
1/20

Probabilistic Logic Programming under the L-Stable Semantics

Denis D. Mauá1 Fabio G. Cozman2 Alexandro Garces3

1Institute of Mathematics and Statistics
University of São Paulo

2Escola Politécnica
University of São Paulo

3MIT

22nd International Workshop on Nonmonotonic Reasoning – Nov 2nd, 2024



2/20

Roadmap

1. Motivation

2. L-Stable Semantics

3. Probabilistic Answer Set Programming

4. New Complexity Results

5. Inference



3/20

Motivation: Inconsistencies in Probabilistic Logic Program

▶ Probabilistic Answer Set Program (PASP) eases the specification of intricate
discrete statistical models involving relations, logical constraints, context-specific
indepedence

▶ Interesting approach for Neurosymbolic Reasoning (probabilities are output of
neural concept learners)

▶ Most semantics require consistency (no world is inconsistent)

▶ Knowledge base construction often produces inconsistencies (multiple experts,
learned rules, unwanted worlds, etc)

▶ L-Stable Semantics gracefully handles inconsistencies while preserving essence of
Distribution Semantics (Independent Probabilistic Facts + Logical Rules)

▶ This Work: Complexity and Inference for PASP under L-Stable semantics



4/20

Answer Set Programming

An answer set program is a finite set of extended disjunctive rules:

head1; head2; ...; headM :- pbody1, ..., pbodyN, not nbody1, ..., not nbodyO.

▶ rule is a fact if body is empty

▶ program is normal if very rule has one atom in head

▶ we disallow integrity constraints (i.e., empty head rules)

Example: 3-coloring

% − FACTS
node(1). node(2). node(3). node(4). edge(1,2). edge(2,3). edge(3,4). edge(1,4). edge(1,3).
% − NORMAL RULE
conflict(X,Y) :- not conflict(X,Y), edge(X,Y), color(X,C), color(Y,C).
% − DISJUNCTIVE RULE
color(X,red); color(X,blue); color(X,green) :- node(X).



5/20

L-Stable Semantics For Propositional Programs

▶ Interpretation assigns true/false/undefined to each atom (total if no undefined
atom)

▶ Rule is satisfied if body is false, if body and head are true, or if body and head are
undefined

▶ A model satisfies all rules

▶ Partial stable model if minimal model of program reduct (replace
false/true/undefined literals in bodies with false/true/undefined)

▶ Partial stable model is least undefined (L-Stable) if there is no partial stable
model defining more atoms



6/20

L-Stable Semantics

a; b.
a :- not a.
b :- not b.

id I (a), I (b) P/I − {a; b} MinModels(P/I )

1 (false, false) a← true. b ← true. (true, true)
2 (false, undef) a← true. b ← undef. (true, undef)
3 (false, true) a← true. b ← false. (true, false)
4 (undef, false) a← undef. b ← true. (undef, true)
5 (undef, undef) a← undef. b ← undef. (true, undef), (undef, true)
6 (undef, true) a← undef. b ← false. (true, false), (undef, true)
7 (true, false) a← false. b ← true. (false, true)
8 (true, undef) a← false. b ← undef. (true, undef), (false, true)
9 (true, true) a← false. b ← false. (true, false), (false, true)



7/20

Probabilistic Answer Set Programming

Distribution Semantics [Dantsin 1990, Poole 1993, Fur 1995, Sato 1995]

▶ Probabilistic Choices: Collection of fully independent categorical RV’s

▶ Each realization generates an ASP program

Random graph example: probabilistic program

node(1). node(2). node(3). 0.5::edge(1,2). 0.5::edge(2,3).

generates four programs, with probability 0.5× 0.5 = 0.25 each:

node(1). node(2). node(3). node(1). node(2). node(3). edge(1,2).

node(1). node(2). node(3). edge(2,3). node(1). node(2). node(3). edge(1,2). edge(2,3).



7/20

Probabilistic Answer Set Programming

Distribution Semantics [Dantsin 1990, Poole 1993, Fur 1995, Sato 1995]

▶ Probabilistic Choices: Collection of fully independent categorical RV’s

▶ Each realization generates an ASP program

Random graph example: probabilistic program

node(1). node(2). node(3). 0.5::edge(1,2). 0.5::edge(2,3).

generates four programs, with probability 0.5× 0.5 = 0.25 each:

node(1). node(2). node(3). node(1). node(2). node(3). edge(1,2).

node(1). node(2). node(3). edge(2,3). node(1). node(2). node(3). edge(1,2). edge(2,3).



