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A credal set

United States National Intelligence Estimate report number 29-51:
an attack on Yugoslavia in 1951 should be considered a serious possibility.

Authors provided odds that ranged from 20/80 to 80/20 in favor of an attack.
That is,

0.2 ≤ P(attack) ≤ 0.8 .
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Easy warm-up

Possibility space Ω with states ω: everything is FINITE in this tutorial!

Events are subsets of Ω.

Random variables are functions from Ω to real numbers.

Expectations EP[X ], probabilities P(A).

Conditional expectations EP[X |B], probabilities P(A|B).
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Credal sets

A credal set is a set of probability measures on a common algebra.

A credal set is usually defined by a set of assessments.
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Example:
Ω = {ω1,ω2,ω3}.
P(ωi) = pi .
p1 ≥ p3, 2p1 ≥ p2, p1 ≤ 2/3 and p3 ∈ [1/6,1/3].
Take points P = (p1,p2,p3).
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(5/6, 0, 1/6)

(2/3, 0, 1/3)

(1/2, 0, 1/2)

(2/3, 1/3, 0) (1/3, 2/3, 0)

(0, 5/6, 1/6)

(0, 2/3, 1/3)
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Properties of credal sets

Credal set with distributions for X is denoted K(X ).

Given credal set K(X ):
E[X ] = infP∈K(X) EP[X ].
E[X ] = supP∈K(X) EP[X ].
P(A) = infP∈K(X) P(A).
P(A) = supP∈K(X) P(A).

For closed convex credal sets, lower and upper expectations are attained at
vertices.
A closed convex credal set is completely characterized by the associated lower
expectations.
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Independence

Complete independence of X and Y : elementwise stochastic independence.

X and Y are strongly independent with respect to a credal set K(X ,Y ) if the
latter can be written as the convex hull of a credal set for which X and Y are
completely independent.

Y is epistemically irrelevant to X if E[f (X )|Y = y ] = E[f (X )] for every function f ,
every value y .
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Report 29-51, continued

assassination coup/revolt

regime change decision to invade

build-up propagandaattack

invasion
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Another example: The three prisoners

Three prisoners await execution, in separate cells.
They may be pardoned by the king, independently, with P(Ei) = 1/2.

E1 E2 E3
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The three prisoners and the king
Three prisoners await execution, in separate cells.
They may be pardoned by the king, independently, with P(Ei) = 1/2.
Possible event: only one prisoner is executed.

E1 E2 E3

K
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The three prisoners and the guard
Three prisoners await execution, in separate cells.
They may be pardoned, independently, with P(Ei) = 1/2.
Guard knows that only one prisoner is to be executed.
Guard may say to Prisoner 1: “Prisoner 2 will be released”.
What is P(E1|G2 and K )?

E1 E2 E3

K G2
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The three prisoners, the king, the guard

Note: G2 is: (¬E2 ∧ E3) ∨ (¬E2 ∧ ¬E3 ∧ D).
If P(D) = 1/2, then P(Ei |G2 and K ) = P(Ei |K ) = 1/3.

E1 E2 E3

U G2
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The three prisoners, the king, the guard

If P(D) ∈ [0,1], then P(Ei |G2 and K ) ∈ [0,1/2].

E1 E2 E3

U G2
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The three prisoners, the king, the guard

If P(D) ∈ [0,1], then P(Ei |G2 and K ) ∈ [0,1/2].
And if, in addition, P(Ei) ∈ [19/40, 21/40], then P(Ei |G2 and K ) ∈ [0, 441/802].

E1 E2 E3

U G2
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Credal networks until 2005: a quick summary

Started around 1990: desire to increase representation power of Bayesian
networks to handle uncertainty in Artificial Intelligence (AI).

Around 1993: message passing algorithms.
Around 1997: 2U algorithm, epistemic extensions.
From 1999 to 2005: focus on credal sets rather than intervals and other
formalisms; discussion of independence concepts.
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A few tutorials
A. Cano, S. Moral. Algorithms for imprecise probabilities. In: J. Kohlas, S.
Moral, Handbook of Defeasible and Uncertainty Management Systems, pp.
369–420, 2000.
F. G. Cozman. Graphical models for imprecise probabilities. International
Journal of Approximate Reasoning, 39:167–184, 2005.

A. Piatti, A. Antonucci, M. Zaffalon. Building knowledge-based systems by
credal networks: A tutorial. Nova Science, pp. 227–279, 2010.
A. Antonucci, C. de Campos, M. Zaffalon. Probabilistic graphical models. In: T.
Augustin, F. P. A. Coolen, G. de Cooman, M. C. M. Troffaes, Introduction to
Imprecise Probabilities, pp. 207–229, 2014.
J. de Bock. Credal networks under epistemic independence. International
Journal of Approximate Reasoning, 85:107–138, 2017.
Denis D. Mauá, Fabio G. Cozman. Thirty years of credal networks:
Specification, algorithms and complexity. International Journal of Approximate
Reasoning, 126:133–157, 2020.
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Graphs: nodes, edges, cycles

assassination coup/revolt

regime change decision to invade

build-up propagandaattack

invasion
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Bayesian networks and the Markov condition
A Bayesian network consists of a pair:

a directed acyclic graph where each node is a random variable,
a joint distribution over those random variables,

such that they satisfy the Markov condition:
Every variable X is independent from its nondescendants nonparents given its
parents.

