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Abstract. Missing data present a challenge for most machine learn-
ing approaches. When a generative probabilistic model of the data is
available, an effective approach is to marginalize missing values out.
Probabilistic circuits are expressive generative models that allow for effi-
cient exact inference. However, data is often missing not at random, and
marginalization can lead to overconfident and wrong conclusions. In this
work, we develop an efficient algorithm for assessing the robustness of
classifications made by probabilistic circuits to imputations of the non-
ignorable portion of missing data at prediction time. We show that our
algorithm is exact when the model satisfies certain constraints, which is
the case for the recent proposed Generative Random Forests, that equip
Random Forest Classifiers with a full probabilistic model of the data. We
also show how to extend our approach to handle non-ignorable missing
data at training time.

Keywords: probabilistic circuits · generative random forests · missing
data · conservative inference rule.

1 Introduction

This work presents a new tractable algorithm for analyzing the effect of all po-
tential imputations of non-ignorable missing values to a probabilistic classifier’s
response.

Missing data present a challenge in many machine learning tasks. The stan-
dard approach to inference with such data is to either impute or marginalize
out the missing values [3, 7]. The latter option requires a complete statistical
model of features and target variables, and efficient inference routines. Recently,
Correia, Peharz and de Campos [5] proposed Generative Random Forest (GeFs),
which extend standard random forest classifiers into complete statistical models
with tractable marginalization of missing values. GeFs have shown superior per-
formance to imputation approaches and other ad hoc heuristics used for random
forests in classification tasks under missing data [5].

? Supported by CAPES Finance 001, CNPQ grant #304012/2019-0.



2 Villanueva et al.

GeFs are actually part of a larger class of tractable probabilistic models,
called Probabilistic Circuits, that allow for linear time marginalization [4, 11].
Sum-Product Networks [21], Probabilistic Sentential Decision Diagrams [9] and
Cutset Networks [22] are other notable examples of Probabilistic Circuits. These
models have obtained impressive results in several machine learning tasks due to
their ability to efficiently represent and manipulate intricate multidimensional
distributions [20, 21, 24–26, 31].

Imputation and marginalization are either theoretically supported by a miss-
ing at random assumption (MAR), that roughly considers that the probability
of the missing values does not depend on the variables with missing values them-
selves [23]. This is not always a sensible choice [13]. For instance, in personalized
recommendation, users have a strong bias towards rating items which they either
strongly like or strongly dislike [14]. Automatically constructed knowledge-based
systems offer another example, as they are most often populated exclusively with
“positive” facts involving only a small fraction of the true facts [27]. In such cases,
called non-ignorable missing data or MNAR (i.e., missing not at random), imput-
ing or averaging over completions can lead to biased and inconsistent estimates
and ultimately hurt performance. Importantly, it is not possible to statistically
test whether or not the MAR assumption is satisfied, nor to learn from data the
incompleteness process responsible for the missing values [17, 23].

In the presence of MNAR data, marginalization can still be used as a heuris-
tic, at the risk of inducing excessive bias. To analyze such potential bias, we
follow [30] and propose to quantify the effect in a probabilistic classifier’s de-
cision to all possible imputations of the MNAR data. The challenge that we
overcome here is doing so in a computationally tractable way, making use of the
machinery of Probabilistic Circuits. Such an analysis has been previously applied
to traditional probabilistic models such as Bayesian networks [1], where it suffers
from intractability of inference. In fact, one can show that for Bayesian networks
the task is equivalent to performing marginal inference in credal networks [2],
a task whose theoretical and practical complexity far exceeds that of marginal
inference in Bayesian networks [15].