8/20

Probabilistic Answer Set Programming Under L-Stable Semantics

Example: 2-colorability of random graph

% graph has 3 nodes...
node(1). node(2). node(3).

% and random edges.
0.5::edge(X,Y) :- node(X), node(Y), X < Y.

% color each node either red or blue
color(X,red); color(X,blue) :- node(X).

% such that no two endpoints have same color
conflict(X,Y) :- edge(X,Y), color(X,C), color(Y,C).

% graph is colorable iff no conflict
conflict :- not conflict, conflict(X,Y).
colorable :- not conflict.

L-stable models

pr
og

ra
m
s

Pr(colorable = 1) =
∑

program

0.53×Pr(colorable = 1|program) = 1−0.53



9/20

Probabilistic Answer Set Programming: Probabilistic Semantics

Pr(atom) =
∑

program

Pr(program)
Distribution
Semantics

∑
model|=atom

Pr(model | program)

▶ Stratified: each induced program has exactly one model
▶ Pr(model | program) = 1

▶ Consistent: induced programs have 1 or more models

▶ Credal Semantics: consider the credal set of all distributions Pr(model | program)

▶ MaxEnt: consider uniform Pr(model | program) = 1/#models(program)

▶ Plingo/LPMLN: Renormalize over consistent programs



9/20

Probabilistic Answer Set Programming: Probabilistic Semantics

Pr(atom) =
∑

program

Pr(program)
Distribution
Semantics

∑
model|=atom

Pr(model | program)

▶ Stratified: each induced program has exactly one model
▶ Pr(model | program) = 1

▶ Consistent: induced programs have 1 or more models

▶ Credal Semantics: consider the credal set of all distributions Pr(model | program)

▶ MaxEnt: consider uniform Pr(model | program) = 1/#models(program)

▶ Plingo/LPMLN: Renormalize over consistent programs



10/20

Credal Semantics: Properties

▶ P1:
min Pr(atom) =

∑
program:

∀model|=atom

Pr(program)

▶ P2:

maxPr(atom) = 1−minPr(¬atom)

▶ P3:

min Pr(a|b) = minPr(a, b)

min Pr(a, b) + maxPr(¬a, b)



11/20

Example: Credal and MaxEnt Semantics

0.1::a. 0.3::b.
c :- a. d :- b. c ; d. c :- not c. d :- not d.

C Pr(program(C )) LSModels(program(C ))

1 ∅ 0.63 (false, false, undef, true), (false, false, true, undef)
2 a 0.07 (true, false, true, undef)
3 b 0.27 (false, true, undef, true)
4 a, b 0.03 (true, true, true, true)

▶ Credal Semantics yields Pr(c) ∈ [0.1, 0.73]

▶ MaxEnt Semantics yields Pr(c) = 0.415

▶ Both semantics assign Pr(not c) = 0



12/20

Inference Complexity under Stable Semantics

▶ Credal Semantics: min Pr(atom|evidence)
▶ PPΣp

2 -hard for propositional programs with disjunction and negation/aggregates

▶ PPNP-hard for disjunction-free, aggregate-free propositional programs

▶ PP-hard for stratified propositional programs

▶ One step higher in Counting Hierarchy for relational programas with bounded-arity
predicates (e.g., PPΣp

3 -hard for disjunctive programs)

▶ EXPTIME if predicate arity is unbounded

▶ MaxEnt Semantics: Pr(atom|evidence)
▶ PP-hard, from stratified programs



13/20

Inference Complexity under Credal L-Stable Semantics

Theorem (Mauá & Cozman, 2020)

If consistency in some logic programming language belongs to complexity class C , then
probabilistic inference under the credal semantics in the corresponding probabilistic
logic programming language belongs to PPC.

▶ Consistency in propositional normal programs is Σp
2-complete [Eiter, Leone &

Saccà 1998]

▶ Consistency in propositional disjunctive programs is Σp
3-complete [ELS 98]



14/20

Contributions: Complexity under Credal L-Stable Semantics

Theorem

Deciding if there is an L-stable model satisfying a given atom for a normal program
with bounded-arity predicates is Σp

3-hard.

Proof. Reduction from 3-QBF with least undefinedness encoding boolean quantifier.
∃X1, . . .Xm∀Xm+1, . . . ,Xn∃Xn+1, . . . ,Xp ϕ(X1, . . . ,Xp),

Theorem

Deciding if there is an L-stable model satisfying a given atom for a disjunctive program
with bounded-arity predicates is Σp

4-hard.

Proof. Reduction from 4-QBF using saturation and least undefinedness.