Consequence:

P(X1 = x1, . . . ,Xn = xn) =
n∏

i=1

P
(
Xi = xi |PaXi = πi

)
.
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Example:
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Credal networks and the Markov condition(S)

A credal network consists of a pair:
a directed acyclic graph where each node is a random variable,
a credal set collecting joint distributions over those random variables,

such that they satisfy the Markov condition:
Every variable X is independent from its nondescendants nonparents given its
parents.

Note: there are several definitions of “independence” for credal sets.
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Credal Networks:

Structure the acyclic directed graph whose nodes are random variables.
Quantification the credal set of joint probability distributions over the random

variables.
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Example: separately specified credal network

X Y Z

P(X = 1) ∈ [1/10,1/3], P(Y = 1) = 4/5,
P(Z = 1|Y = 0) ∈ [2/5,3/5], P(Z = 1|Y = 1) ∈ [7/10,9/10].
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Digression...

One might have non-separately specified credal networks.
Not very common.
Example: qualitative networks with positive additive synergy.

P(X = 1|Y = 1,Z = 1) + P(X = 1|Y = 0,Z = 0) ≥
P(X = 1|Y = 0,Z = 1) + P(X = 1|Y = 1,Z = 0) ,
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Complete Extension
Suppose we have a directed acyclic graph with associated random variables,
and separately specified local credal sets,
and we take the credal set KC(X1, . . . ,Xn):{

P : P(X1 = x1, . . . ,Xn = xn) =
n∏

i=1

P
(
Xi = xi |PaXi = πi

)
,

with P
(
Xi |PaXi = πi

)
∈ K(Xi |PaXi = πi)

}
.

Largest joint credal set for Markov condition with respect to
elementwise independence!
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Convexifying

Suppose we have a directed acyclic graph with associated random variables,
and separately specified local credal sets,
and we take the convex hull of KC(X1, . . . ,Xn).

Cozman & Mauá Credal Networks December 8, 2020 26 / 84



Strong Extension

Theorem

The convex hull of the complete extension of a credal network is the largest credal
set that satisfies the Markov condition with respect to strong independence.
This is also true when we replace each local credal set by the set of its extreme
points:

convex-hull-of

{
P : P(X1 = x1, . . . ,Xn = xn) =

n∏
i=1

P
(
Xi = xi |PaXi = πi

)
,

with P
(
Xi |PaXi = πi

)
∈ extreme-points-of K(Xi |PaXi = πi)

}
.
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Convexifying: the Strong Extension

Suppose we have a directed acyclic graph with associated random variables,
and separately specified local credal sets,
and we take the convex hull of KC(X1, . . . ,Xn).

Largest joint credal set for Markov condition with respect to strong
independence!
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Nice results

Theorem

Any combination of extreme points from the local credal sets is an extreme point
of the strong extension.

Theorem

If variables X and Y are d-separated by variables Z , then X and Y are strongly
independent given Z in the strong extension of the credal network.
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The number of extreme points of a strong
extension

X Y Z

P(X = 1) ∈ [1/10,1/3], P(Y = 1) = 4/5,
P(Z = 1|Y = 0) ∈ [2/5,3/5], P(Z = 1|Y = 1) ∈ [7/10,9/10].
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Epistemic Extension

Suppose we have a directed acyclic graph with associated random variables,
and separately specified local credal sets,
and we take the largest set of joint distributions such that, for each variable X ,
the nondescendants nonparents of X are epistemically irrelevant to X given the
parents of X .

For a LOT MORE:
J. de Bock. Credal networks under epistemic independence. International
Journal of Approximate Reasoning, 85:107–138, 2017.
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Marginal inference:

compute bounds for the marginal probability of a value of a query variable
conditional on some evidence on some other variables.

