
International Journal of Approximate Reasoning 118 (2020) 133–154
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Complexity results for probabilistic answer set programming

Denis Deratani Mauá a,∗, Fabio Gagliardi Cozman b

a Institute of Mathematics and Statistics, Universidade de São Paulo, Brazil
b Escola Politécnica, Universidade de São Paulo, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 May 2019
Received in revised form 25 October 2019
Accepted 9 December 2019
Available online 16 December 2019

Keywords:
Probabilistic logic programming
Answer set programming
Computational complexity

We analyze the computational complexity of probabilistic logic programming with
constraints, disjunctive heads, and aggregates such as sum and max. We consider
propositional programs and relational programs with bounded-arity predicates, and look
at cautious reasoning (i.e., computing the smallest probability of an atom over all
probability models), cautious explanation (i.e., finding an interpretation that maximizes the
lower probability of evidence) and cautious maximum-a-posteriori (i.e., finding a partial
interpretation for a set of atoms that maximizes their lower probability conditional on
evidence) under Lukasiewicz’s credal semantics.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Probabilities and logic programming have been combined in a variety of ways [1–8]. A particularly interesting and power-
ful combination is offered by probabilistic answer set programming, which exploits the powerful knowledge representation
and problem solving toolset of answer set programming [9]. Available surveys describe probabilistic logic programming in
detail and go over many promising applications [10–13].

The complexity of probabilistic answer set programming has been examined for definite, normal, and disjunctive pro-
grams, both with restrictions of acyclicity and without it, and under a number of semantics [14–16]. Yet, the analysis is far
from complete; for example, it lacks constructs such as aggregates, and special cases such as positive disjunctive programs
— some are relatively simple, others are more intricate.

In this work, we continue the study of the complexity of probabilistic disjunctive programs with integrity constraints and
aggregates, all of them under Lukasiewicz’s “credal semantics” [4]. This semantics specifies a set of probability distributions
over the answer sets of derived logic programs, and coincides with Sato’s popular distribution semantics [8,17] for programs
with a single answer set (e.g. negation-stratified nondisjunctive programs). We close most of the open questions for three
common types of inference: cautious reasoning (CR), which asks for the minimum probability assigned by some probability
model for a target atom, most probable explanations (MPE), which asks for the most conservative interpretation consistent
with a given a set of literals, and maximum a posteriori (MAP) inference, which asks for the most conservative interpretation
of a selected set of predicates consistent with a given set of literals. In deriving some of these results we prove complexity
results for non-probabilistic relational programs with aggregates and bounded-arity predicates, a topic that was left open in
the literature.

The complexity results for CR and MPE parameterized by the type of constructs allowed (negation, disjunction, stratified
aggregate, etc.) are summarized in Table 1. Unless otherwise indicated, each cell in this table indicates completeness under

* Corresponding author.
E-mail address: ddm@ime.usp.br (D.D. Mauá).
https://doi.org/10.1016/j.ijar.2019.12.003
0888-613X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2019.12.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:ddm@ime.usp.br
https://doi.org/10.1016/j.ijar.2019.12.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2019.12.003&domain=pdf

134 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
many-one reductions. One can discern interesting patterns from our results. One of them is the fact that complexity of
probabilistic programs typically mirrors the complexity of the corresponding logical problems except for an added “base”
machine (a PP “base” for CR and a NP “base” for MPE). Another remarkable pattern that can be found in our results is the
difference between sum and max aggregates when programs have bounded-arity predicates; while in propositional programs
the different aggregates have the same effect, in relational programs the sum aggregates require a “top” PP oracle, while
max aggregates require a “top” NP oracle.

The complexity analysis for MAP is much more regular. The problem is NPPP-complete for propositional programs for all
languages we consider, and also for bounded-arity programs without aggregates. As with the previous inferences, the use of
sum aggregates and variables introduces an extra complexity, as we show that the problem becomes NPPPPP

-complete, an
intriguing result that does not seem to have a parallel in the logic programming literature.

These results have practical consequences in the development of efficient inference algorithms. For example, this suggests
that programs containing (recursive) aggregate atoms cannot be rewritten without aggregates if an exponential blow up is
to be avoided. Indeed the importance of our complexity results lies not only in clarifying where languages and inferences
lie within the vast hierarchy of complexity classes, but also in suggesting algorithmic ways to approach these problems.
For instance, a NPPP-hard problem should be solved by some search scheme helped by a model counting method; trying a
simple search technique will (likely) not do.

The paper is organized as follows. Section 2 reviews concepts from (nonprobabilistic) answer set programming. Proba-
bilistic logic programming under the credal semantics is reviewed in Section 3. The contributions of this work appear in
Section 4. Section 5 contains a summary of the paper and comments on future work.

2. Answer set programming

We first review disjunctive logic programs with aggregates under the semantics advocated by Faber, Pfeifer and Leone
[18]. The presentation is a bit long as the definition of syntax and semantics is somewhat involved. Readers familiar with
answer set programming may skip to Section 3.

Even though our presentation is self-contained, readers unfamiliar with logic programming might benefit from reading
earlier work in the area [9,19].

2.1. Syntax

Fix a vocabulary of variables, predicates, and constants and aggregate function symbols (e.g. max, sum, count). Each
predicate is associated with a nonnegative number called its arity. As usual, variables are represented with a capital letter,
while predicates start with a lower letter. For convenience, we assume without loss of generality that the set of constants
are the integers.

A standard atom is an expression p(t1, . . . , tn) where p is a predicate of arity n and t1, . . . , tn are each either a constant
or a variable. An atom is ground if it contains no variables. A literal is either a standard atom (also called positive literal) or
a standard atom preceded by the special keyword not (also called a negative literal). For example, edge(X, Y) and not root(0)

are literals; the former is positive and not ground, whereas the second is negative and ground.
A ground set is an expression z1 : A1; . . . ; zn : An , where each zi is a comma-separated list of constants (i.e., integers)

and each Ai is a comma-separated list of standard ground atoms. A symbolic set is of the form X1, . . . , Xn : A1, . . . , Am

where each X1 is a variable and each A j is a standard atom. An aggregate atom is an expression of the form # f {S} ◦ t ,
where f is an aggregate function symbol, which here we consider to be one of sum, count or max, S is either a ground
set or a symbolic set, ◦ is one of <, >, ≤, ≥, =, �=, and t is a constant or a variable. Here is a ground aggregate atom
(hence containing a ground set): #sum{1 : p(1, 1); 2 : p(1, 2)} > 1. And here is an aggregate atom containing a symbolic set:
#count{Y : pa(Y , X)} �= 1.

A rule r is an expression of the form1

H1 ∨ · · · ∨ Hm ← B1, . . . , Bn ,

where H1, . . . , Hm are standard atoms, and B1, . . . , Bn are standard literals and aggregate atoms. The set of atoms Hi form
the head of the rule (denoted as head(r)) and the set of atoms B j is the body (denoted as body(r)). The rule is said to be
normal if m = 1, disjunctive if m > 1, positive if it contains no negative literal, and aggregate-free if there are no aggregate
atoms. It is a fact if it is normal and the body is empty. We write facts without the arrows (e.g. root instead of root ←) for
clarity. A rule with m = 0 and n > 0 is an integrity constraint.

A logic program is a set of rules. The program is normal if all rules are normal, positive if all rules are positive and so
on. The program is definite if it is normal, positive and aggregate-free.

1 We do not allow for strong negation. One can emulate strong negation with integrity constraints and (default) negation [9]. Hence, for languages
containing such features no generality is lost. We leave for the future the study of languages with strong negation without default negation or integrity
constraint. We also do not allow for negated aggregate atoms, as these can be rewritten without not by rewriting the operator ◦ of interest.

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 135
Fig. 1. The graph specified by the program in Example 1, and its corresponding spanning trees.

Example 1. The following is a logic program specifying spanning trees of the graph in Fig. 1.

root(1). edge(1,2). edge(1,3). edge(2,4). edge(3,4). (st1)

edge(X, Y) ← edge(Y , X). (st2)

pa(X, Y) ∨ absent(X, Y) ← edge(X, Y). (st3)

← pa(X, Y),pa(Y , X). (st4)

← root(X),pa(Y , X). (st5)

← not root(X),#count{Y : pa(Y , X)} �= 1. (st6)

The relation pa defines a oriented spanning tree of that graph rooted at node 1. Each edge is either in that tree or it is
absent. The atoms in rules (st1) are ground, while the remaining atoms are not. The rules in (st1) are facts; rule (st2)
is definite (i.e., positive, normal and aggregate-free), rule (st3) is disjunctive and rules (st5), (st5) and (st6) are integrity
constraints. Except for (st6) all rules are aggregate-free.

Given a rule containing an aggregate atom, the variables that only appear in aggregate atoms are called local; the
remaining variables are global. The variable Y is local in rule (st6), and the variable X is global. Note that a variable not
appearing in any aggregate atom in the rule is global. Also, a local variable need not appear in the variable list in a symbolic
set. For example, Z and W are local for p(X) ← q(X, Y), #max{Z : p(Z), q(Y , W)}, and X and Y are global.

A program is propositional if it does not contain variables, which implies that aggregate atoms are expressed using
ground sets only.