In this work, we devise a polynomial-time procedure to quantify the effect
of different imputations of the missing values of features in the classification
of a target discrete variable at prediction time. This is important because while
training data can often be curated and missingness mechanisms investigated, the
same is generally not true for missing data at prediction time. We assume the
classifier is represented as a Probabilistic Circuit, and focus on the case of GeFs
(although the algorithm we present is slightly more general). The procedure can
be used to determine the set of maximal values for the target variable given
an observation with data (assumed) MNAR, that is, to decide which values
are the most probable classification under some imputation. We also discuss
how to enable conservative inferences with non-ignorable data at learning time.
Experiments show that our algorithm obtains reliable conclusions often more
accurate than criteria that ignores or marginalizes missing variables.
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2 Probabilistic Circuits and Generative Random Forests

We start by establishing some notation and terminology. We denote random
variables by upper-case letters (e.g., Xi, X), and their values by lower case (e.g.,
xi, x). Sets of random variables are written in boldface (e.g., X), as well as
their realization (e.g., x). In this work we assume that random variables take
on a finite number of values, denoted as val(X) for random variable X. We
associate every discrete random variable X with a set of indicator functions
{[[X = x]] : x ∈ val(X)}, where the notation [[X = x]] describes the function that
returns 1 if X takes value x and 0 otherwise.

A Probabilistic Circuit (PC) M over a set of categorical random variables
X is a rooted weighted acyclic directed graph whose leaves are associated with
indicator functions [[Xi = xi]] of variables in X, and the internal nodes are
associated to either sum or product operations. The arcs i → j leaving sum
node i are associated with non-negative weights wij . We write Mi to denote the
sub-PC rooted at node i . The scope of a PC is the set of random variables
associated with the indicator variables at the leaves, and the scope of a node is
the scope of the respective sub-PC. A PC represents a joint distribution of X by
PM(x) = M(x)/(

∑
x′ M(x′)). The value M(x), called the evaluation of the circuit

at x, is defined inductively in the size of the circuit as: M(x) = [[Xi = xi]](xi) if
M is a leaf node [[Xi = xi]]; M(x) =

∑
j wijMj(x) if M is a circuit rooted at a sum

node i with children j; and M(x) =
∏
j Mj(x) if M is a circuit rooted at a product

node with children j. For example, the evaluation of the PC on the right-hand
side of Figure 1 at X = 4, Y = 1 and Z = 1 is M(x) = 0.6× 0.7× 0.6 = 0.252.

To ensure that marginal inference is computed in linear time in the size of
the circuit, it suffices that the circuit satisfies the properties of smoothness and
decomposability [9, 21]. Smoothness states that the scopes of any two children
of a sum node are identical.3 Decomposability states that the scopes of any
two children of a product node are disjoint. For the rest of this paper, we as-
sume that PCs are smooth and decomposable. The tractability of more complex
probabilistic queries rely on additional properties. One such property is deter-
minism: each sum node has at most one child that evaluates to non-zero at any
(complete) realization of its scope.4 Determinism ensures that maximum likeli-
hood estimates for the weights can be obtained in closed-form under complete
data; it also enables finding the most probable realization in linear time [18],
a NP-hard task in non-deterministic PCs. The property is also necessary (but
not sufficient) for advanced operations such as encoding constraints, computing
entropy or KL-divergence, and producing expected predictions with respect to
a compatible regressor [7–9].

Consider a Decision Tree mapping features X to a target variable Y . Gener-
ative Decision Trees (GeDT) are deterministic, decomposable and smooth PCs
built from such a Decision Tree and data by converting each decision node into a
sum node and each leaf into a sub-PC whose support is the partition induced by

3 Smoothness is also called completeness in the context of Sum-Product Networks.
4 Determinism is also called selectivity in the context of Sum-Product Networks.
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Fig. 1. A Decision Tree for classifying Y based on the values of X and Z (left) and its
Generative Decision Tree extension (right).

the corresponding path of the Decision Tree. The sub-PCs at the leaves can be
learned with any structure learning algorithm for PCs or take simple forms such
as fully factorized distributions. A particularly convenient form for the sub-PCs
is to encode a distribution that factorizes as P (X|γ)P (Y |γ), where γ denotes
the corresponding partition of the feature space. Such class-factorized GeDTs
produce the same classifications under complete data as the original Decision
Tree [5]. As that property will be crucial to ensure exactness of the procedure
we develop later, we generalize it to arbitrary PCs as follows. We say that a PC
is class-factorized with respect to a target variable Y if for any leaf whose scope
is {Y }, its parents also have scope {Y }. Intuitively, in a class-factorized PC the
leaves with indicators for variable Y cannot be used to select between different
sub-PCs as in the Proof of Theorem 1 we show later.