Given a credal network over variables X = {X1, . . . ,Xn}, an event of interest
Z = z and some evidence Y = y, we are interested in obtaining:

P(Z = z|Y = y) and P(Z = z|Y = y) .
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Basic result

Theorem

The latter lower/upper probabilities are obtained, respectively, by

inf / sup
∑

x′
∏n

i=1 P
(
Xi = xi |PaXi = π

)∑
z
∑

x′
∏n

i=1 P
(
Xi = xi |PaXi = π

) ,

where the sum in the numerator and the inner sum in the denominator are over
the values of the set of marginalized variables X′ = X \ ({Z} ∪Y), the outer sum in
the denominator is over the values of the query variable Z , and the optimization is
over the distributions from the complete extension such that P(Y = y) > 0.
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Key result

Theorem

Suppose a credal network is separately specified with closed convex local credal
sets. Then the multilinear optimization for lower/upper probability is attained at
some extreme point P of the strong extension such that P(Y = y) > 0; hence
it is attained at some combination of extreme points of the local credal sets
K(X |PaX = π).
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Computational complexity

Marginal inference with separately specified network is NPPP-complete.
...and is NP-complete if network has a tree-like undirected structure.

There are many other results, some of them indicating tractable cases.
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Marginal inference

Example

Compute

inf / sup P(X2 =q|X3 = t ,X4 = f ,X6 =h) ,

where the optimization is over probability measures
P satisfying:

Regular condition.: P(X3 = t ,X4 = f ,X6 =h) > 0

Markov property: P(Xi |Ndi) = P(Xi |Pai)

Assessments: P(Xi |Pai =π) ∈ K(Xi |π)

X1

X2q X3

t

X4

f

X5

X6 h

Cozman & Mauá Credal Networks December 8, 2020 37 / 84



Marginal inference

Example

Compute

inf / sup P(X2 =q|X3 = t ,X4 = f ,X6 =h) ,

where the optimization is over probability measures
P satisfying:

Regular condition.: P(X3 = t ,X4 = f ,X6 =h) > 0

Markov property: P(Xi |Ndi) = P(Xi |Pai)

Assessments: P(Xi |Pai =π) ∈ K(Xi |π)

X1

X2q X3

t

X4

f

X5

X6 h

Cozman & Mauá Credal Networks December 8, 2020 37 / 84



Marginal inference

Example

Compute

inf / sup P(X2 =q|X3 = t ,X4 = f ,X6 =h) ,

where the optimization is over probability measures
P satisfying:

Regular condition.: P(X3 = t ,X4 = f ,X6 =h) > 0

Factorization: P({Xi}) =
∏

i P(Xi |Pai)

Assessments: P(Xi |Pai =π) ∈ K(Xi |π)

X1

X2q X3

t

X4

f

X5

X6 h
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Marginal inference

Mathematical programming
Multilinear programming
Linear programming relaxation
Integer programming

Combinatorial optimization
Variable elimination

Message passing
2U, L2U, GL2U
iHMMs
TAN
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Multilinear programming
[de Campos & Cozman, 2004]

Given: Credal net (G,K),query Xq =xq, evidence {Xe =xe}

Optimize: p(xq|{xe})

Subject to: p(xq|{xe})p({xe}) =
∑

{xi}∼{xq ,xe}

p(x1, . . . , xn)

[Markov Property] p(x1, . . . , xn) =
∏

i

p(xi |πi)

[Regular cond.] p({xe}) > 0
[Assessments] A(Xi |πi)p(Xi |πi) ≤ b(Xi |πi) [∀i ,πi ∼ Pai ]

Cozman & Mauá Credal Networks December 8, 2020 39 / 84



Multilinear programming
[de Campos & Cozman, 2004]

Given: Credal net (G,K),query Xq =xq, evidence {Xe =xe}

Optimize: p(xq|{xe})

Subject to: p(xq|{xe})p({xe}) =
∑

{xi}∼{xq ,xe}

p(x1, . . . , xn)

[Markov Property] p(x1, . . . , xn) =
∏

i

p(xi |πi)

[Regular cond.] p({xe}) > 0
[Assessments] A(Xi |πi)p(Xi |πi) ≤ b(Xi |πi) [∀i ,πi ∼ Pai ]

Cozman & Mauá Credal Networks December 8, 2020 39 / 84



Charnes-Cooper Transformation

optimize
c′x
d′x

subject to Ax ≤ b
d′x > 0

−−−−→
y = x

d′x

optimize c′y
subject to Ay ≤ bz

d′y = 1
z ≥ 0
y = zx
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Multilinear programming

[de Campos & Cozman, 2004]

Optimize: q(xq)

Subject to:
∑
x ′q

q(x ′q) = 1

[∀x ′q] q(x ′q) =
∑

{xi}∼{x ′q ,xe}

z
∏

i

p(xi |πi)

[∀i ,πi ] A(Xi |πi)p(Xi |πi) ≤ b(Xi |πi)

z ≥ 0

Note: z = 1/P({xe})
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Example

opt

∑
x1,x4

p(X2 = t|x1)p(X3 = f |x1)p(X5 = h|X2 = t, X3 = f )p(x4|X2 = t)p(X6 =m|X5 =h)∑
x1,x2,x4

p(X2 =x2|x1)p(X3 = f |x1)p(X5 =h|x2, X3 = f )p(x4|x2)p(X6 =m|X5 =h)

s.t. ∑
x1,x2

p(x2|x1)p(X3 = f |x1)p(X5 =h|X3 = f )p(x4|x2)p(X6 =m|X5 =h) > 0

p(X1) ∈ K(X1), [∀x1] p(X2|x1) ∈ K(X2|x1)

