

Bluetooth Low Energy

Fillipe Resina Marcela Terakado Ricardo Guimarães

Institute of Mathematics and Statistics - University of São Paulo

- 1. Introduction
- 2. History
- 3. Architecture
- 4. Comparative Studies
- 5. Applications

Introduction

What is Bluetooth?

What is Bluetooth?

History

Beginnings of Bluetooth

Important Dates

- 1989 Ericsson wants to devise replacement to wires/cables [7].
- 1994 Bluetooth invented.
- 1998 SIG founded: Ericsson, IBM, Intel, Nokia and Toshiba [7].
- 1999 Bluetooth v1.0
- 2000 First cell phone with the technology.
- 2009 Bluetooth Low Energy
- 2016 Bluetooth 5

First Devices (2000)

Figure 1: GN 9000-BT headset

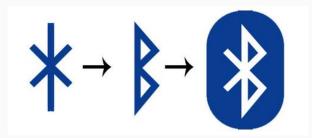
Figure 2: Ericsson T-36

What about the name?

Harald Blåtand

What about the name?

Harald Blåtand


Harald Bluetooth

What about the name?

Harald Blåtand

Harald **Bluetooth**

Architecture

Protocol Stack

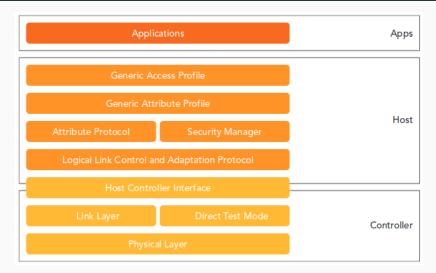


Figure 3: Protocol Stack of Bluetooth Low Energy [5].

Aspect	BR/EDR	LE
RF Band	2.4 GHz (ISM)	2.4 GHz (ISM)
Energy Consumption	Reference	0.01 to 0.5 of reference
Coverage	10 m	\geq 10 m
RF Channels	79 channels (1 MHz spacing)	40 channels (2 Mhz spacing)
Modulation Scheme	GFSK	GFSK
Modulation Technique	FHSS	FHSS
Gross data rate	1 - 3 Msym/s	1 - 2 Msym/s
Application data rate	0.7 - 2.1 Mbit/s	0.2 - 0.6 Mbit/s
Transmit power	1 mW - 100 mW	0.01 mW - 100 mW

Table 1: Comparison between physical layer aspects of BR/EDR and LE.

Piconets

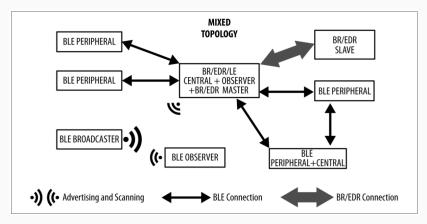


Figure 4: Mixed piconet topology [11].

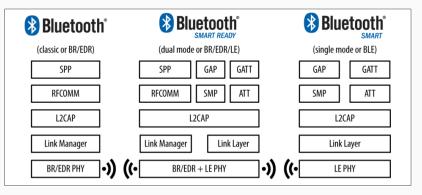


Figure 5: Bluetooth interoperability [11].

Bluetooth Types: Use Cases

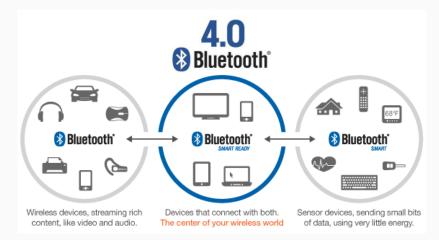
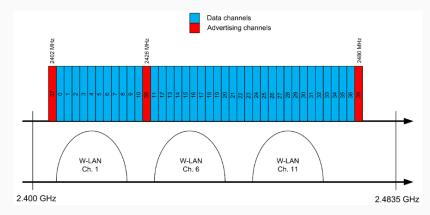



Figure 6: Bluetooth interoperability Source: EdgeFX

Figure 7: Bluetooth LE and the three nonoverlapping WLAN channels 1, 6 and 11. [6].

Advertisement and Scanning

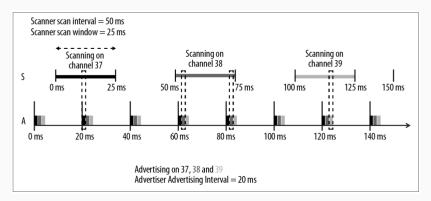


Figure 8: Advertisement events [11].

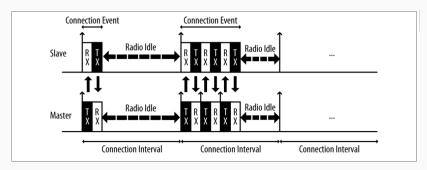


Figure 9: Connection events [11].

