoide onde todos os elementos de S são invertíveis, no caso, $S^{-1}R$.

Definimos a relação de equivalência \sim em $S \times R$ por $(s,r) \sim (s',r') \Leftrightarrow (\exists \tilde{s} \in S \land \exists \tilde{r} \in R)(\tilde{s}s' = \tilde{r}s \land \tilde{s}r' = \tilde{r}r).$

Podemos estabelecer a multiplicação em $S^{-1}R$ como:

$$(s_1^{-1}r_1)(s_2^{-1}r_2) = (\tilde{s}s_1)^{-1}(\tilde{r}r_2)$$

onde $\tilde{r} \in R, \tilde{s} \in S$, satisfazem $\tilde{r}s_2 = \tilde{s}r_{11}$ Tal operação é associativa e possui elemento neutro 1 = 1 Logo, S Possui a estrutura de monoide.

Localização de Ore para anéis

Seja $(R, \cdot, +)$ um anel. (R, \cdot) é um monoide e podemos construir o monoide $S^{-1}R$, como anteriormente.

Podemos definir uma adição em $S^{-1}R$ da seguinte forma: $(s_1^{-1}r_1) + (s_2^{-1}r_2) = (\tilde{s}s_1)^{-1}(\tilde{s}r_1 + \tilde{r}r_2)$

onde $\tilde{s}s_1 = \tilde{r}s_2$, e podemos garantir a existência de $\tilde{s} \in S, \tilde{r} \in R$ pela condição de Ore à esquerda.

Tal operação está bem-definida, é associativa, e $1^{-1}0$ é o elemento neutro. Como as propriedades distributivas valem nesse caso, $S^{-1}R$ possui a estrutura de anel.

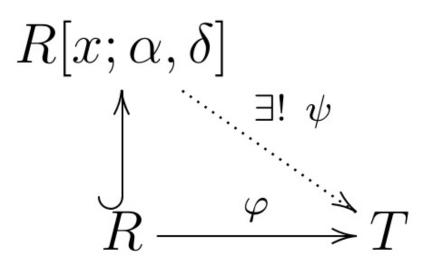
Extensão de Ore

Definição 4 Dado um anel R, um endomorfismo α , uma α -diferenciação δ e uma incógnita x, dizemos que $S=R[x;\alpha,\delta]$ é a **Extensão de Ore** de R se satisfizer as seguintes condições:

- $\spadesuit R$ é um subanel de S;
- $x \in S;$
- \forall S é um R-módulo livre à esquerda com base $\{1, x, x^2, ...\}$;

O anel S é caracterizado pela seguinte propriedade universal:

Teorema 2 Seja $S=R[x;\alpha,\delta]$ uma Extensão de Ore de R. Considere um anel U e o homomorfismo de anéis $\varphi:R\to U$, e $y\in U$ tal que $y\varphi(r)=\varphi\alpha(r)y \ \ \forall r\in R$. Então, existe um único homomorfismo de anéis $\psi:S\to T$ tal que $\psi|_R=\varphi$ e $\psi(x)=y$. Ou seja, o seguinte diagrama é comutativo:



Teorema da Base de Hilbert Skew

Teorema 3 Se R é um anel noetheriano à esquerda, então $S = R[x; \alpha, \delta]$ também é um anel noetheriano à esquerda.

Imersão de domínios em anéis com divisão

Com este estudo, respondemos à seguinte pergunta: Será que qualquer domínio pode ser imergido em um anel com divisão? A resposta para essa pergunta é negativa.

Proposição 1 Existe um monoide cancelativo H com elementos $a,\ b,\ c,\ d,\ x,\ y,\ u$ e v com as propriedades

$$ax = by, cx = dy, au = bv \Rightarrow cu = dv$$

Isso implica que H não pode ser imergido em nenhum grupo G.

Seja R a álgebra de monoide KH, onde K é um domínio. Então R é um domínio, e R não pode ser imergido em nenhum anel com divisão D, pois $D \setminus \{0\}$ seria um grupo multiplicativo que conteria H.

Qualquer domínio noetheriano R pode ser imergido em um anel com divisão. Isso ocorre pois todo domínio noetheriano é domínio de Ore, ou seja, R é um domínio em que $S = R \setminus \{0\}$ é conjunto de Ore, e então $S^{-1}R$ é um anel com divisão. Em particular, qualquer domínio de ideais principais pode ser imergido num anel com divisão.

Se σ é um endomorfismo de um anel com divisão K, então $K[x;\sigma]$ pode ser imergido em um anel com divisão, que é justamente a Localização de Ore.

Considere C um corpo fixado e K o corpo de funções racionais C(t). Seja σ_n um endomorfismo de K de tal modo que σ_n é a identidade em C, e $\sigma_n(t) = t^n$. Então, há uma álgebra livre imergível $C\langle u,v\rangle\hookrightarrow R_n$, definido por

$$u \longmapsto x \qquad \land \qquad v \longmapsto tx$$

Podemos fazer uma imersão de $R_n=K[x;\sigma_n]$ em certo D_n . Compondo as duas imersões, obtemos $\varepsilon_n:C\langle u,v\rangle\hookrightarrow D_n$, tal que:

$$\varepsilon_n(u) = x \qquad \land \qquad \varepsilon_n(v) = tx$$

Teorema 4 Para $n \neq m, n, m > 1$, não existe um homomorfismo de anéis $f: D_m \rightarrow D_n$ tal que

$$f \circ \varepsilon_m = \varepsilon_n.$$

Conclusão

As técnicas de localização conhecidas para o caso comutativo não funcionam sempre no caso de uma generalização natural para a situação não-comutativa.

Vê-se que nem todo domínio pode ser imergido em um anel com divisão, e que a Localização de Ore não é suficiente para classificar os anéis R-épicos.

Referências

- [1] M. Atiyah e I. MacDonald, *Introduction to Commutative Algebra*, Addison-Wesley Series in Mathematics, 1969.
- [2] K. R. Goodearl e R. B. Warfield, Jr., *An introduction to noncommutative Noetherian rings*, Cambridge University Press, 2004
- [3] Z. Škoda, Noncommutative Localization in noncommutative Geometry, arxiv.math.QA/0403276.
- [4] T. Y. Lam, *Lectures on Modules and Rings*, Graduate Texts in Mathematics, vol. 189, Springer Verlag, 1999.