[∀x1] p(X3|x1) ∈ K(X3|x1), [∀x2] p(X4|x2) ∈ K(X4|x2)

[∀x2, x3] p(X5|x2, x3) ∈ K(X5|x2, x3), [∀x5] p(X6|x5) ∈ K(X6|x5)

X1

X2 X3t

f

X4 X5 h

X6 m



Example

opt q(t)

s.t.
∑
x2

q(x2) = 1

[∀x2] q(x2) =
∑

x1,x2,x4

z · p(X2 = t|x1)p(X3 = f |x1)p(X5 = h|X2 = t, X3 = f )p(x4|X2 = t)p(X6 =m|X5 =h)

t ≥ 0

p(X1) ∈ K(X1), [∀x1] p(X2|x1) ∈ K(X2|x1)

[∀x1] p(X3|x1) ∈ K(X3|x1), [∀x2] p(X4|x2) ∈ K(X4|x2)

[∀x2, x3] p(X5|x2, x3) ∈ K(X5|x2, x3), [∀x5] p(X6|x5) ∈ K(X6|x5)

X1

X2 X3t

f

X4 X5 h

X6 m



Multilinear programming: Improvements

Requisite graph
Prune parts that are irrelevant to inference

Symbolic variable elimination
Reduce size and degree of constraints
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Requisite Graph

Preprocessing

Remove barren nodes

Binarize evidence variables

Drop arcs leaving observed variables

Remove disconnected nodes from query

X1

X2 X3t

f

X4 X5 h

X6 m
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Drop arcs leaving observed variables

Remove disconnected nodes from query

X1

X2 X3t

f

X5 h←t

X6 m←t
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Requisite Graph

Preprocessing

Remove barren nodes

Binarize evidence variables

Drop arcs leaving observed variables

Remove disconnected nodes from query
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Requisite Graph

Preprocessing

Remove barren nodes

Binarize evidence variables

Drop arcs leaving observed variables

Remove disconnected nodes from query

X1

X2t X3

f

X5 t
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Example (Requisite Graph)

Minimize: q(t)

s.t.:
∑

x2

q(x2) = 1

[∀x2] q(x2) =
∑

x1

z · p(x1)p(x2|x1)p(e3|x1)p(e5|x2, e3)

p(X1) ∈ K(X1)

[∀x1] p(X2|x1) ∈ K(X2|x1)

[∀x1] p(e3|x1) ∈ [P(e3|x1) ,P(e3|x1)]

[∀x2] p(e5|x2, e3) ∈ [P(e5|x2, e3) ,P(e5|x2, e3)]

z ≥ 0

X1

X2 X3t

e3

X4 X5 e5

X6 e6



Exercise

Obtain requisite graph and write the multilinear program of the inference

X1

X4 X5

X3

X6

e1

X2 X3t

e3

e4

X4 X5 e5

e6

Requisite graph

Remove barren nodes

Binarize evidence
variables

Drop arcs leaving
observed variables

Remove disconnected
nodes from query

Multilinear program

Optimize: q(xq)

Subject to:
∑
x′

q

q(x ′q) = 1

[∀x ′q ] q(x ′q) =
∑
xm

z
∏

i

p(xi |πi )

[∀i,πi ] p(Xi |πi ) ∈ K(Xi |πi )

z ≥ 0
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Exercise: Fully observed evidence

Minimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) = z · p(x2|e1)p(e4|x2)p(e5|x2, e3)

p(X2|e1) ∈ K(X2|e1)

[∀x2] p(e4|x2) ∈ [P(e4|x2) ,P(e4|x2)]

[∀x2] p(e5|x2, e3) ∈ [P(e5|x2, e3) ,P(e5|x2, e3)]

z ≥ 0

X4 X5

X1

X3

X6

e1

X2t

e3

e4

e5

e6



Exercise: Fully observed evidence

Minimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) = z · p(x2|e1)p(e4|x2)p(e5|x2, e3)

p(X2|e1) ∈ K(X2|e1)

[∀x2] p(e4|x2) ∈ [P(e4|x2) ,P(e4|x2)]

[∀x2] p(e5|x2, e3) ∈ [P(e5|x2, e3) ,P(e5|x2, e3)]

z ≥ 0

X4 X5

X1

X3

X6

e1

X2t

e3

e4

e5

e6



Exercise: Fully observed evidence

Minimize: q(t)

subject to: q(t) = 1−
∑
x2 6=t

q(x2)

q(t) = z · p(t |e1)p(e4|t)p(e5|t , e3)