- New in Bluetooth 5.
- Can use data channels for advertisement.
- Compatible with Bluetooth 4.x.
- Increase advertisement broadcast throughput by 8 times.

Physical Layer Mode	LE 1M	LE 2M	LE Coded (S = 2)	LE Coded (S = 8)
Nominal Frequency Deviation	250 kHz	500 kHz	250 kHz	250 kHz
Symbol Rate	1 Msym/s	2 Msym/s	1 Msym/s	1 Msym/s
Data Rate	1 Mbit/s	2 Mbit/s	500 kbit/s	125 kbit/s
Error Detection	CRC	CRC	CRC	CRC
Error Correction	None	None	FEC	FEC
Range Multiplier (approximate)	1	0.8	2	4
Requirement in Bluetooth 5	Mandatory	Optional	Optional	Optional

Table 2: Comparison of the Bluetooth 5 PHY modes.

Comparative Studies

An Analysis of Bluetooth, Zigbee and Bluetooth Low Energy and Their Use in WBANs (2010) [2]

- Theoretical comparison.
- · Scenario: Wireless Body Area Networks.
- BLE is better by a small margin.

	Bluetooth	ZigBee	Bluetooth LE
Advantages	A widely used technology	A low-power alternative	It offers high spectral
	that is supported by most	to Bluetooth, that offers	efficiency and low
	devices. It is ideal for	significantly improved	power consumption
	applications that are	performance of 30mW	
	requiring high bit rates	compared to Bluetooth	
	over short distances.	100mW.	
Disadvantages	Open to interception and	Low data rate.	Not supported by
	attack.		many devices

Figure 10: Comparison of Zigbee, Bluetooth and Bluetooth Low Energy.

How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4 (2012) [8]

- Empirical comparison (real devices).
- Scenario: Wireless Body Area Networks.
- BLE is better at energy consumption.
- BLE also performs well with interference even without AFH.
- ZigBee: the master device has more processing power.
- BLE: the master device needs less power.

A comparative analysis of BLE and 6LoWPAN for U-HealthCare applications (2013) [10]

- Simulation.
- Scenario: Health Wearables (WBANs).
- BLE, ANT, IrDA, NFC, ZigBee and 6LoWPAN
- Energy, throughput, latency.
- 6LoWPAN: easier to integrate with IP-based applications.
- BLE: Better throughput and less vulnerable to obstacles.

Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario (2013) [1]

- Empirical comparison (real devices).
- Scenario: Cyclic sleep (beacons).
- BLE sleeps and wakes up more efficiently.

	BLE	ZigBee	ANT
Time of one connection ±SD*	1150 ms ±260 ms	250 ms ±9.1 ms	930 ms ±230 ms
Sleep current	0.78 uA	4.18 uA	3.1 uA
Awake current	4.5 mA	9.3 mA	2.9 mA
Min current (at 120 sec interval)	10.1 uA	15.7 uA	28.2 uA
Optimal sleep interval	10.0 s	14.3 s	15.3 s
*SD: standard deviation			

Figure 11: Experimental results using 3.3V supply.

An empirical performance study of intra-vehicular wireless sensor networks under wifi and bluetooth interference (2013) [4]

- Empirical comparison (real devices).
- Scenario: Intra-vehicular Wireless Sensors Networks (IVWSNs).
- ZigBee vs BLE under Bluetooth and Wi-Fi interference.
- BLE is more robust in most configurations.

A preliminary study of low power wireless technologies: ZigBee and Bluetooth low energy (2015) [3]

- Empirical comparison (real devices).
- "Inconclusive" decision.

Technology	Bluetooth LE	ZigBee
Power spent	29.0 mA*ms	610.2 mA*ms

Table 3: Power spent to trasmit 1 byte of data payload.

- Bluetooth 4.2+ provides better security.
- Bluetooth LE behaves better with Wi-Fi and Bluetooth BR/EDR interference (AFH and more channels).
- Bluetooth 5 includes error correction (LE Coded).

Applications

Automotive

Figure 12: BLE Automotive Applications (Source: Nordic Semi)

- VANETs
- IVWSNs

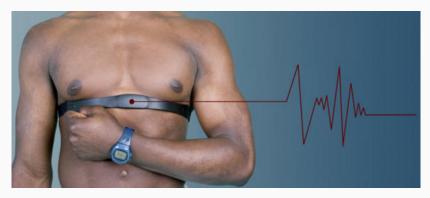
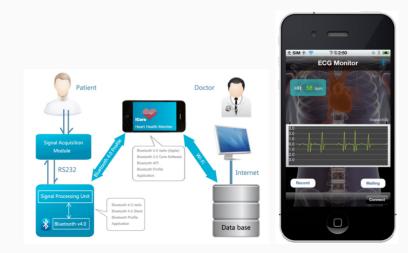



Figure 13: Sports and Fitness Source: Nordic Semi

Healthcare

Figure 14: ECG system [12]