A substitution is a mapping of variables to constants in the program. The grounding of a rule is obtained in two steps.
First a substitution of the global variables is applied. Then a propositional rule is obtained by transforming each symbolic
set X : A into the ground set Xθ1 : Aθ1, Xθ2 : Aθ2, . . . , where θ1, θ2, . . . are all the substitutions for local variables in the
symbolic set, and Xθ (resp., Aθ) denotes the result of substitution θ to variables X (resp., standard atoms A). The grounding
of a program is the union of all groundings of all rules.

Example 2. Here is a positive normal logic program:

a(X). b(0,1).

p(X) ← a(X),#sum{Y : b(X, Y)} < X .

a(1) ← p(1).

Grounding the program above produces the propositional program:

a(0). a(1). b(0,1).

p(0) ← a(0),#sum{0 : b(0,0);1 : b(0,1)} < 0.

p(1) ← a(1),#sum{0 : b(1,0);1 : b(1,1)} < 1.

a(1) ← p(1).

A stratification � assigns each ground standard atom of a propositional program to a nonnegative integer (called its
stratum). A propositional program is negation-stratified if there exists a stratification � such that for each rule r, for each
atom A in the head of r, and for each standard literal B in r (possibly appearing inside of an aggregate atom), we have that
[20]:

1. If B also appears in the head then �(A) = �(B).
2. If B is a positive literal in the body then �(A) ≥ �(B).
3. If B is a negative literal in the body then �(A) > �(B).

136 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
A program is negation-stratified if its grounding is negation-stratified. Intuitively, a program is negation-stratified if no atom
is defined in terms of its negation through a sequence of rules. Clearly, every positive program is negation-stratified. The
programs in Examples 1 and 2 are stratified.

Example 3. Here is a program which is not negation-stratified:

x(0) ← not x(1). x(1) ← not x(0). negphi ← x(0), y(0).

y(0) ← not y(1). y(1) ← not y(0). negphi ← z(0).

z(0) ← not z(1). z(1) ← not z(0). sat ← not negphi.

The program encodes the Boolean satisfiability problem ∃X, Y , Z : (X ∨ Y) ∧ Z . Atom x(0) represents the literal ¬X in the
Boolean formula, x(1) represents X , and so on for the predicates y and z. Atom negphi represents the negation of the
Boolean formula, and sat is true iff the formula is satisfiable. Programs of this sort will be important to prove complexity
results later.

A propositional program is stratified on an aggregate atom C if there exists a stratification � such that for each rule r,
for each atom A in the head of r and for each standard literal B in r, we have that [18]:

1. If B appears in the head then �(A) = �(B).
2. If B is in the body then �(A) ≥ �(B).
3. If B appears in C then �(A) > �(B).

A program is aggregate-stratified if its grounding is stratified on all of its (ground) aggregate atoms. Intuitively, aggregate-
stratified programs do not allow recursion through aggregates, that is, no atom can be defined in terms of itself by means
of an aggregate atom. The programs in Examples 1, 2 and 3 are aggregate-stratified.

Example 4. Here is a negation-stratified program which is not aggregate-stratified:

x(0) ← #sum{−1 : x(0);1 : x(1)} ≤ 0. negphi ← x(0), y(0).

x(1) ← #sum{−1 : x(0);1 : x(1)} ≥ 0. negphi ← z(0).

y(0) ← #sum{−1 : y(0);1 : y(1)} ≤ 0.

y(1) ← #sum{−1 : y(0);1 : y(1)} ≥ 0.

z(0) ← #sum{−1 : z(0);1 : z(1)} ≤ 0. z(0) ← phi.

z(1) ← #sum{−1 : z(0);1 : z(1)} ≥ 0. z(1) ← phi.

phi ← not negphi.

The program encodes the quantified Boolean satisfiability problem ∃X, Y ∀Z : (X ∨ Y) ∧ Z .

A program is stratified if it is both negation- and aggregate-stratified.

2.2. Semantics

We now establish the semantics of propositional programs. The semantics of programs with variables is the semantics
of its grounding.

The Herbrand base of a program is the set of ground standard atoms formed by combining predicates and constants
in the program. An interpretation is a subset of the Herbrand base. A standard atom A is true w.r.t. an interpretation I if
A ∈ I , otherwise the atom is false. A negative literal not A is true w.r.t. I if A /∈ I , otherwise it is false. We write I |= L if the
literal L is true w.r.t. I .

An aggregate function is a mapping from sets of tuples of constants (i.e., integers) to constants (integers). Each aggre-
gate function symbol is associated with an aggregate function. Here we focus on the aggregate functions count(Z) = |Z |,
sum(Z) = ∑

(z1,...,zm)∈Z z1 with sum(∅) = 0, and max(Z) = max(z1,...,zn)∈Z z1 with max(∅) undefined.
A ground aggregate atom # f {S} ◦ z is true w.r.t. an interpretation I if Z is in the domain of f and f (Z) ◦ z holds, where

Z is the set of tuples of constants {(z1, . . . , zn) | (z1, . . . , zn : A1, . . . , Am) ∈ S, I |= A1, . . . , Am}. A ground aggregate atom is
false w.r.t. I if it is not true. For example, the interpretation I = {x(1)} satisfies the aggregate atom

#sum{−1 : x(0);1 : x(1)} ≥ 0. ,

as #sum({1}) = 1 > 0, and does not satisfy

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 137
#sum{−1 : x(0);1 : x(1)} ≤ 0.

The interpretation I = {x(0)} satisfies the latter atom and not the former.
A rule r is satisfied by an interpretation I , denoted as I |= r, if either some atom in the body of r is false or all the atoms

in the body and some atom in the head are true.
Given a propositional program L and an interpretation I , we define the reduct of L w.r.t. I as the program LI obtained

by removing rules whose body contains some literal which is false w.r.t. I [18]:

LI = {r | r ∈ L,∀B ∈ body(r) : I |= B} .

Note that we adopt the definition of reduct by Faber, Leone and Pfeifer [18], which differs from the more common
Gelfond-Lifschitz reduct [21]. Either definition assigns the same semantics to programs without aggregates, and the lat-
ter is undefined for aggregates. Many other semantics have been proposed to cope with (recursive) aggregates [22–24]; for
simplicity, we consider only Faber et al.’s semantics, and leave the analysis with other semantics as future work.

An interpretation I is a model of a program L if it satisfies all of its rules, in which case we write I |= L. I is an answer
set of L if it is a subset-minimal model of its reduct, that is, if I |= LI and there is no I ′ ⊂ I such that I ′ |= LI . We denote by
AS(L) the set of all answer sets of L.

Example 5. Consider the program L in Example 4, and the interpretations I1 = {x(1), y(1), z(0), z(1), phi} and I2 =
{x(1), y(1), z(0), negphi}. Then LI1 is

x(1) ← #sum{−1 : x(0);1 : x(1)} ≥ 0. negphi ← z(0).

y(1) ← #sum{−1 : y(0);1 : y(1)} ≥ 0.

z(0) ← #sum{−1 : z(0);1 : z(1)} ≤ 0. z(0) ← phi.

z(1) ← #sum{−1 : z(0);1 : z(1)} ≥ 0. z(1) ← phi.

phi ← not negphi

and LI2 is

x(1) ← #sum{−1 : x(0);1 : x(1)} ≥ 0. negphi ← z(0).

y(1) ← #sum{−1 : y(0);1 : y(1)} ≥ 0.

z(1) ← #sum{−1 : z(0);1 : z(1)} ≥ 0.

I1 is not a model of LI1 because it does not satisfy rule negphi ← z(0). I2 is an answer set: removing any atom either
changes the program reduct or produces the same program reduct but makes some rule unsatisfied.

2.3. Inference

The tree more common type of reasoning with logic programs are:

Satisfiability: Given a program L decide whether it has at least one answer set.
Brave Reasoning: Given a program L and a ground literal Q , decide whether some answer set that satisfies Q ; we then

say that Q is a brave consequence of L.
Cautious Reasoning: Given a program L and a ground literal Q , decide whether all answer sets satisfy Q ; we then say

that Q is a cautious consequence of L.

These inferential tasks are listed in increasing order of computational complexity. In fact, satisfiability can be cast as
brave reasoning by inserting a dummy literal Q , which is a brave consequence iff the original program has some answer
set; and one can perform brave reasoning by adding a rule Q ′ ← not Q , where Q ′ is a fresh atom, and querying whether
Q ′ is a cautious consequence: this is true iff Q is not a brave consequence [25].

3. Probabilistic logic programs

We now review the definition of probabilistic logic programs, their syntax and semantics.

138 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
3.1. Syntax

The syntax of probabilistic logic programs is a straightforward extension of the syntax of answer set programs. A proba-
bilistic fact is a pair μ :: A where μ ∈ [0, 1] and A is a standard atom. A probabilistic logic program is a pair (L, F) where
L is a logic program and F is a set of probabilistic facts. Intuitively, a probabilistic fact indicates that the corresponding
atom may or may not be present in a logic program with some associated probability. Probabilistic logic programs therefore
represent a set of a (non-probabilistic) logic programs. Since F contains only facts (annotated with probabilities), the logic
program (L, F) inherits the classification of L; for example, (L, F) is normal if L is normal, disjunctive if L is disjunctive,
and so on.

Example 6. Here is a stratified normal probabilistic program that counts the number of models of the Boolean formula
φ = (X ∨ ¬Y) ∧ Z :

0.5 :: x. 0.5 :: y. 0.5 :: z. (ms1)

clause ← x. clause ← not y. (ms2)

phi ← clause, z. (ms3)

The set F contains the probabilistic facts in (ms1), while the remaining rules constitute the non-probabilistic part L.