The structure of a GeDT can be modified by “pulling the indicators up” to
speed up computations, that is, by adding product nodes and indicator leaves
that encode the partitions of the decision tree nodes. While this procedure vio-
lates decomposability, it renders a PC whose evaluations produce identical result
(and marginal inference is therefore still linear). Hereafter, we will refer to GeDT
as the PC obtained from a Decision Tree after such an operation. Figure 1 shows
a decision tree (on the left) and a class-factorized GeDT extension (on the right)
obtained by pulling up indicators. The numbers inside each node in the decision
tree indicate the percentage of the training data instances that fall in the cor-
responding partition out of those instances that are in the partition defined by
the parent node. Those values (transformed in probabilities) are used to define
the weight of the respective outgoing arc in the GeDT.

GeDTs allow for proper and efficient treatment of missing at random data
by computing P (Y |o), the conditional probability of the target variable given
the observed features o (which might be a subset of all features). While Decision
Trees are consistent (Bayes optimal) estimators only when used in fully observed
data, GeDTs are consistent also for missing at random features [5]. A Generative
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Random Forest (GeF) is the structure obtained as a mixture model where each
component is the GeDT corresponding to a Decision Tree in a Random Forest
Classifier. Marginal inference also takes therefore linear time in GeFs.

3 Tractable Conservative Inference

Consider a PC M(X), possibly learned from some (complete or MAR incomplete)
dataset of realizations of variables X. Suppose we are interested in using our
model to predict the value of a target variable Y given a configuration x of the
variables such that some of its values are missing. Let o denote the observed
part of x and u denote a possible completion for the unobserved values. Under
the missing at random hypothesis, this is best performed by computing

arg max
y

P (y|o) = arg max
y

M(y,o)/M(o) , (1)

where M(y,o) =
∑

u M(y,o,u) is the marginal value of the circuit at y and o,
which can be obtained in linear time as discussed, and M(o) =

∑
y M(y,o).

When the missingness process is non-ignorable, the inference in (1) can lead
to erroneous and unreliable conclusions. As an example, consider a Boolean
target Y and Boolean features O and U . Say we observe O = o, and assume
that the value of U guides the prediction being P (Y =1|o, u1) = 0.7 and P (Y =
1|o, u2) = 0.4, and that P (U) is uniform. Also, the observation of U is missing
due to the following MNAR process: when U is missing, value u1 is nine times
less likely than u2. The Bayes-optimal classification is thus Y = 0 as P (Y =
1|o, U=?) = 0.7× 0.1 + 0.4× 0.9 = 0.43 < 0.5, yet the marginal classification is
Y = 1 as P (Y =1|o) = 0.55 > 0.5.

Unlike the example above, we rarely have access to the missingness process.
We can instead estimate the robustness of a classification Y = y′ under non-
ignorable missing data with respect to an alternative classification Y = y′′ by

δM,o(y′, y′′) = min
u

[M(y′,o,u)− M(y′′,o,u)] . (2)

A decision analyst might want to suspend the classification on the basis of
the value in (2), thus producing more conservative conclusions. For example,
if δM,o(y′, y′′) > 0, then any imputation of the values of u still leads to a classifi-
cation y′ that is more probable (as far as the model estimates) than y′′; we thus
say that y′ dominates y′′. Note that δ can be a function of P (y|o) and P (o),
that is, it can be instance specific and account for other sources of information.

The conservative inference rule (CIR) prescribes that the only conclusion
supported by non-ignorable missing data is to return the set of non-dominated
values [30]: {

y : max
y′

δM,o(y′, y) ≤ 0

}
. (3)

This is akin to classification with a rejection option, but possibly more informa-
tive (and arguably more principled).
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Even though evaluation takes linear time in PCs, a brute-force approach to
computing (2) requires evaluating M(y,o,u) for each u. This is unfeasible when
the number of possible completions is high. The next result shows that computing
such a value is coNP-hard even in deterministic PCs, ruling out the existence of
an efficient exact procedure (under common assumptions of complexity theory).

Theorem 1. Given a smooth, decomposable and deterministic PC M over ran-
dom variables Y , O and U, target values y′ and y′′, a partial observation o, and
a (rational) threshold ρ, deciding if δM,o(y′, y′′) > ρ is coNP-complete.