15/20

Contributions: Complexity under Credal L-Stable Semantics

Corollary

Probabilistic inference in propositional disjunctive programs under the credal L-stable
semantics predicates is PPΣp

3 -complete.

Corollary

Probabilistic inference in normal probabilistic programs with bounded-arity predicates
under the credal L-stable semantics is PPΣp

3 -complete.

Corollary

Probabilistic inference in disjunctive probabilistic programs with bounded-arity
predicates under the credal L-stable semantics is PPΣp

4 -complete.



16/20

Contributions: Complexity under MaxEnt L-Stable Semantics

▶ Theorem of Mauá & Cozman 2021 doesn’t apply for MaxEnt semantics (AFIK)

▶ Hence need of more direct proof

▶ Lack of inner decision problem makes result challenging

Theorem

Deciding whether the probability of an atom exceeds a given threshold under the
MaxEnt semantics for propositional disjunctive programs is PP-complete when the
L-stable models of any induced logic program are efficiently enumerated.

Proof. Hardness follows from stratified programs. Membership: Use no. of models to
build Turing machine.



16/20

Contributions: Complexity under MaxEnt L-Stable Semantics

▶ Theorem of Mauá & Cozman 2021 doesn’t apply for MaxEnt semantics (AFIK)

▶ Hence need of more direct proof

▶ Lack of inner decision problem makes result challenging

Theorem

Deciding whether the probability of an atom exceeds a given threshold under the
MaxEnt semantics for propositional disjunctive programs is PP-complete when the
L-stable models of any induced logic program are efficiently enumerated.

Proof. Hardness follows from stratified programs. Membership: Use no. of models to
build Turing machine.



17/20

Contributions: Complexity under MaxEnt L-Stable Semantics

Theorem

Deciding if the probability of an atom exceeds a given threshold under the MaxEnt
semantics for disjunctive programs with bounded-arity predicates is in PPPP.

Proof. Build Turing machine and count with precision proportional to input size. Use
integer gap to decide.

Theorem

Deciding if the probability of an atom exceeds a given threshold under the MaxEnt
semantics for propositional normal programs is PPNP-hard, even if all atoms are
defined.

Proof. Reduction from MAJ-E-SAT using integer gap in count to decide E-SAT part.



18/20

Probabilistic Inference under the L-Stable Semantics

Janhunen et al. 2006’s Translation from L-stable to Stable

a ; b.
a :- not a.
b :- not b.

a ; b. a ; b.
a :- not a. a :- not a. a :- a.
b :- not b. b :- not b. b :- b.

id I (a), I (a), I (b), I (b) P/I − P ′ MinModels(P/I )

3 (false, false, true, true) a← true. a← true. b ← false. b ← false. (true, true, false, false)
6 (false, true, true, true) a← false. a← true. b ← false. b ← false. (true, true, false, false), (false, true, true, true)
7 (true, true, false, false) a← false. a← false. b ← true. b ← true. (false, false, true, true)
8 (true, true, false, true) a← false. a← false. b ← false. b ← true. (true, true, false, true), (false, false, true, true)
9 (true, true, true, true) a← false. a← false. b ← false. b ← false. (true, true, false, false), (false, false, true, true)

Note: atom is undefined iff x and x disagree



19/20

Experiments

We have implemented the inference algorithm in our comprehensive
neuro-probabilistic-logic framework called dPASP:

http://github.com/kamel-usp/dpasp

Inconsistent example program:

person(1..4).
0.1::asthma(X). 0.3::stress(X).
0.3::influences(1,2). 0.6::influences(2,1).
0.2::influences(2,3). 0.7::influences(3,4).
0.9::influences(4,1).
0.6::inh stress(X). 0.6::inh smokes(X).
smokes pos(X) :- stress(X), not inh stress(X).
asthma(X) :- smokes(X), not inh smokes(X).
smokes pos(X) :- influences(Y,X), smokes(Y).
smokes neg(X) :- asthma(X).
smokes(X) :- smokes pos(X), not smokes neg(X).

Semantics
Pr(smokes(X ) = undef)

1 2 3 4

smProbLog 0.2223 0.2223 0.2223 0.2223

L-stable 0.1548 0.0828 0.0599 0.0909

▶ L-Stable semantics is less undefined

▶ Preserves independence of probabilistic
choices

http://github.com/kamel-usp/dpasp


20/20

Probabilistic Logic Programming under the L-Stable Semantics

Denis D. Mauá, Fabio G. Cozman and Alexandro Garces

Email: ddm@ime.usp.br

ddm@ime.usp.br

	Motivation
	Probabilistic Answer Set Programming
	Complexity
	Inference
	Conclusion