3.2. The distribution semantics

We start with the semantics of stratified normal programs, as they are much simpler to define and understand [8,13]. We
consider only propositional logic programs; the semantics of programs with variables is the semantics of their groundings.

So consider a propositional probabilistic logic program (L, F). The Herbrand base of that program is the Herbrand base
of L ∪ F . A total choice is a subset of the Herbrand base that contains only predicates in F . We denote the set of all total
choices as T (F). Intuitively, a total choice represents a selection of probabilistic facts that hold true, while its complement
takes on false. A probabilistic logic program is consistent if for any total choice C ∈ T (F) the logic program L ∪ C has at
least one answer set. One can check that the program in Example 6 is consistent. We only consider in this work probabilistic
logic programs that are consistent.

The definition of a probabilistic logic program allows a fact to be associated with two different probabilities, say 0.5 :: a
and 0.3 :: a. While we could generalize the semantics to cope with such cases [15], we assume hereafter that no such two
probabilistic facts appear in F . The complexity results we obtain later do not rely on this assumption, but it simplifies the
discussion of the semantics, and does not seem to be an important modeling feature.

A propositional probabilistic logic program (L, F) where no two probabilistic facts share the same atom induces a prob-
ability mass function pF over (non-probabilistic) logic programs L ∪ C , with C ∈ T (F), by

pF (C) =
∏

μ::A∈F |A∈C

μ
∏

μ::A∈F |A /∈C

(1 − μ) .

If L is stratified and normal, then each L ∪ C is also stratified and normal, and therefore has at most one answer set [18,20].
Assuming (L, F) is consistent, we can therefore extend P to a probability measure over the algebra of interpretations I of
the program by [17]:

P (I) = P ({L ∪ C | I ∈ AS(L ∪ C)}) =
∑

C∈T (F)|I∈AS(L∪C)

pF (C) , (1)

where P (I) = 0 iff I is not an answer set of any induced program L ∪ C .
The probability of more complex queries can be computed by defining random variables over interpretations. A useful

type of random variable is obtained as indicator functions of ground atoms. Let A be a ground literal in the Herbrand base,
then the indicator random variable of A is

IA(I) =
{

1, if I |= A;
0, if I �|= A.

For convenience, we identify a ground literal with its indicator variable and write simply P (A) to denote P (IA = 1). One can
check that if A appears solely in a probabilistic fact μ :: A then P (A) = μ. This notation extends to many random variables;
for example P (A, B) denotes the joint probability P (IA = 1, IB = 1).

Example 7. Consider the probabilistic program in Example 6. Each total choice C induces a logic program that either selects
or not a ground atom x, y or z, independently, each with probability 1/2. Hence, pF (C) = (1/2)3 for every C . Thus, 23 ·
P (phi) = 3 counts the number of satisfying assignments of φ. It also follows that P (x|phi) = P (phi, x)/P (phi) = (1/4)/(3/8) =
2/3, which agrees with the fact that 2 out of the 3 satisfying assignments of φ assign true to X .

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 139
3.3. The credal semantics

The semantics of arbitrary consistent probabilistic logic programs is given by probability models (here again we implicitly
assume that programs are propositional when defining their semantics, as the semantics of a non-propositional program is
the semantics of its grounding). A probability model for (L, F) is a probability measure P over the algebra of interpretations
such that [4]:

PM1 Every interpretation I with P (I) > 0 is an answer set of L ∪C , where C is the total choice consistent with I (conversely,
I is an extension of C).

PM2 For any total choice C the probability of all the extensions of C to interpretations satisfies

P ({I | I ∩ C = C}) = pF (C) =
∏

μ::A|A∈C

μ
∏

μ::A|A /∈C

(1 − μ) .

The set of all probability models is called the credal semantics of the program [4]. If a program (L, F) is stratified and
normal, then the measure in (1) is the unique probability model, and the credal semantics coincides with Sato’s distribution
semantics [17].

Other semantics for probabilistic answer set programs have been proposed in the literature [14,26,27]. There has also
been semantics not based on answer sets; for instance, Hadjichritoudoulou and Warren [5] proposed a semantics based
on well-founded models, which define a three-valued semantics over atoms (true, false and undefined). We leave their
complexity analysis as future work.

In a previous work [15] we showed that the credal semantics is closed and convex, and corresponds to the set of all
probability measures that dominate an infinitely monotone Choquet capacity. As such, the semantics of a ground atom A is
characterized by an interval [P (A), P (A)] such that

P (A) = min
P

P (A) =
∑

C∈T (F)|∀I∈AS(L∪C),I|=A

pF (C) , (2)

P (A) = max
P

P (A) =
∑

C∈T (F)|∃I∈AS(L∪C),I|=A

pF (C) . (3)

The right-hand side of Equation (2) collects the probabilities of all induced programs L ∪ C for which all answer sets satisfy
A. That is, P (A) is the sum of the probabilities of the induced programs of which A is a cautious consequence. If A is not
a cautious consequence of any induced program L ∪ C then P (A) = 0. Similarly, the right-hand side of Equation (3) collects
the probabilities of all induced programs of which A is a brave consequence.

The lower and upper probabilities are tied by the relation P (A) = 1 − P (Ac), where Ac denotes the complement of A; if
A is a literal then Ac denotes its negation.

Example 8. Consider the following probabilistic program:

0.5 :: x. 0.5 :: y. (ps1)

z(0) ∨ z(1). (ps2)

clause ← x. clause ← not y. (ps3)

phi ← clause, z(1). (ps3)

First note that pF (C) = 1/4 for any total choice C , and that I is an answer set of L ∪ C satisfying phi iff the corresponding
assignment to X , Y and Z satisfies the quantified Boolean formula φ = (X ∨ ¬Y) ∧ Z . Since for any total choice, there is
an answer set that satisfies z(0) but not z(1), we have that P (phi) = 0. Also, except for C = {y}, all total choices induce
programs which satisfy phi, hence P (phi) = 3 × (0.5)2 = 3/4.

Another property of infinitely monotone Choquet capacities is that the lower and upper conditional probabilities of any
event A given B can be written as

P (A|B) = min
P

P (A|B) = P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
, (4)

P (A|B) = max
P

P (A|B) = P (A ∩ B)

P (A ∩ B) + P (Ac ∩ B)
, (5)

provided that the denominators are positive. For example, for the probabilistic program in Example 8 we have that
P (phi|z(1)) = 0/(0 + 1/4) = 0 and P (phi|z(1)) = (3/4)/(3/4 + 0) = 1.

140 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
3.4. Languages

As will be shown later, the complexity of probabilistic programs varies with the presence of features in the language. We
denote by Prop(O) the class of propositional programs constructed using language features in O such as disjunction (∨),
negation (not) and aggregate atoms (e.g. sum). We write # to denote that any polynomial-time aggregate function is allowed.
We also denote stratified versions by a subscript s; for example Prop(∨, nots) is the class of propositional aggregate-free
negation-stratified disjunctive programs. We denote by Rel(O) the class of bounded-arity programs using language features
in O.

3.5. Inference

We focus on the following computational problems:

Cautious Reasoning (CR): Given a rational number γ , a probabilistic logic program (L, F), and ground literals Q and
E1, . . . , Em , decide whether P (Q |E1, . . . , Em) ≥ γ . By convention the answer is negative when P (E1, . . . , Em) = 0.

This task has received several names in the literature. For example, it has been called simply inference [15],
MARG [8], and probabilistic query entailment (without evidence) [14]. Some of these works only consider programs
with a single answer set for any total choice (as in the case of stratified programs). We felt that cautious reasoning
is a more appropriate name, as it reflects its similarity to the analogous reasoning in non-probabilistic answer set
programming (which it subsumes), and distinguishes it from a similar task that could be made involving the upper
probability (which we could call brave reasoning by analogy). Note that we can decide whether P (Q |E1, . . . , Em) ≤
γ by deciding whether P (Q c |E1, . . . , Em) ≥ 1 − γ , where Q c is the complement literal of Q , so that one problem
reduces to the other one; we use this fact to avoid analyzing the complexity of computing upper probability
bounds.

Most Probable Explanation (MPE): Given a rational number γ , a probabilistic logic program (L, F) and ground literals
E1, . . . , Em , decide whether maxm1,...,mn P (M1 = m1, . . . , Mn = mn, E1 = 1, . . . , Em = 1) > γ , where M1, . . . , Mn are
indicator variables for all ground atoms in the Herbrand base of the program.

This is a common task in probabilistic graphical models, that resembles (but it is not equivalent) abduction in
logic programming. The idea is to use the maximizing assignments m∗

1, . . . , m∗
n as a most probable explanation of

the observed phenomenon E1, . . . , Em (hence the name).
Maximum a Posteriori Inference (MAP): Given a rational number γ , a probabilistic logic program (L, F), ground literals

Q 1, . . . , Q n and E1, . . . , Em , decide whether maxq1,...,qn P (Q 1 = q1, . . . , Q n = qn, E1 = 1, . . . , Em = 1) > γ .
The motivation for this task is similar to the MPE task, except that here we consider that some atoms are not

to be explained; in other words, we want a most probable explanation of E1, . . . , En marginalizing out atoms that
are not in Ei ’s or in Q i ’s.