The proof is in the appendix.
We now provide a linear-time algorithm for computing δM,o(y′, y′′) in tree-

shaped deterministic PCs that satisfy class-factorization, which include class-
factorized GeDTs. For the sake of readability, we drop the dependence on o in
the following. The algorithm can be described straightforwardly by a collection
of recursive equations depending on the type of node at which it operates. The
recursive formulation also provides a proof of its correctness under the above
assumptions.

Sum nodes. If M is rooted at a sum node with children M1, . . . , Mn and weights
w1, . . . , wn, then the algorithm computes:

δM(y
′, y′′) =

n
min
i=1

wi min
u

[Mi(y
′,o,u)− Mi(y

′′,o,u)] =
n

min
i=1

wiδMi(y
′, y′′) . (4)

The correctness of the operation follows from the determinism of the circuit
and the class-factorization property. The former ensures that for any realization
(y,x) at most one sub-PC Mi evaluates to a nonnegative value Mi(y,x) > 0. The
latter ensures that either M encodes a distribution over Y (i.e., its scope is the
singleton {Y }) or the nonnegative child for Mi(y

′,x) and Mi(y
′′,x) is the same.

Product nodes. If instead M is a product node with children M1, . . . , Mn such that
Y is in the scope of M1 (and no other), then the algorithm computes:

δM(y
′, y′′) = min

u1

[M1(y′,o1,u1)− M1(y′′,o1,u1)]︸ ︷︷ ︸
=δM1 (y

′,y′′)

n∏
i=2

optui
Mi(oi,ui) , (5)

where oi (resp., ui) denotes the projection of o (resp., u) into the scope of Mi,
and

opt =

{
max if δM1(y′, y′′) > 0 ,

min if δM1(y′, y′′) ≤ 0 .

The first term denotes the recursive computation on the sub-PC M1. The re-
maining terms optui

Mi(oi,ui) define an optimization of the configurations ui for
the sub-PC Mi; this can be performed in linear time in deterministic PCs by
bottom-up traversal, replacing sums with maximizations/minimizations [18, 19].
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Leaves. Finally, if M is a leaf node representing an indicator variable then the
algorithm computes:

δM(y
′, y′′) =


1 if M is [[Y = y′]],

−1 if M is [[Y = y′′]],

1 if M is consistent with o or u,

0 otherwise.

(6)

We thus obtain the following result.

Theorem 2. The algorithm obtained by Equations (4), (5) and (6) computes
δM,o(y′, y′′) in class-factorized tree-shaped deterministic PCs in linear time.

For non-deterministic networks, the equation for sum nodes is no longer valid,
as in such circuits

min
u

n∑
i=1

wi[Mi(y
′,o,u)− Mi(y

′′,o,u)] 6= min
u
wi

n
min
i=1

[Mi(y
′,o,u)− Mi(y

′′,o,u)] .

The equations for products and leaves remain valid for non-deterministic circuits.
Thus, we can use our algorithm as an effective heuristic for non-deterministic
PCs or that violate class-factorization. This is the case for instance when we
have a partially ignorable missingness process and we marginalize part of the
missing variables by judging their missingness to satisfy MAR. Then, even for
deterministic PCs, the algorithm described is not guaranteed to provide the
correct outcome if some variables are marginalized. Yet our experiments show
that it provides an effective heuristic, supporting the reasoning above.

4 Non-Ignorable Training Data

In the previous section we considered PCs learned from complete (or MAR in-
complete) datasets, while restricting the presence of MNAR data to prediction
time. Yet, we might also have non-ignorable missingness in the training dataset
and, following the ideas outlined by [28], apply the same conservative treatment
to the learning of the PC. As a first step, in this work we consider that the
structure of the circuit (i.e., its directed graph) is either specified in a data-free
fashion (e.g., using region graphs or random structures), or learned by standard
algorithms using only the complete portion of the data set [20, 21]. The lat-
ter is a sensible choice when the missing values do not significantly alter the
(context-specific) independences in the data, but can affect the quantification of
the weights in a significant form.