[∀x2 6= t ] q(x2) = z · p(x2|e1)p(e4|x2)p(e5|x2, e3)

p(X2|e1) ∈ K(X2|e1)

[∀x2] p(e4|x2) ∈ [P(e4|x2) ,P(e4|x2)]

[∀x2] p(e5|x2, e3) ∈ [P(e5|x2, e3) ,P(e5|x2, e3)]

z ≥ 0

X4 X5

X1

X3

X6

e1

X2t

e3

e4

e5

e6

This is a linear program!
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Exercise: Fully observed evidence
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∑
x2 6=t

q(x2)
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Exercise: Fully observed evidence

Minimize: q(t)

subject to: q(t) = 1−
∑
x2 6=t

q(x2)

q(t) = p′(t |e1)P(e4|t)P(e5|t , e3)

[∀x2 6= t ] q(x2) = p′(x2|e1)P(e4|x2)P(e5|x2, e3)
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X4 X5
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X6
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Symbolic Variable Elimination

Minimize: q(t)

subject to:
∑

y

q(y) = 1

[∀y ] q(y) =
∑

z1,...,zn

p′(y)
∏

i

p(ei |zi)p(zi |y)︸ ︷︷ ︸
O(2n) terms

p′(Y ) ∈ zK(Y )

[∀i, y ] p(Zi |y) ∈ K(Zi |y)

[∀i, zi ] p(ei |zi) ∈ [P(ei |zi) ,P(ei |zi)]

z ≥ 0

Y

t

Z1 Z2 · · · Zn

X1 X2 · · · Xn

e1 e2 en
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Symbolic Variable Elimination

Use dynamic programming to rewrite joint distribution expression as set of
constraints of smaller size

Main idea: exploit distributivity of multiplication over addition∑
y

[f (x)g(x , y) + f (x)h(x , y)] = f (x)
∑

y

[g(x , y) + h(x , y)]

= f (x)s(x),

s(x) =
∑

y

[g(x , y) + h(x , y)]
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Example

Optimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) =
∑

x1

z · p(x2|x1)p(e3|x1)p(e5|x2, e3)

...

z ≥ 0

X1

X2 X3e2

e3

X4 X5 e5

X6 e6



Example

Optimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) =
∑

x1

z · p(x2|x1)p(e3|x1)p(e5|x2, e3)

...

z ≥ 0

X1

X2 X3e2

e3

X4 X5 e5

X6 e6



Example

Optimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) = z · p(e5|x2, e3)
∑

x1

p(x2|x1)p(e3|x1)

...

z ≥ 0

X1

X2 X3e2

e3

X4 X5 e5

X6 e6



Example

Optimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) = z · p(e5|x2, e3) · f1(x2)

f1(x2) =
∑

x1

p(x2|x1)p(e3|x1)

...

z ≥ 0

X1

X2 X3e2

e3

X4 X5 e5

X6 e6



Example

Optimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) = z · p(e5|x2, e3) · f1(x2)

f1(x2) =
∑

x1

p(x2|x1)p(e3|x1)

...

z ≥ 0

X1

X2 X3e2

e3

X4 X5 e5

X6 e6



Example

Optimize: q(t)

subject to:
∑

x2

q(x2) = 1

[∀x2] q(x2) = z · f2(x2)

f1(x2) =
∑

x1

p(x2|x1)p(e3|x1)

f2(x2) = p(e5|x2, e3) · f1(x2)

...

z ≥ 0

X1

X2 X3e2

e3

X4 X5 e5

X6 e6



Example (Tree-structured Credal Network)

Optimize: q(t)

subject to:
∑

y

q(y) = 1

[∀y ] q(y) = p′(y)
∑

z1,...,zn

∏
i

p(ei |zi)p(zi |y)

p′(Y ) ∈ zK(Y )

[∀i, y ] p(Zi |y) ∈ K(Zi |y)

[∀i, zi ] p(ei |zi) ∈ [P(ei |zi) ,P(ei |zi)]

z ≥ 0

Y

t

Z1 Z2 · · · Zn

X1 X2 · · · Xn

e1 e2 en



Example (Tree-structured Credal Network)

Optimize: q(t)

subject to:
∑

y

q(y) = 1

[∀y ] q(y) = p′(y)
∑

z2,...,zn

∏
i>1

p(ei |zi)p(zi |y)f1(y)

f1(y) =
∑

z1

p(en|zn)p(zn|y)

p′(Y ) ∈ zK(Y )

[∀i, y ] p(Zi |y) ∈ K(Zi |y)

[∀i, zi ] p(ei |zi) ∈ [P(ei |zi) ,P(ei |zi)]

z ≥ 0

Y

t

Z1 Z2 · · · Zn

X1 X2 · · · Xn

e1 e2 en



Example (Tree-structured Credal Network)