4. Complexity results

In this section, we present the main contributions of this work: the analysis of the computational complexity of cautious
reasoning, most probable explanation and maximum a posteriori inferences parameterized by language features. We assume
the reader is familiar with complexity theory [28], in particular with probabilistic Turing machines such as PP [29].

Our results classify languages into complexity classes in Wagner’s Counting Hierarchy [30,31]; this is defined as the
collection of classes that includes P and such that if C is in the hierarchy then so are the classes of decision problems
computed by oracle machines PPC , NPC and coNPC . The hierarchy therefore contains the Polynomial Hierarchy [32], which
includes classes such as Σp

k = NPΣp
k−1 = NPΠp

k−1 , Πp
k = coNPΣp

k−1 = coNPΠp
k−1 and Δp

k = PΣp
k−1 = PΠp

k−1 , and also counting
classes with oracles in the polynomial hierarchy, such as PPΣp

k = PPΠp
k . The latter classes are particularly important for this

work.
The complexity results we obtain are summarized in Table 1. We omit results about the complexity of MAP inference,

as these are fairly regular: MAP is NPPP-complete for propositional programs and NPPPPP
-complete for relational programs.

Most results appear for the first time in the literature: the complexity of cautious reasoning for normal programs was estab-
lished in a previous work [15]; the complexity of cautious reasoning, most probable explanation and maximum a posteriori
for normal and disjunctive programs without aggregates appeared in [16]. Among the latter, some results concerning most
probable explanation had flaws in their proofs that are corrected in this paper.

From the table, we see that both default negation and negation lead to higher complexity, often requiring extra oracles.
The results show that aggregates display the same complexity as disjunction and negation combined; this is a consequence
of the fact that one can encode negation and disjunction using aggregate atoms. The complexity of programs with bounded-
arity predicates requires an extra NP oracle to “ground” rules; when aggregates are present an additional oracle is also
needed to “ground” the atoms inside aggregate atoms. Remarkably, the complexity of the latter grounding depends on the
type of aggregate function used: counting and summing demand a PP machine to count over ground atoms, while maxi-
mization requires “only” a NP machine. To our knowledge, this property has not been observed before in the literature of

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 141
Table 1
The complexity of probabilistic answer set programming under credal semantics.
Each line corresponds to a class of programs with indicated constructs: disjunc-
tive heads (∨), aggregates #, and default negation (not). A subindex s denotes
stratification w.r.t. that operator. A column with a label containing the subscript
all indicate results for bounded-arity relational programs using aggregate sym-
bols sum, count and max, and columns whose label contains subscript max show
results for programs using only max. Results with ≥ indicate that only hard-
ness has been obtained (memberships for those cases can be taken from that of
Rel({not, ∨, #})).

LANGUAGE

PROPOSITIONAL BOUNDED-ARITY

CR MPE CRall CRmax MPEall MPEmax

{} PP NP PPNP PPNP Σp
2 Σp

2
{nots} PP NP PPNP PPNP Σp

2 Σp
2

{not} PPNP Σp
2 PPΣp

2 PPΣp
2 Σp

3 Σp
3

{∨} PPNP Σp
3 PPΣp

2 PPΣp
2 Σp

4 Σp
4

{nots,∨} PPΣp
2 Σp

3 PPΣp
3 PPΣp

3 Σp
4 Σp

4

{not,∨} PPΣp
2 Σp

3 PPΣp
3 PPΣp

3 Σp
4 Σp

4

{#s} PP NP PPNPPP
PPΣp

2 NPPP Σp
2

{nots,#s} PP NP PPNPPP
PPΣp

2 NPPP Σp
2

{not,#s} PPNP Σp
2 PPΣpPP

2 PPΣp
3 ΣpPP

3 Σp
4

{∨,#s} PPΣp
2 Σp

3 ≥ PPΣpPP
2 ≥ PPΣp

3 ≥ Σp
4 ≥ Σp

4

{nots,∨,#s} PPΣp
2 Σp

3 ≥ PPΣpPP
2 ≥ PPΣp

3 ≥ Σp
4 ≥ Σp

4

{not,∨,#s} PPΣp
2 Σp

3 ≥ PPΣpPP
2 ≥ PPΣp

3 ≥ Σp
4 ≥ Σp

4

{#} PPΣp
2 Σp

3 PPΣpPP
3 PPΣp

4 ΣpPP
4 Σp

5

{nots,#} PPΣp
2 Σp

3 PPΣpPP
3 PPΣp

4 ΣpPP
4 Σp

5

{not,#} PPΣp
2 Σp

3 PPΣpPP
3 PPΣp

4 Σp P P
4 Σp

5

{∨,#} PPΣp
2 Σp

3 PPΣpPP
3 PPΣp

4 Σp P P
4 Σp

5

{nots,∨,#} PPΣp
2 Σp

3 PPΣpPP
3 PPΣp

4 ΣpPP
4 Σp

5

{not,∨,#} PPΣp
2 Σp

3 PPΣpPP
3 PPΣp

4 Σp P P
4 Σp

5

logic programming. According to these results, while using aggregates often leads to more concise and readable programs,
they add significant complexity in the presence of variables, and need to be used with care.

In the rest of this section, we present proofs of the complexity results.

4.1. Cautious reasoning

We start by analyzing the complexity of cautious reasoning. We first establish the upper bound on the complexity
(membership), then prove the lower bound (hardness).

4.1.1. Membership
We organize the results from the most general to the more specialized.
The next result establishes membership of probabilistic inference parameterized by the underlying complexity of logical

cautious reasoning.

Theorem 1. Suppose that a class of bounded-arity programs P is such that logical cautious reasoning without probabilistic facts is in
complexity class C. Then (probabilistic) cautious reasoning for programs in P is in PPC .

Proof. First apply the same polynomial-time reduction as in [15, Theorem 16], to obtain a new evidence-free cautious
reasoning problem that is equivalent to the original. Thus, assume that there is no evidence. Fix a total choice C and obtain
the nonprobabilistic program L ∪ C ; as the predicates have bounded arity, any total choice is of polynomial size in the size
of the program (which includes the number of rules, atoms and constants). Computing the respective lower probability
amounts to running (logical) cautious reasoning in this program and collecting the corresponding probability values if the
query is a cautious consequence. �

To our knowledge, the complexity of logical reasoning with aggregate atoms and variables has not been established. The
next result fills some of the gap. Unlike the propositional case [18], the complexity of reasoning with aggregates depends
on the aggregate function used.

Theorem 2. For programs with no probabilistic facts, cautious reasoning is in

(a) Πp P P for programs in Rel(∨, not, #count, #sum, #max);
3

142 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
(b) Πp
4 for programs in Rel(∨, not, #max);

(c) Πp PP
2 for programs in Rel(not, #sums);

(d) Πp
3 for programs in Rel(not, #maxs);

(e) Δp PP
2 for programs in Rel(nots, #sums);

(f) Δp
3 for programs in Rel(nots, #maxs);

Proof. To prove (a) and (b), consider first the problem of deciding whether an interpretation I is not an answer set of a
program P . This is the case either (i) if I is not a model of the reduct of P w.r.t. I , or (ii) if there is a model I ′ ⊂ I of the
reduct of P w.r.t. I . To verify (i), guess a rule r and a substitution for the global variables θ , then check if I satisfies all the
literals in the body of rθ and none in the head. We can check if I satisfies an aggregate atom with aggregate symbol sum
or count with a PPP machine that adds up the weights of the groundings of symbolic sets that are true w.r.t. I . Likewise,
we can check whether I satisfies an aggregate atom with aggregate symbol max with an NP machine. And we can check if
I satisfies a standard literal in polynomial time. Hence, (i) can be performed with NPPP effort for aggregate symbols sum
and count, and with Σp

2 effort for aggregate symbol max. To verify (ii), guess an interpretation I ′ ⊂ I and check whether it
is a model of the reduct of P . The latter can be performed by solving (i) and then negating the answer. Hence, the total
procedure is accomplished with a Σp PP

2 machine for aggregate symbols sum and count, and with a Σp
3 machine for aggregate

symbol max. To verify whether there is some answer set which does not contain the query (the complementary problem of
cautious reasoning), guess an interpretation not containing the query (using a base NP machine) and check if its an answer
set using either a Σp PP

2 machine (if there are aggregate symbols count or sum), or a Σp
3 machine (if there are aggregate

symbols max). Negating this decision solves cautious reasoning and thus obtains the desired result.
To show (c) and (d), note that the reduct of a non-disjunctive aggregate-stratified program is equivalent to the (modified)

Gelfond-Lifschitz reduct [21], which obtains a positive reduced program P I by discarding unsatisfied rules, deleting satisfied
negative literals and aggregate atoms in the remaining rules, and converting constraints into positive rules (e.g., by inserting
a dummy atom in the head which is not satisfied by I). Hence, we can determine if an interpretation I is an answer set of
P by verifying (i) if I is a model of its Gelfond-Lifschitz reduct P I , and if so (ii) if I is minimal in satisfying P I . As the reduct
is definite, we can decide if I is a model of P I with polynomially many calls to either a NPPP oracle (if there are aggregate
symbols sum), or to a Σp

2 oracle (if there are only max symbols). We do so by deriving all true atoms using a stratum to guide
the application of rules and the oracle machines to “ground” rules (and checking for violated constraints or contradictions).
We can decide if a model I is minimal by finding a founded proof for each atom in I , that is, a sequence of applications of
the rules that derives that atom starting from the facts in the program (and does not violate any constraints). As the reduct
is definite, these atoms need to be in any model. We provide such a proof as before, by applying rules following a stratum.
Both (i) and (ii) can be performed with polynomially many calls to either a NPPP machine (for aggregate atoms sum), or to
a Σp

2 machine (for aggregate atoms max). Now to check if there is an answer set that does not satisfy the query, guess an
interpretation not containing the query (using a base NP machine) and then verify whether it is an answer set (using either
an oracle PNPPP

or an oracle PΣp
2 =Δp

3). The desired result is obtained as the complement of that decision.
To show (e) and (f), recall that non-disjunctive stratified programs have at most one answer set. As before, we can obtain

such an answer set, if it exists, or show that none exists, by using a stratum to guide the application of rules and oracle
machines to “ground” the rules: we use an oracle NPPP if the rule contains aggregate symbols sum or count, and an oracle
Σp

2 otherwise. At the end we have either a founded proof for each atom in the answer set, or a violated constraint for a
derived atom, which shows that no answer set exists. Thus, we solve cautious reasoning with either a polynomial number
of calls to NPPP or to Σp

2 . �
We can now prove upper bounds on the complexity of bounded-arity and propositional probabilistic logic programs.