Say that a PC structure is uniformly deterministic, if any quantification
assigning positive weights leads to a deterministic PC. Thus assume that we
have a fixed uniformly deterministic PC structure that we need to quantify
using incomplete data. For complete data, the maximum likelihood estimates of
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the weights associated to a sum node can be obtained as

wij =
Nij + α∑
j Nij + α

,

where Nij counts the number of instances of the dataset for which the sub-PC
Mj contributed to the PC value and α is a smoothing factor to counter the effect
of small sample sizes.5 Clearly, each possible completion of the non-ignorable
missing values induces a different quantification of the weights using the formula
above. This leads to the specification of a credal PC, whose weights are not
specified by sharp numerical values, but only required to satisfy a finite number
of linear constraints [16]. Standard inference in such models is therefore intended
as the computation of the lower and upper bounds of the query with respect to
all the possible specifications of the weights consistent with the constraints. A
simple strategy is to obtain interval-valued weights:

0 ≤ wij ≤ wij ≤ wij ≤ 1,
∑
i→j

wij = 1 . (7)

For deterministic PCs, the lower bound wij can be approximated as the countNij
over instances which have no missing values for the scope of the corresponding
node, and the upper bound wij is obtained by assuming that all completions
will satisfy Mj > 0 and hence contribute to the corresponding count Nij . Note
that those bounds are loose as they ignore the dependencies among different
parameters. An alternative technique to learn non-deterministic credal PCs in
the presence of incomplete data was recently proposed by [10]. We could also
resort to their approach for a CIR-based training of credal PCs. We leave as
future work adapting their results to learning deterministic credal PCs.

Assessing the robustness with interval-valued credal PCs amounts to com-
puting:

δM(y
′, y′′) = min

w
min
u

[Mw(y′,o,u)− Mw(y′′,o,u)] , (8)

where the notation Mw denotes a PC quantified by weights w.
The algorithm for deciding dominance can be easily adapted for handling

class-factorized deterministic tree-shaped credal PCs. If M is rooted at a sum node
with children M1, . . . , Mn and weights w1, . . . , wn, then the algorithm computes

δM(y
′, y′′) =

n
min
i=1

wi min
w,u

[Mi(y
′,o,u)− Mi(y

′′,o,u)] , (9)

where wi = wi if the inner minimization is positive, and wi = wi if the inner
minimization is negative. Similarly, if M is a product node with children M1, . . . , Mn
such that Y is in the scope of M1 (and no other), then the algorithm computes:

δM(y
′, y′′) = min

w1,u1

[M1(y′,o1,u1)− M1(y′′,o1,u1)]︸ ︷︷ ︸
=δM1 (y

′,y′′)

n∏
i=2

opti Mi(oi,ui) , (10)

5 By contributing to the PC value, we mean that there is path from the root to Mj
where each node evaluates to a positive value for the given instance.
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where

opti =

{
maxwi,ui if δM1(y′, y′′) > 0 ,

minwi,ui
if δM1(y′, y′′) ≤ 0 .

The sub-problems opti Mi(oi,ui) can be computed in linear time by the algorithm
described in [12]. The equations for the leaves remain unchanged. We have that:

Theorem 3. The algorithm obtained by Equations (9), (10) and (6) computes
δM,o(y′, y′′) in class-factorized tree-shaped deterministic credal PCs in linear time.

5 Experiments

We empirically evaluate the ability of our proposed methods in assessing the
robustness of classifications to non-ignorable missing feature values, by means
of the index δ. To this end, we learn class-factorized GeFs from six well-known
complete binary datasets for density estimation [6], using the algorithm in [5].
The characteristics of the datasets are in Table 1. Missing test values are simu-
lated using a mix of MAR, MCAR and MNAR mechanisms. The average number
of (MAR, MCAR and MNAR) missing values per instance is denoted as AvM,
and the average number of MNAR values per instance is denoted as AvMNAR.

Table 1. Datasets characteristics.