Optimize: q(t)

subject to:
∑

y

q(y) = 1

[∀y ] q(y) = p′(y)fn(y)

[∀i, y ] fi(y) =
∑

zi

fi−1(y)p(ei |zi)p(zi |y)

p′(Y ) ∈ zK(Y )

[∀i, y ] p(Zi |y) ∈ K(Zi |y)

[∀i, zi ] p(ei |zi) ∈ [P(ei |zi) ,P(ei |zi)]

z ≥ 0

Y

t

Z1 Z2 · · · Zn

X1 X2 · · · Xn

e1 e2 en



Multilinear programming

Symbolic Variable Elimination

Optimize: q(t)

Subject to:
∑
xq

q(xq) = 1

[∀xq] q(xq) = z · fj(xq)

[∀j] fj(xj) =
∑

xl

∏
k

fk (xk )

[∀i ,πi ] fi(x1,πi) = p(Xi |πi) ∈ K(Xi |πi)

z ≥ 0
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Multilinear Programming

Caveats:

Number of optimization variables is exponential in the network treewidth
(measure treelikeness of the network)

Usually much smaller than number of requisite variables

Not many solvers available; numerical problems often arise

Scales to at most a few dozens of variables
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Linear Programming Relaxation

[Antonucci et al., 2013; 2015]

1 Find feasible solution {p(xi |πi) ∈ K
(
Xi |PaXi =πi

)
}

2 Repeat until convergence:
1 For k = 1, . . . ,n:

Optimize: q(t)

Subject to:
∑
xq

q(xq) = 1

[∀xq] Q(xq) = z · f1(xq), z ≥ 0 [∀j] fj (xj ) =
∑

xl

∏
`

fk (x`)

[∀πk ] p(Xk |πk ) ∈ K(Xk |πk ) [∀i 6= k ] p(Xi |Pai ) is fixed
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Linear Programming Relaxation

Produces sequence of monotonically improving solutions, leading to inner
approximation

Can exploit efficient algorithms for Bayesian networks to pre-solve constraints

Can approximate such constraints if treewidth is too large (loosing inner
approximation guarantees)

Best performing approximate algorithm
Greedy Lazy selection of variable to optimize
Stop criterion
Random restarts
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Message Passing

Imprecise Hidden Markov Models

Hidden variables: X1, . . . ,Xn

Manifest variables: Y1, . . . ,Yn

X1

Y1

X2

e1 e2 e3 e4

Y2

X3

Y5

X4

Y4

q

Set of non-stationary (precise) hidden Markov models
Time series (robust) prediction
Time series (robust) classification
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Message Passing in iHMMs

[Mauá, de Campos & Antonucci, 2015]

Optimize: p(q,e1, . . . ,en)/p(e1, . . . ,en)

Subject to: p(q,e1, . . . ,en) =
∑
{xi}

∏
i

p(xi |xi−1)p(ei |xi)

p(e1, . . . ,en) > 0
[∀i] p(Xi |xi−1) ∈ K(Xi |xi−1), p(ei |xi) ∈ K(Yi |xi)

Note: p(x1|x0) = p(x1)
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Message Passing in iHMMs
Assume that P(e1, . . . ,en) > 0 =⇒ ∀P ∃!γ : P(q,e1, . . . ,en) = γP(e1, . . . ,en)

Generalized Bayes Rule

Repeat until convergence: Guess γ ∈ (0,1], and solve

Minimize: p(q,e1, . . . ,en)− γp(e1, . . . ,en)

Subject to:

fn(xn−1) = min
∑
xn

fn+1(xn)p(xn|xn−1)p(en|xn)

[∀xn] p(xn,e1, . . . ,en) =
∑
{xi}i<n

∏
i

p(xi |xi−1)p(ei |xi)

[∀i , xi−1] p(Xi |xi−1) ∈ K(Xi |xi−1) [∀i , xi ] p(ei |xi) ∈ [P(Yi |xi) ,P(Yi , xi)]
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Message Passing in iHMMs
Assume that P(e1, . . . ,en) > 0 =⇒ ∀P ∃!γ : P(q,e1, . . . ,en) = γP(e1, . . . ,en)

Generalized Bayes Rule

Repeat until convergence: Guess γ ∈ (0,1], and solve

Minimize: [1− γ]︸ ︷︷ ︸
fn+1(q)

p(q,e1, . . . ,en) +
∑
xn 6=q

[−γ]︸︷︷︸
fn+1(xn)

p(xn,e1, . . . ,en)

Subject to:
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Message Passing in iHMMs
Assume that P(e1, . . . ,en) > 0 =⇒ ∀P ∃!γ : P(q,e1, . . . ,en) = γP(e1, . . . ,en)

Generalized Bayes Rule

Repeat until convergence: Guess γ ∈ (0,1], and solve

Minimize:
∑
xn−1

p(xn−1,e1, . . . ,en−1)
∑
xn

fn+1(xn)p(xn|xn−1)p(en|xn)