Theorem 3. Cautious reasoning is in

(a) PPΣp PP
3 for programs in Rel(not, ∨, #count, #sum, #max);

(b) PPΣp
4 for programs in Rel(not, ∨, #max);

(c) PPΣp PP
2 for programs in Rel(not,#sums);

(d) PPΣp
3 for programs in Rel(not,#maxs);

(e) PPNPPP
for programs in Rel(nots,#sums);

(f) PPΣp
2 for programs in Rel(nots,#maxs);

(g) PPΣp
3 for programs in Rel(not, ∨);

(h) PPNP for programs in Rel(nots);
(i) PPΣp

2 for programs in Prop(not, ∨, #);
(j) PPNP for programs in Prop(not, #s) or in Prop(∨);

(k) PP for programs in Prop(nots, #s).

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 143
Proof. All cases follow from Theorem 1 and the respective complexity of logical cautious reasoning: (a)–(f) follows

from Theorem 2 (note that PPΔpPP
2 = PPNPPP

and PPPΣp
2 = PPΣp

2); (g) and (h) follows from [25, Table 5] (note that
PPΔp

2 = PPNP); (i)–(k) follows from [18, Table 1] (note that a negative literal can be rewritten as an aggregate atom, and
that PPcoNP = PPNP). �

Note from the previous result that aggregates introduce the same complexity as disjunction (and interact with nega-
tion in similar ways) when the program is propositional; however, for bounded-arity programs, the upper bound varies
depending on the type of aggregate symbol used, with max being of “lower complexity” than sum or count.

4.1.2. Hardness
We now prove lower bounds on the complexity of cautious reasoning. Most of the results are obtained by a many-one

reduction from quantified Boolean decision problems of the form:

Q 1X1 Q 2X2 · · · Q nXn (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) ,

where each Xi denotes a list of variables being quantified over, and Q i is one of ∃, ∀ or #≥t , where the latter denotes
“there are at least t assignments”, and each Li j is either a variable Xk , its negation ¬Xk or ⊥. For example, the formula
#≥3 X1, X2∃X3 (X1 ∨ X2) ∧ (¬X3 ∨ ⊥) is true, since there are at least 3 assignments to X1 and X2 for which there is an
assignment to X3 that satisfies the given formula. Problems of this form are complete for the classes in Wagner’s counting
hierarchy [30]. For example, the complete problem for NP uses a single quantifier Q 1 = ∃, while the complete problem for
PPΣp

2 uses 3 quantifiers such that Q 1 = #≥t , Q 2 = ∀ and Q 3 = ∃.
The proofs are similar to the proofs of hardness for cautious reasoning in non-probabilistic programs [18,33], with the

addition of probabilistic facts that “count over” interpretations.
We start with propositional programs.

Theorem 4. Cautious reasoning is

(a) PP-hard for programs in Prop();
(b) PPNP-hard for programs in Prop(∨) or in Prop(not);
(c) PPΣp

2 -hard for programs in Prop(nots, ∨);
(d) PPΣp

2 -hard for programs in Prop(∨, #s);
(e) PPΣp

2 -hard for programs in Prop(#).

Proof. To prove (a) consider a 3-CNF Boolean formula

ψ = (L11 ∧ L12 ∧ L13) ∨ · · · ∨ (Lm1 ∧ Lm2 ∧ Lm3) ,

where Li j are literals over variables in X1. Denote by M the number of satisfying assignments of ψ . Obtain a new formula
ψ ′ by replacing each occurrence of a literal ¬Xi by a fresh variable Yi , for Xi ∈ X1. Goldsmith et al. [34] showed that the
formula

ψ ′′ = ψ ′ ∧ [∧i(Xi ∨ Yi)] ∨ [∨i(Xi ∧ Yi)]
has exactly M + 22n − 3n satisfying assignments. Note that ψ ′ can be rewritten in 3-CNF by distributing disjunctions over
conjunctions in polynomial time. Hence we can decide if ψ has at least t satisfying assignments by deciding whether ψ ′′
has at least t + 22n − 3n satisfying assignments. So consider a Boolean decision problem:

ψ = #≥tX1 (X11 ∧ X12 ∧ X13) ∨ · · · ∨ (Xm1 ∧ Xm2 ∧ Xm3) ,

where each Xij ∈ X1. From the above reasoning and the fact that counting satisfying assignments of arbitrary 3-CNF formulas
is PP-complete [30], we have that ψ is PP-complete. Define μi j = x(k) where Xk is the variable appearing in Xij . Set up
the program:

0.5 :: x(i). for each Xi ∈ X1 (a1)

ci ← μi1. ci ← μi2. ci ← μi3. for i = 1, . . . ,m (a2)

phi ← c1, . . . , cm. (a3)

Since the program above is positive and constraint-free (and acyclic), each program induced by a total choice has exactly
one answer set. It follows that P (phi) = P (phi) ≥ t/2n1 iff ψ is true, where n1 = |X1|.

144 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
To prove (b) take a quantified Boolean decision problem of the form

φ = #≥tX1∀X2 (L11 ∧ L12 ∧ L13) ∨ · · · ∨ (Lm1 ∧ Lm2 ∧ Lm3) ,

which is complete for PPNP [30]. For i = 1, . . . , m and j = 1, 2, 3, define

μi j =

⎧⎪⎨
⎪⎩

x(k,0) if Li j = ¬Xk,

x(k,1) if Li j = Xk,

true otherwise.

Set up the program:

true. (b0)

0.5 :: x(i,1). for each Xi ∈ X1 (b1)

x(i,0) ∨ x(i,1). for each Xi ∈ X1,2 (b2)

phi ← μi1,μi2,μi3. for i = 1, . . . ,m (b3)

The rules (b3) encode the conjunctions in the DNF formula in φ. Fix a total choice, and consider an answer set I of the
induced program. Due to subset-minimality, I contains only one of x(i, 0) or x(i, 1) for each i, and it contains the atoms
selected by the total choice (which are facts in the induced program). Hence, there is a one-to-one mapping between
assignments to the variables in φ and answer sets of the program such the DNF formula in φ is true in some assignment iff
phi is satisfied in the respective answer set. So fix a total choice inducing an assignment to variables in X1; phi is a cautious
consequence of the induced program iff the DNF formula in φ is true for all assignments of X2. And since any such induced
program has probability 2−n1 , where n1 = |X1|, it follows that P (phi) ≥ t/2n1 iff φ is true. To prove hardness for Prop(not),
replace rule (b2) by rules

x(i,0) ← not x(i,1). for each Xi ∈ X1,2 (b2’)

x(i,1) ← not x(i,0). for each Xi ∈ X1,2 (b2”)

Again, P (phi) ≥ t/2n1 iff φ is true.
To prove (c), take the PPΣp

2 -complete problem

φ = #≥tX1∀X2∃X3 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

Note that the same problem can be rewritten as

#≥tX1∀X2¬∀X3 (¬L11 ∧ ¬L12 ∧ ¬L13) ∨ · · · ∨ (¬Lm1 ∧ ¬Lm2 ∧ ¬Lm3)︸ ︷︷ ︸
=ψ

.

Define μi j as before, replacing ¬Li j with Li j in the definition (e.g. μi j = x(k, 0) if ¬Li j = ¬Xk). Set up the program:

true. (c0)

0.5 :: x(i,1). for all Xi ∈ X1 (c1)

x(i,0) ∨ x(i,1). for all Xi ∈ X1,2,3 (c2)

x(i,0) ← dnf. x(i,1) ← dnf. for all Xi ∈ X3 (c3)

dnf ← μi1,μi2,μi3. for i = 1, . . . ,m (c4)

phi ← not dnf. (c5)

The rules in (d3) encode the universal quantifier in ψ . To see why this is true, consider an answer set I containing dnf.
Due to subset-minimality, I contains only one of x(i, 0) and x(i, 1) for Xi ∈ X1 ∪ X2. And since dnf ∈ I then I contains all
x(i, 0) and x(i, 1) for Xi ∈ X3. Now, as before, each I can be associated with a single assignment x1, x2 to variables in
X1 and X2. Consider some assignment x3 to variables X3. If x1, x2, x3 does not satisfy any of the terms in ψ , then there
the interpretation I ′ that encodes such assignment is a model of the program and a subset of I . As this contradicts the
assumption that I is an answer set, we conclude that ψ must be true for such x1 and x2 whenever dnf is true in the
corresponding answer set. The rest of the program repeats the reasoning in (a). We thus have that P (phi) ≥ t/2n1 iff φ is
true.