Dataset
# Test

AvM AvMNAR
# Train Model

Variables Instances Instances Size

Audio 100 3,000 4.1 1.9 15,000 3,858
Dna 180 1,186 5.5 2.2 1,600 1,038
Msnbc 17 5,624 1.6 0.5 291,326 2,816
Mushrooms 112 5,624 7.7 3.4 2,000 1,764
Netflix 100 3,000 6.7 3.0 15,000 3,524
Nltcs 16 3,236 1.4 0.4 16,181 568

In Table 2 we report relevant performance metrics of our CIR predictions.
The last column (Acc) shows the accuracy of classifications made by marginal-
izing all missing test values. Columns RAcc and ¬RAcc report the classification
accuracy on the portions of instances that are robust and non-robust, respec-
tively. A test instance is robust if the CIR inference (Eq. 3) returns only one
non-dominated class value. For the rows tagged “marg”, we marginalize MAR
variables and optimize over the MNAR variables. For the other rows, we optimize
over all missing values. Column %R shows the percentage of robust instances.
By comparing RAcc, Acc and ¬RAcc, we observe the ability of CIR in discrimi-
nating between the easy-to-classify instances, corresponding to the robust ones,
and the harder ones (non-robust instances), for which a set of classes is returned.
Similar conclusions can be reached by inspecting the SAcc (Set Accuracy) col-
umn, which measures the percentage of (set-valued) classifications that contain
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the true class. Finally, the informative character of marginal classifications are
captured by the discounted accuracy (DAcc), which penalizes “imprecise” classi-
fications by weighting correct set-valued classifications by the reciprocal of their
size (see [29] for more details and motivation about the metric). A DAcc value
higher than the corresponding Acc denotes that the classifier issues predictions
that are on average more accurate than random classifications, hence being in-
formative despite the false MAR assumption.

Table 2. Set Accuracy (SAcc), Discounted Accuracy (DAcc), percentage of robust
instances (%R), and classification accuracy on robust (RAcc), non-robust (¬RAcc)
and overall (Acc) instances when marginalizing missing values at prediction time.

Dataset
CIR Marginalization

SAcc DAcc %R RAcc ¬RAcc Acc

Audio 0.879 0.707 65.6 0.807 0.679 0.763
Audio (marg) 0.863 0.708 69.1 0.798 0.686 0.763
Dna 0.899 0.799 80.0 0.880 0.511 0.806
Dna (marg) 0.858 0.801 88.6 0.846 0.496 0.806
Msnbc 0.978 0.956 95.5 0.978 0.925 0.976
Msnbc (marg) 0.979 0.932 90.6 0.978 0.956 0.976
Mushrooms 1.000 0.991 98.2 1.000 1.000 1.000
Mushrooms (marg) 1.000 0.991 98.2 1.000 1.000 1.000
Netflix 0.894 0.662 53.6 0.771 0.652 0.716
Netflix (marg) 0.873 0.665 58.3 0.760 0.655 0.716
Nltcs 0.980 0.912 86.4 0.977 0.856 0.961
Nltcs (marg) 0.975 0.906 86.2 0.972 0.888 0.961

To analyze the approach on a more realistic missingness scenario, we learn
GeFs from a binarized version of the complete version of the Jester dataset.6

This is an complete dataset of user ratings on 10 items (variables), divided into
17,467 training instances (users) and 7,486 test instances. We build a binary
classification task by predicting, for each user/instance, the rating of a distin-
guished item given the other items ratings. We fabricate MNAR values in both
training and test sets by independently omitting a positive rating with either
low probability (p = 0.05) or high probability (p = 0.5). This simulates observed
behaviour of users providing ratings in such systems [14]. Table 3 shows that
learning an imprecise model relay better accuracy than the precise version that
ignore missing values. Note that when learning a credal PC, we might produce
set-valued classifications even when we marginalize (MAR) the missing test val-
ues. Figure 2 shows that for both missingness levels the measure in (2) can be
used to detect easy-to-classify instances for the precise classifier that assumes
MAR. Similar patterns are achieved in terms of (modified) discounted accuracy
in Figure 3, where this approach is combined with a rejection option.

6 http://eigentaste.berkeley.edu/dataset
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Table 3. Performance of models learned from Jester with two different missingness
proportions p in the training and test set. Imprecise models are obtained as in Section
4, precise models are obtained after removal of instances with missing values.