Subject to:

fn(xn−1) = min
∑
xn

fn+1(xn)p(xn|xn−1)p(en|xn)

[∀xn−1] p(xn−1,e1, . . . ,en−1) =
∑

{xi}i<n−1

∏
i<n

p(xi |xi−1)p(ei |xi)

[∀i , xi−1] p(Xi |xi−1) ∈ K(Xi |xi−1) [∀i , xi ] p(ei |xi) ∈ [P(Yi |xi) ,P(Yi , xi)]
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Message Passing in iHMMs
Assume that P(e1, . . . ,en) > 0 =⇒ ∀P ∃!γ : P(q,e1, . . . ,en) = γP(e1, . . . ,en)

Generalized Bayes Rule

Repeat until convergence: Guess γ ∈ (0,1], and solve

Minimize:
∑
xn−1

p(xn−1,e1, . . . ,en−1)fn(xn−1)

Subject to: fn(xn−1) = min
∑
xn

fn+1(xn)p(xn|xn−1)p(en|xn)

[∀xn−1] p(xn−1,e1, . . . ,en−1) =
∑

{xi}i<n−1

∏
i<n

p(xi |xi−1)p(ei |xi)

[∀i , xi−1] p(Xi |xi−1) ∈ K(Xi |xi−1) [∀i , xi ] p(ei |xi) ∈ [P(Yi |xi) ,P(Yi , xi)]
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Message Passing in iHMMs
Assuming P(e1, . . . ,en) > 0

X1

Y1

X2

e1 e2 e3 e4

Y2

X3

Y5

X4

Y4

q
f1

f2(x1) f3(x2) f4(x3) g(x4)

[P(e4|X4) ,P(e4|X4)]

fi(xi−1) = min
∑

xi

fi+1(xi)p(xi |xi−1)p(ei |xi)
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Message Passing

Very efficient

Exact for:
Evidence likelihood P(e1, . . . ,en) in tree-shaped nets

Prediction in iHMMs (requisite graph)

Marginal inference in polytree-shaped nets with binary variables (2U)

Loopy approximate 2U for arbitrary topology; GL2U for non-binary variables
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Software

CREMA: https://github.com/IDSIA/crema
Exact inference by vertex propagation
Approximate inference by linear relaxation

OpenCossan: https://github.com/cossan-working-group/OpenCossan
Matlab plugin for risk analysis
Approximate inference

iHMM: https://github.com/denismaua/ihmm
Exact predictive filtering and evidence loglikelihood
Approximate robustness analysis of sequence prediction
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Decision making

Precise probability

Utility function U(s,a)

Probability measure P(s)

MEU principle:

a∗ = arg max
a

EP[U(S,a)]

Imprecise probability

Inderteminate
Admissibility

Maximality

Interval dominance

Determinate: Maximin
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Admissibility

0/1 Utility =⇒ classification accuracy
Target variable Z , evidence Y=y

Definition

z∗ is admissible if

∃P ∈ K(Z |y) :
[
P(Z =z∗|Y = y)−max

z
P(Z =z|Y = y)

]
≥ 0 .

Intuition: z∗ is admissible if it is expected utility maximizer for some measure in
the set
Certificate P ∈ K(Z |y) might not be an extreme point (hence doesn’t factorize)
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Maximality
0/1 Utility =⇒ classification accuracy
Target variable Z , evidence Y=y

Definition

z∗ is maximal if

max
z

min
P∈K(Z |y)

:
[
P(Z =z∗|Y = y)−max

z
P(Z =z|Y = y)

]
≤ 0 .

Intuition: z∗ is maximal if it is not strictly less probable than some other
configuration under all measures
Certificate P ∈ K(Z |y) might not is an extreme point

Multilinear program with different objective
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Interval dominance
0/1 Utility =⇒ classification accuracy
Target variable Z , evidence Y=y

Definition

z∗ is dominant if

P(Z =z∗|Y = y) ≥ max
z

P(Z =z|Y = y) ≤ 0 .

Intuition: z∗ is dominant if we cannot rule out the possibility that it might have
greater probability than some other value under some measure
Usually taken as heuristic

Reduces to solving marginal inference
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Maximin

0/1 Utility =⇒ classification accuracy
Target variable Z , evidence Y=y

Definition

z∗ is maximin if
P(Z =z∗|Y = y) = max

z
P(Z =z|Y = y) .

Intuition: z∗ maximizes the worst-case scenario
Very pessimistic/cautious

Reduces to solving marginal inference
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Decision Making

We have that:

admissible =⇒ maximal =⇒ dominant

and

maximin =⇒ maximal
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Elicitation

Expert knowledge

Imprecise Dirichlet Model

P(X =x) ∈
[

N[X =x ]

N + s
,
N[X =x ] + s

N + s

]
Nonparametric predictive inference [Augustin & Coolen 2004], ε-contamination,
etc.