To prove (d), replace rule (d5) with the rule

phi ← #count{1 : dnf} < 1. (d1)

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 145
Note that the body of the rule above is true iff dnf is false. Thus, P (phi) ≥ t/2n1 iff φ is true.
To prove (e) take again a formula φ and set up the program:

true. (e0)

0.5 :: x(i,1). for Xi ∈ X1 (e1)

x(i,0) ← #sum{−1 : x(i,0);1 : x(i,1)} ≤ 0. for Xi ∈ X1,2,3 (e2)

x(i,1) ← #sum{−1 : x(i,0);1 : x(i,1)} ≥ 0. for Xi ∈ X1,2,3 (e3)

x(i,0) ← dnf. x(i,1) ← dnf. for Xi ∈ X3 (e4)

dnf ← μi1,μi2,μi3. for i = 1, . . . ,m (e5)

phi ← #sum{1 : dnf} ≤ 0. (e6)

The literals μi j are defined as in (c). The rules (e2) and (e3) are satisfied only if at least one of x(i, 0) or x(i, 1) is true.
By minimality, exactly one of these atoms will be true for Xi ∈ X1 ∪ X2. Moreover, both x(i, 0) and x(i, 1) are true iff ψ is
true for a given assignment of x1, x2 (and its corresponding interpretation). Once more, we have that P (phi) ≥ t/2n1 iff φ is
true. �

We now consider relational programs. Here the complexity varies by the aggregate function used.

Theorem 5. Cautious reasoning is

(a) PPNP-hard for programs in Rel();
(b) PPΣp

2 -hard for programs in Rel(∨);
(c) PPΣp

3 -hard for programs in Rel(nots, ∨) or in Rel(∨, #maxs);

(d) PPΣpPP
2 -hard for programs in Rel(not, #sums), Rel(not, #counts), Rel(∨, #sums) or in Rel(∨, #counts);

(e) PPΣpPP
3 -hard for programs in Rel(#sum);

(f) PPΣp
4 -hard for programs in Rel(#max).

Proof. We prove (a) by reduction from the PPNP-complete problem:

φ = #≥tX1∃X2 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

The reduction encodes the existential quantification over X2 using relational rules, and atoms x(i, 0) and x(i, 1) to “count
over” variables in X1. Thus define

μi j(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k,0) if Li j = ¬Xk and Xk ∈ X1;
x(k,1) if Li j = Xk and Xk ∈ X1;
false if Li j = ¬Xk and Xk ∈ X2 and X = 1;
true if Li j = ¬Xk and Xk ∈ X2 and X = 0;
true if Li j = Xk and Xk ∈ X2 and X = 1;
false if Li j = Xk and Xk ∈ X2 and X = 0.

For example, if the first clause is ¬X1 ∨ X2 ∨ ¬X3, with X1 ∈ X1 and X2, X3 ∈ X2, then μ11(0) = μ11(1) = x(1, 0), μ12(0) =
false, μ12(1) = true, μ13(0) = true and μ13(1) = false. Now set up the program:

true. (a0)

0.5 :: x(i,0). 0.5 :: x(i,1). Xi ∈ X1 (a1)

false ← x(i,0), x(i,1). Xi ∈ X1 (a2)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (a3)

j = 1,2,3; X j = 0,1

phi ← c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3). (a4)

The rules (a2) identify interpretations that map into inconsistent assignments to X1. The variable X j in rule (a3) represents
the variable in literal Li j in φ. The program is similar to the program in the proof of Theorem 4(a), except that the quantifi-
cation over variables X2 is encoded using 3-arity predicates ci . The rules (a3) encode the clauses in φ for each assignment
to variables in X2. So for example, if the first clause is ¬X1 ∨ X2 ∨ ¬X3 as before, then the program contains the rules

146 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
c1(0, Y , Z) ← x(1,0). c1(X,0, Z) ← false. c1(X, Y ,0) ← true.

c1(1, Y , Z) ← x(1,0). c1(X,1, Z) ← true. c1(X, Y ,1) ← false.

Consider an answer set I for the rules above. If the assignment to X1 corresponding to x(i, v), with i = 1, 2 and v = 0, 1,
satisfies ¬X1 ∨ X2 ∨¬X3, then all groundings of c1(X1, X2, X3) are true. On the other hand, if the corresponding assignment
to X1 does not satisfy the clause, then only the groundings of c1(X1, X2, X3) with X2 = 1 or X3 = 0 are true. This way, the
rules above encode satisfying assignments of the respective clause. This reasoning extends to the whole program. Note that
we can actually omit rules (a3) when Xij is not in X2 without altering the semantics of the program. The program above is
positive and constraint-free (and acyclic), thus admits exactly one probability model. Let E be an indicator variable on false.
We have that P (false = 0) = 2−2n1

∑n1
k=1

(n1
k

) = 1 − 2−2n1 , where n1 = |X1|. It follows that P (phi|false = 0) ≥ t/(22n1 − 1) iff
φ is true.

We prove (b) by reduction from the PPΣp
2 -complete problem:

φ = #≥tX1∀X2∃X3 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

The reduction is similar to the reduction in (a), with X3 now playing the role of X2, except that we now use a disjunction
to encode the quantification over the variables in X2. Define μi j(X) as before, replacing X2 with X3 and X1 instead of X1,2.
Then set up the program:

true. (b0)

0.5 :: x(i,1). Xi ∈ X1 (b1)

x(i,0) ∨ x(i,1). Xi ∈ X1,2 (b2)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (b3)

j = 1,2,3; X j = 0,1

phi ← c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3). (b4)

Cautious reasoning with the above program collects probabilities of the induced programs of which phi is a (logical) cautious
consequence. Thus, it follows that φ is true iff P (phi) ≥ t/2n1 , where n1 = |X1|.

To prove (c), consider the PPΣp
3 -complete problem [30]:

#≥tX1∀X2¬∀X3∃X4 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

Define μi j(X) as in (b), replacing X3 with X4. Set up the program:

true. (c0)

0.5 :: x(i,1). Xi ∈ X1 (c1)

x(i,0) ∨ x(i,1). Xi ∈ X1,2,3 (c2)

x(i,0) ← cnf. Xi ∈ X3 (c3)

x(i,1) ← cnf. Xi ∈ X3 (c4)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (c5)

j = 1,2,3; X j = 0,1

cnf ← c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3). (c6)

phi ← not cnf. (c7)

This program combines the ideas of the program in (b) with the ideas of the program in the proof of Theorem 4(c).
Therefore, P(phi) ≥ t/2n1 iff φ is true. To prove hardness for Rel(∨, #maxs) replace rule (d7) by rule phi ← #max{0 : true; 1 :
cnf} < 1, and repeat the query.

We prove (d) by reduction from the PPΣpPP
2 -complete problem [30]:

φ = #≥tX1∀X2∃X3#≥sX4 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

Define μi j(X) as in item (b) with X3,4 instead of X3, and set up the program:

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 147
true. e(0). e(1). (d0)

0.5 :: x(i,1). Xi ∈ X1 (d1)

x(i,0) ← not x(i,1). Xi ∈ X1,2 (d2)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (d3)

j = 1,2,3; X j = 0,1

phi ← e(X1), . . . ,e(Xn3), (d4)

#sum{1,X4 : c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3)} ≥ s.

The expression e(X1), . . . , e(Xn3) encodes the existential quantification over variables in X3; hence rule (d4) encodes
∃X3#≥sX4 ϕ , where ϕ denotes the 3-CNF formula in φ. We have that φ is true iff P (phi) ≥ t/2n1 . Replacing sum with
count in (d4) proves the result for Rel(not, #counts). To prove hardness for Rel(∨, #sums) replace (d2) by

x(i,0) ← x(i,1). Xi ∈ X1,2 (d2’)

Further replacing sum with count in (d4) proves hardness of Rel(∨, #counts).

We prove (e) by reduction from the PPΣpPP
3 -complete problem [30]:

φ = #≥tX1∀X2∃X3∀X4#≥sX5 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

This problem is equivalent to

#≥tX1∀X2¬∀X3∃X4#<sX5 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ Lm2 ∨ Lm3) .

Define:

μi j(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k,0) if Li j = ¬Xk and Xk ∈ X1,2,3;
x(k,1) if Li j = Xk and Xk ∈ X1,2,3;
false if Li j = ¬Xk and Xk ∈ X4,5 and X = 1;
true if Li j = ¬Xk and Xk ∈ X4,5 and X = 0;
true if Li j = Xk and Xk ∈ X4,5 and X = 1;
false if Li j = Xk and Xk ∈ X4,5 and X = 0.