Model Inference p
Model + Inference Precise + MAR
SAcc DAcc %R RAcc ¬RAcc Acc

Imprecise MAR 0.05 0.689 0.664 95.1 0.596 0.540 0.593
Imprecise CIR 0.05 0.716 0.661 88.9 0.600 0.540 0.593
Precise CIR 0.05 0.644 0.602 91.5 0.598 0.536 0.593
Imprecise MAR 0.5 0.753 0.597 68.7 0.639 0.435 0.575
Imprecise CIR 0.5 0.847 0.597 50.0 0.693 0.457 0.575
Precise CIR 0.5 0.827 0.578 50.3 0.657 0.493 0.575
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the classifier, is used to decide robustness. We also display %R by threshold ε.
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Fig. 3. Modified discounted accuracy of the (imprecise) classifier for the Jester dataset
with low (p = 0.05, left) and high (p = 0.5, right) missingness levels. Robustness is
decided as in Figure 2 for different values of the threshold ε. A value ρ is used instead of
0.5 to score imprecise classifications, which regulates preference for model uncertainty
against aleatory uncertainty (see [29]).
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6 Conclusion

We developed an exact polynomial-time method for the conservative treatment
of non-ignorable missing data using probabilistic circuits. Experiments with real-
istic data demonstrated that the approach is effective in discriminating instances
which are sensitive to the missingness process from those that are not. Our ap-
proach to handling missing data at training time led us to consider credal circuits,
which extend standard probabilistic circuits by locally associating sets of prob-
abilities to sum nodes. Such extensions retain many of the tractable properties
of probabilistic circuits, offering an interesting and more cautious alternative
to marginal inference. We left as future work the treatment of other types of
missing data (e.g., coarse and unreliable observations).

Proof of Theorem 1

Membership in coNP is trivial: given a configuration u we can compute M(y′,o,u)
and M(y′′,o,u) in linear time and decide the sign of its difference in constant time.
Hence we have a polynomial certificate that the problem is not in the language.

We show hardness by reduction from the subset sum problem: Given positive
integers z1, . . . , zn, decide

∃u ∈ {0, 1}n :
∑
i∈[n]

viui = 1 , where vi =
2zi∑
i∈[n] zi

. (11)

+

× ×

[[Y = y′]] P1(u) P2(u) [[Y = y′′]]

a b

To solve that problem, build a tree-shaped deterministic PC as shown above,
where Ui are binary variables, P1(u) =

∏
i e
−2viui and P2(u) =

∏
i e
−viui . Note

that the PC is not class-factorized. Use the PC to compute:

δ(y′, y′′) = min
u

[
a exp

(
−2
∑
i

viui

)
− b exp

(
−
∑
i

viui

)]
.

If we call x := exp(−
∑
i viui), the above expression is the minimum for positive

x of f(x) := ax2 − bx. Function f is a strictly convex function minimized at
x = b/(2a). Selecting a and b such that b/(2a) = e−1 makes the minimum occur
at
∑
i viui = 1. Thus, there is a solution to (11) if and only if δ(y′, y′′) ≤ −ae−2.

This proof is not quite valid because the distributions P1(u) and P2(u) use
non-rational numbers. However, we can use the same strategy as used to prove
Theorem 5 in [16] and exploit the rational gap between yes and no instances
of the original problem to encode a rational approximation of P1 and P2 of
polynomial size. ut
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16. Mauá, D.D., Conaty, D., Cozman, F.G., Poppenhaeger, K., de Campos, C.P.: Ro-
bustifying sum-product networks. International Journal of Approximate Reasoning
101, 163–180 (2018)

17. Mohan, K., Pearl, J., Tian, J.: Graphical models for inference with missing data.
In: Proceedings of Advances in neural information processing systems (NeurIPS).
pp. 1277–1285 (2013)

18. Peharz, R., Gens, R., Domingos, P.: Learning selective sum-product networks. In:
Proceedings of the Workshop on Learning Tractable Probabilistic Models (2014)



14 Villanueva et al.

19. Peharz, R., Gens, R., Pernkopf, F., Domingos, P.: On the latent variable inter-
pretation in sum-product networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39(10), 2030–2044 (2017)

20. Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K.,
Ghahramani, Z.: Random sum-product networks: A simple and effective approach
to probabilistic deep learning. In: Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference (UAI) (2020)

21. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In: Pro-
ceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI). pp.
337–346 (2011)

22. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: A simple, tractable, and
scalable approach for improving the accuracy of Chow-Liu trees. In: Calders, T.,
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