Unreliable observations

X → e , P(e|X =x) ∈ [l ,u]
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Applications

Debris Flow hazard assessment [Antonucci et al., 2004]

Analysis of place of death in cancer patients [Kern et al., 2020]

Action Recognition [Mauá et al., 2015]
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Debris flows hazard assessment

Debris flows are very destructive natural hazards
Still partially understood
Human expertise is still fundamental in assessment
Decision support system: aggregates physical theories, historical data, expert
knowledge
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Debris flows harzard assessment

Variables

Movable debris thickness: proxy of debris flow hazard
Geology: characteristics of bedrock
Available debris thickness: propensity to generate sendiment
Permeability: rate of liquid flow
Hydrologic soil type
Soil water capacity
Rainfall
. . .
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Debris flows harzard assessment

Quantification

Physical mechanisms, e.g.

Theoretical thickness = water depth
(

k
tan(f (granulometry))

tan(slope)
− 1
)−1

IDM estimates from data, e.g.

P(Hydrologic soil type= low infiltration|g2, t4) ∈ [0.0988,0.1235]

Expert knowledge, e.g.

P(Granulometry∈ [10,100]) ∈ [0.1,0.2]



Debris flows hazard assessment

Movable

Thickness

Theoretical

Thickness

Available

Thickness

Granulometry

Water Dep. Local Slope

Stream

Index

Peak Flow
Channel

Width

Area

Effective

Intensity

Rainfall

Duration
Critical

Duration

Response

Function

Geomorph.

Eff Soil

Capacity

Rainfall

Intensity

Max Soil

Capacity

Soil

Moisture

Landuse

Soil Type

Permeability Geology



Debris flows hazard assessment
Extensive simulations in a debris flow prone watershed
Acquarossa Creek Basin (area 1.6 Km2, length 3.1 Km)
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Place of Death Analysis
Demographic and clinical data about 116 adult patients who died from cancer

Place of Death: hospital (78%), home (18%), nursing home (4%)
Days spent in a hospital 60 days prior to assessment: 0-20, 21-40, 41-60
Age: 20-40; 41-65; 66-80; >80
Comorbidity: mild or non-existent, severe
Cancer treatment: ongoing; discontinued
Area of residence: rural, urban
. . .

Assessments:
“Ongoing cancer treatment decreases the probability of open communication by
40% compared with that of treatment discontinuation”
“Of the patients, 60 to 80% were probably only partially informed about the
proximity of death when undergoing anticancer treatments”
“patients and their relatives are more likely to remain in a closed rather than open
state of awareness of dying”
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Place of Death Analysis
A

dditional file 2: Figure 1. D
irected acyclic graph of the causal probabilistic m

odel 

 

 

Cozman & Mauá Credal Networks December 8, 2020 77 / 84



Place of Death Analysis

“if the family’s preference for the POD is the hospital, despite full access to an
interdisciplinary home care network, the probability of dying at home drops from
76–83% to 19–40%”
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Action Recognition

Learn one iHMM for each action

Classify video by interval dominance
E.g. P(e1, . . . ,en|walk) > P(e1, . . . ,en|jump)
Indeterminate classifications
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Credal Classifiers

Specially designed credal networks for cautious
classification

Makes fewer assumptions than Bayesian
network classifiers (e.g. Naive Bayes
Classifier)

Allow/produce indeterminacy in
classifications

Y X1

X2 X3

f

X4

t

X5

X6 f
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Evaluating set-valued classifications

True class Credal classifier Precise classifier
red red, yellow red
red yellow, green yellow

yellow green green
green red, green, yellow yellow
green green green

Determinacy: 2/5
Average output size: 7/3
Precise accuracy: 1/2
Set accuracy: 2/3
Discounted acc.: (1/2 + 1/3 + 1)/5
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Action Recognition

Determinacy 77.5% (4.6%) (62/80)
Average output size 2.4 (out of 10)
Single accuracy 35.5% (6.0%) (22/62)
Set accuracy 44.4% (11.4%) (8/18)
Discounted accuracy 32.1%
Utility-based accuracy u.65 33.5%
Utility-based accuracy u.80 35.0%
Accuracy precise counterpart 31.3% (5.2%) (25/80)
Precise single accuracy 35.5% (6.0%) (22/62)
Precise set accuracy 16.7% (8.5%) (3/18)
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Final Remarks

Already thirty years of development around credal networks,
mostly centered on strong extensions,
but quite a bit on epistemic extensions as well.

Two questions:
What is the best extension?
Is convexity so important?

We now have a solid set of algorithms, a comprehensive set of results on
computational complexity.
However, still space to produce faster algorithms with guarantees, and in
particular algorithms for decision-making.
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