Then assemble the program:

true. e(0). e(1). (e0)

0.5 :: x(i,1). Xi ∈ X1 (e1)

x(i,0) ← #sum{−1 : x(i,0);1 : x(i,1)} ≤ 0. Xi ∈ X1,2,3,4 (e2)

x(i,1) ← #sum{−1 : x(i,0);1 : x(i,1)} ≥ 0. Xi ∈ X1,2,3,4 (e3)

x(i,0) ← phi. Xi ∈ X3 (e3)

x(i,1) ← phi. Xi ∈ X3 (e4)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (e5)

j = 1,2,3; X j = 0,1

psi ← e(X1), . . . ,e(Xn4), (e6)

#sum{1,X5 : c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3)} < s.

phi ← #sum{1 : psi} < 1. (e7)

The variables X1, . . . , Xn4 correspond to the variables in X4 (the atoms e encode the existential quantification over these
variables). Rule (e7) encodes ψ = ¬∀X4#≥s ϕ , where ϕ denotes the 3-CNF formula in φ. The aggregate atom is used to
encode negation (i.e., phi is true iff psi is false). We have that ψ is true iff P (phi) ≥ t/2n1 .

To prove (f), use the program formed by rules (e0)–(e1), (e3)–(e5), constraints

← #max{1 : x(i,0);1 : x(i,1)} < 1. Xi ∈ X1,2,3,4 (f2)

and rules

148 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
psi ← e(X1), . . . ,e(Xn4), (f6)

#max{1,X5 : c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3)} < 1.

phi ← #max{0 : true;1 : psi} < 1. (f7)

The constraints in (f2) are satisfied iff a interpretation satisfies rules (e2). �
4.2. Most probable explanation

We now move to the complexity of MPE. As before, we first establish upper-bounds on the complexity, then prove the
lower-bounds.

4.2.1. Membership
To get some insight into the problem, consider a propositional program (L, F) and a total choice C , inducing a non-

probabilistic program L ∪ C . If there is a single answer set I for such program, then by Properties PM1 and PM2 we have
that P (I) = ∏

A∈C μA
∏

A /∈C (1 − μA). If there is more than one answer set, then for each answer set I ∈ AS(L ∪ C) there
is a probability model P assigning P (I) = 0, whence P (I) = 0. So MPE can be decided by going through each total choice,
verifying whether the induced logical program has a single answer set I consistent with the evidence. If it has, then we
check whether the probability of the respective total choice C ⊆ I is greater than the given threshold. If no total choice
induces a unique answer set consistent with the evidence, then the lower probability of any interpretation is zero. This
leads us to the following result.

Theorem 6. MPE inference is in:

(a) Σp PP
4 for programs in Rel(not, ∨, #count, #sum, #max);

(b) Σp
5 for programs in Rel(not, ∨, #max);

(c) Σp PP
3 for programs in Rel(not, #sums);

(d) Σp
4 for programs in Rel(not, #maxs);

(e) Σp
4 for programs in Rel(not, ∨);

(f) NPPP for programs in Rel(nots, #sums);
(g) Σp

2 for programs in Rel(nots);
(h) Σp

3 for programs in Prop(not, ∨, #);
(i) Σp

2 for programs in Prop(not, #s); and
(j) NP for programs in Prop(nots, #s).

Proof. Note that all results consist of a base NP machine with different oracles, and that we have assumed that proba-
bilistic programs are always consistent. So guess an interpretation I and reject if it does not satisfy the evidence (this takes
polynomial time). Let C be the total choice consistent with I . There are two scenarios to consider: If there is a single answer
set I ′ ⊆ I consistent with C , then P (I ′) = pF (C). Otherwise, we have that P (I) = 0.

So to decide whether P (I) > γ we need to verify whether there is an answer set consistent with C and different than
I . This can be accomplished by extending the logical program L with a fact A for each A ∈ C , a constraint ← A for A /∈ C ,
and a constraint ← L1, . . . , Lm , where each Li represents the assignment to an atom in I: Li = not A if I �|= A, and Li = A
if I |= A. The extended program admits an answer set iff there exists an answer set consistent with C and not equal to
I . Hence, we can compute MPE inference with an NP base machine that goes through each interpretation, equipped with
an oracle that solves answer set existence for the corresponding non-probabilistic language. As the latter problem can be
reduced to cautious reasoning (simply add a fresh atom and query if it is a cautious consequence), we can use the results
from Theorem 2, [25] and [18] to show membership of all cases. �

Membership for aggregate-free programs was proved with a minor mistake in [16]: cautious reasoning was used to verify
if an interpretation is an answer set instead of verifying if it is the unique answer set. The proof above rectifies that result.

4.2.2. Hardness
We now prove the lower-bound on the complexity of MPE. We start with propositional programs:

Theorem 7. MPE inference is

(a) NP-hard for programs in Prop();
(b) Σp

2 -hard for programs in Prop(not); and
(c) Σp

3 -hard for programs in Prop(∨) or in Prop(#).

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 149
Proof. To show (a), consider the NP-complete problem of deciding if there exists an independent set of a graph G = (G V , G E)

of size k [28].2 To solve that problem, assemble the program:

3/4 :: vertex(i). i ∈ G V (a1)

fault ← vertex(i), vertex(j). (i, j) ∈ G E (a2)

Each total choice corresponds to a candidate independent set. Rules (a2) encode the constraints that no two vertices in an
independent set can share an edge in G E . Let M1, . . . , Mn be indicator variables for vertex(i), i ∈ G V , and E be an indicator
variable for fault. Then maxm1,...,mn P (M1 = m1, . . . , Mn = mn, E = 0) > 3k−1/4n iff G has an independent set of size k.

To prove (b), consider the Σp
2 -complete problem ∃X1∀X2 φ, where φ is in 3-DNF with m terms Li1 ∧ Li2 ∧ Li3. Let

X1, . . . , Xn be the variables in X2, and Xn+1 be a fresh variable not in X1 or X2. For each assignment to X1, the quan-
tified Boolean formula ∀X2 φ is true iff there is a unique assignment to X2 and Xn+1 that satisfies

ψ = (¬Xn+1 ∧ ¬φ) ∨ (X1 ∧ · · · ∧ Xn ∧ Xn+1) .

Note that ¬φ is in 3-CNF with clauses ¬Li1 ∨ ¬Li2 ∨ ¬Li3, i = 1, . . . , m. Set up the program:

0.5 :: x(i,1). Xi ∈ X1 (b1)

x(i,0) ← not x(i,1). x(i,1) ← not x(i,0). Xi ∈ X1,2 (b2)

psi ← x(n+1,0),nphi. (b3)

psi ← x(0,1), . . . , x(n+1,1). (b4)

nphi ← ¬Li1. nphi ← ¬Li2. nphi ← ¬Li3. i = 1, . . . ,m (b5)

The rules (c5) encode the clauses in ¬φ using atoms x(i, 0) and x(i, 1). So suppose I is an answer set that satisfies psi and
does not satisfy (b4) (hence I satisfies nphi and x(n + 1, 0)). By (b2), I contains at most one of x(i, 0) or x(i, 1) and thus
encodes an assignment to variables Xi . By minimality of I , such an assignment must satisfy ¬φ. Now fix a total choice
C . The corresponding program has exactly one answer set satisfying psi iff there is an assignment to X1 induced by C for
which only the assignment that assigns true to all of X1, . . . , Xn satisfies ψ . Thus fix evidence E denoting the atom psi,
and let M1, . . . , Mn be indicator variables representing the atoms in the program. There is a configuration m1, . . . , mn such
that P (m1, . . . , mn, E = 1) > 0 iff there is an assignment to X1 such that there is exactly one assignment to X1, . . . , Xn+1
satisfying ψ .

To prove (c), take a formula α = ∃X1∀X2∃X3 φ, where φ is in 3-CNF with m clauses. Let X1, . . . , Xn be the variables in
X2, and let Xn+1 be a fresh variable not in X1, X2, X3. Then α is true iff there is an assignment to X1 such that there is a
unique assignment to X2 that satisfies

ψ = (¬Xn+1 ∧ ∀X3¬φ) ∨ (X1 ∧ · · · ∧ Xn+1) .

Set up the program formed:

0.5 :: x(i,1). Xi ∈ X1 (c1)

x(i,0) ∨ x(i,1). Xi ∈ X1,2,3 (c2)

psi ← x(n+1,0),nphi. (c3)

psi ← x(0,1), . . . , x(n+1,1). (c4)

nphi ← Li1, Li2, Li3. i = 1, . . . ,m (c5)

x(i,0) ← nphi. x(i,1) ← nphi. Xi ∈ X3 (c6)

Fix a total choice C and a corresponding assignment to X1. The program L ∪ C has exactly one answer set iff there is a
unique assignment to X2 (assigning true to X1, . . . , Xn) that satisfies ∀X2¬φ. We have that α is true iff maxm1,...,mn P (M1 =
m1, . . . , Mn = mn, psi) > 0, where M1, . . . , Mn are indicator variables on all atoms in the program.

Finally, to prove hardness for Prop(#), replace (d2) with

x(i,0) ← #sum{−1 : x(i,0);1 : x(i,1)} ≤ 0. Xi ∈ X1,2,3 (c2’)

x(i,1) ← #sum{−1 : x(i,0);1 : x(i,1)} ≥ 0. Xi ∈ X1,2,3 (c2”)

The MPE inference is positive iff the original problems is satisfiable. �
2 An independent set is a subset of nonadjacent vertices of the graph.