Home automation

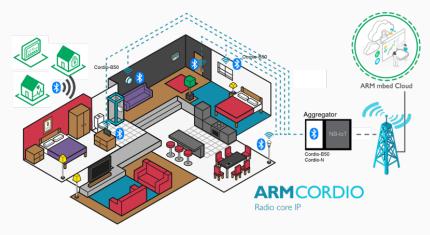
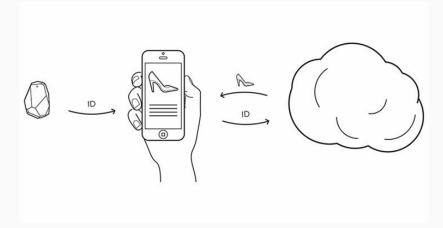



Figure 15: ARM Cordio Source: ARM

Localization and Marketing

Figure 16: Marketing Application Source: iBeacon Insider

From Imagination to Innovation

From Imagination to Innovation

Figure 17: Awards Logo Source: Bluetooth website

From Imagination to Innovation

Figure 17: Awards Logo Source: Bluetooth website

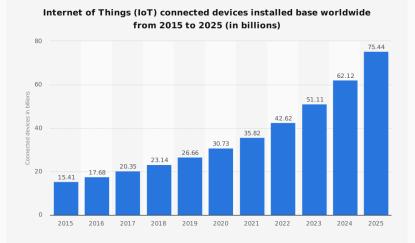
Figure 18: Prototype Source: Bluetooth website

Figure 19: Student Source: Bluetooth website

Bluetooth 5 devices and future

Bluetooth 5 devices and future

Bluetooth 5 devices and future



Statistic - IoT connected devices

Statistic - IoT connected devices

Source: IHS © Statista 2017 Additional Information:

Worldwide; IHS; 2015 to 2016

Questions?

References I

- A. Dementyev, S. Hodges, S. Taylor, and J. Smith.
 Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario.
 In Wireless Symposium (IWS), 2013 IEEE International, pages 1–4.
 IEEE, 2013.
 - E. Georgakakis, S. A. Nikolidakis, D. D. Vergados, and C. Douligeris. An Analysis of Bluetooth, Zigbee and Bluetooth Low Energy and Their Use in WBANs.

In Wireless Mobile Communication and Healthcare - Second International ICST Conference, MobiHealth 2010, Ayia Napa, Cyprus, October 18-20, 2010. Revised Selected Papers, volume 55, pages 168–175. Springer, 2010.

J.-S. Lee, M.-F. Dong, and Y.-H. Sun.

A preliminary study of low power wireless technologies: ZigBee and Bluetooth low energy.

In Industrial Electronics and Applications (ICIEA), 2015 IEEE 10th Conference on, pages 135–139. IEEE, 2015.

J.-R. Lin, T. Talty, and O. K. Tonguz. An empirical performance study of intra-vehicular wireless sensor networks under wifi and bluetooth interference. In Global Communications Conference (GLOBECOM), 2013 IEEE, pages 581–586. IEEE, 2013.

References III

LitePoint.

Bluetooth low energy.

http://litepoint.com/wp-content/uploads/2016/ 10/Bluetooth-Low-Energy-Whitepaper-102416.pdf,10 2016.

- Rohde & Schwarz GmbH & Co. KG.
 From cable replacement to the IoT Bluetooth 5.
 https://bluetoothworldevent.com/__media/PDFs/
 Rohde--26-Schwarz_3e_Bluetooth_WhitePaper.pdf, 12
 2016.
- K. V. S. S. S. S. Sairam, N. Gunasekaran, and S. R. Redd. Bluetooth in wireless communication.

IEEE Communications Magazine, 40(6):90–96, Jun 2002.

M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen. How low energy is bluetooth low energy? Comparative measurements with ZigBee/802.15.4.

In 2012 IEEE Wireless Communications and Networking Conference Workshops, WCNC Workshops 2012, Paris, France, April 1, 2012, pages 232–237. IEEE, 2012.

Bluetooth Core Specification v5.0.

https://www.bluetooth.org/DocMan/handlers/ DownloadDoc.ashx?doc_id=421043, 12 2016.

References V

R. Tabish, A. B. Mnaouer, F. Touati, and A. M. Ghaleb. A comparative analysis of BLE and 6LoWPAN for U-HealthCare applications.

In GCC Conference and Exhibition (GCC), 2013 7th IEEE, pages 286-291. IEEE, 2013.

- K. Townsend, R. Davidson, A. Davidson, and C. Cufi. Getting Started with Bluetooth Low Energy. O'Reilly UK Ltd., 2014.
- B. Yu, L. Xu, and Y. Li.

Bluetooth low energy (ble) based mobile electrocardiogram monitoring system.

In Information and Automation (ICIA), 2012 International Conference on, pages 763-767. IEEE, 2012.