150 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
In a previous work [16], we showed a proof of Σp
2 -hardness of normal programs without aggregates by a reduction from

the quantified Boolean satisfiability problem ∃X1∀X2 φ, where φ is a quantifier-free Boolean formula. That proof is however
incorrect when the formula φ has more than a single model sharing the assignment to the variables in X1. The previous
result corrects that proof.

We now establish hardness for programs with bounded-arity predicates. All results follow by a combination of the ideas
used to prove Theorems 5 and 7.

Theorem 8. MPE inference is

(a) Σp
2 -hard for programs in Rel();

(b) NPPP-hard for programs in Rel(#sums);
(c) Σp

3 -hard for programs in Rel(not);
(d) Σp

4 -hard for programs in Rel(∨);

(e) ΣpPP
3 -hard for programs in Rel(not, #sums);

(f) Σp
4 -hard for programs in Rel(not, #maxs);

(g) ΣpPP
4 -hard for programs in Rel(#sum);

(h) Σp
5 -hard for programs in Rel(∨, #max).

Proof. To show (a), consider the Σp
2 -complete problem:

φ = ∃X1∀X2 (¬L11 ∧ ¬L12 ∧ ¬L13) ∨ · · · ∨ (¬Lm1 ∧ · · ·¬Lm3) ,

where each Li j is a literal over the variables in X1,2. This problem is equivalent to

φ = ∃X1¬∃X2 (L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ · · · Lm3) ,

where the Boolean expression is in 3-CNF. Define:

μi j(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k,0) if Li j = ¬Xk and Xk ∈ X1,

x(k,1) if Li j = Xk and Xk ∈ X1,

false if Li j = ¬Xk and Xk ∈ X2 and X = 1,

true if Li j = ¬Xk and Xk ∈ X2 and X = 0,

true if Li j = Xk and Xk ∈ X2 and X = 1,

false if Li j = Xk and Xk ∈ X2 and X = 0.

Set up the program:

true. (a0)

0.5 :: x(i,0). 0.5 :: x(i,1). Xi ∈ X1 (a1)

false ← x(i,0), x(i,1). Xi ∈ X1 (a2)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (a3)

j = 1,2,3; X j = 0,1

cnf ← c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3). (a4)

The program above is positive and consistent, hence admits a single probability model. It follows that the MPE inference
with evidence cnf = 1 and false = 0 is positive iff φ is true.

To prove (b), consider the NPPP-complete problem

φ = ∃X1#≥tX2(L11 ∨ L12 ∨ L13) ∧ · · · ∧ (Lm1 ∨ · · · Lm3) ,

where each Li j is literal over a variable in X1 or X2. Define μi j as in (a) and set up the program:

true. (b0)

0.5 :: x(i,1). Xi ∈ X1 (b1)

x(i,0) ← #sum{1 : x(i,1)} ≤ 0. Xi ∈ X1 (b2)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (b3)

j = 1,2,3; X j = 0,1

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 151
cnf ← #sum{1,X2 : c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3)} ≥ t. (b4)

As the program above is stratified and consistent, the program admits a single probability model. Thus φ is true iff the MPE
inference with evidence cnf is positive.

To prove (c), consider the Σp
3 -complete problem α = ∃X1∀X2∃X3 φ, where φ is in 3-CNF with clauses Li1 ∨ Li2 ∨ Li3, for

i = 1, . . . , m. This formula is equivalent to

∃X1∃!X2 Xn+1(¬Xn+1 ∧ ¬∃X3 φ) ∨ (X1 ∧ · · · ∧ Xn+1) ,

where ∃! denotes “there is a single instantiation”, X2 = {X1, . . . , Xn}, and Xn+1 is a fresh variable. Set up the program:

true. (c0)

0.5 :: x(i,1). Xi ∈ X1 (c1)

x(i,0) ← not x(i,1). Xi ∈ X1,2,3 (c2)

x(i,1) ← not x(i,0). Xi ∈ X1,2,3 (c3)

psi ← x(n+1,0),not nphi. (c4)

psi ← x(0,1), . . . , x(n+1,1). (c5)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (c5)

j = 1,2,3; X j = 0,1

nphi ← c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3). (c6)

The atoms μi j(X j) are defined as in the proof of Theorem 5(a). To decide α, verify if the MPE with evidence psi is positive.
To prove (d), consider the Σp

4 -complete problem α = ∃X1∀X2∃X3∀X4 φ, where φ is in 3-DNF. This formula is equivalent
to

∃X1∃!X2 Xn+1(¬Xn+1 ∧ ∀X3∃X4¬φ) ∨ (X1 ∧ · · · ∧ Xn+1) ,

where ¬φ is in 3-CNF with m clauses Li1 ∨ Li2 ∨ Li3, X2 = {X1, . . . , Xn}, and Xn+1 is a fresh variable. Set up the program:

true. (d0)

0.5 :: x(i,1). Xi ∈ X1 (d1)

x(i,0) ∨ x(i,1). Xi ∈ X1,2,3,4 (d2)

psi ← x(n+1,0),nphi. (d3)

psi ← x(0,1), . . . , x(n+1,1). (d4)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (d5)

j = 1,2,3; X j = 0,1

x(i,0) ← nphi. x(i,1) ← nphi. Xi ∈ X3 (d6)

nphi ← c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3). (d7)

The atoms μi j(X j) are defined as in the proof of Theorem 5(c), assuming X5 = ∅. To decide α, verify if the MPE inference
with evidence psi is positive.

To prove (e), replace rule (d7) with rule (b4) (with head nphi and variables X4 in the symbolic set), to encode a counter
over X4 instead of an existential quantifier. Then the MPE inference with evidence psi is positive iff ∃X1∀X2∃X4#≥t X4 φ is
true, where φ is a formula in 3-DNF.

To prove (f), replace sum with max in the program described in (e) to decide a problem ∃X1∀X2∃X4∀X4 φ where φ is in
3-DNF.

To prove (g), consider the Σp P P
4 -complete problem ∃X1∀X2∃X4∀X4#<sX5 φ where φ is in 3-DNF. Let X4 = {X41, . . . , X4p}.

Repeat the program in (c) with the appropriate changes, replacing rule (d7) with

nphi ← e(X41), . . . ,e(X4p), (g7)

#sum{1,X5 : c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3)} < s.

The formula is true iff the MPE inference with evidence psi is positive. To prove hardness for Rel(sum), replace rules (d2)
with

152 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
x(i,0) ← #sum{−1 : x(i,0);1 : x(i,1)} ≤ 0. Xi ∈ X1,2,3 (g2’)

x(i,1) ← #sum{−1 : x(i,0);1 : x(i,1)} ≥ 0. Xi ∈ X1,2,3 (g2”)

Finally, to prove (h) replace sum with max in the previous construction to decide a problem ∃X1∀X2∃X4¬∃X4∀X5 φ

where φ is in 3-DNF. The MPE inference with evidence psi is positive iff the formula is true. �
4.3. MAP complexity

Finally, we look into the complexity of MAP inference. For positive normal propositional programs, MAP is NPPP-complete
[16]. The following result shows that complexity, in the propositional case, is not increased by the presence of disjunction
and/or aggregates.

Theorem 9. MAP inference is

(a) in NPPP for programs in Prop(not, ∨, #), and
(b) in NPPPPP

for programs in Rel(not, ∨, #sum, #count, #max).

Proof. (a) Guess a partial interpretation Q deciding the values for atoms indicated in Q 1, . . . , Q n , and consistent with the
evidence E , and run cautious reasoning to decide whether P (Q , E) > γ . The latter takes effort PPΣp

3 by Theorem 3; hence

the whole process is in NPPPΣp
3 . The result follows as PPΣp

k ⊆PPP for any k [35]; the intermediate P can be encoded into the
base machine.

(b) Again, guess a partial interpretation for Q consistent with the evidence, and run cautious inference to decide whether
P (Q , E) > γ . The latter takes effort PPΣp

3
PP

by Theorem 3. Now, we have ΣpPP
k ⊆ BPP⊕PPP

by relativizing the first part of

Toda’s proof [36]; hence we obtain PPΣp PP
k ⊆PPBPP⊕PPP

. The latter class is equal to PP⊕PPP
[35, Theorem 4.9]. We can then

relativize the second part of Toda’s proof [37] to obtain PP⊕PPP ⊆ PPPPP
. Thus PPΣp PP

k ⊆PPPPP
and the proof is completed as

in item (a). �
The corresponding hardness result is:

Theorem 10. MAP inference is

(a) NPPP-hard for programs in Prop(), and
(b) NPPPPP

-hard for programs in Rel(#sum).

Proof. (a) Consider the NPPP-complete problem: ψ = ∃X1#>t X2 φ where φ is in 3-CNF with clauses Li1 ∨ Li2 ∨ Li3, i =
1, . . . , m. Using again the argument in [34, Proposition 4], we can assume w.l.o.g. that φ is monotone. Hence, set up the
program:

0.5 :: x(i,1). for Xi ∈ X1,2 (a1)

ci ← Li1. ci ← Li2. ci ← Li3. for j = 1, . . . ,m (a2)

phi ← c1, . . . , cm. (a3)

In rules (a2) Li j encodes the corresponding literal in the ith clause using either x(j, 1) or x(j, 0). Let Q denote the indicator
variables for the atoms x(i, 1) for Xi ∈ X1, and let E be the indicator of phi. Then maxq P (Q = q, E = 1) > t/2n iff ψ is
satisfiable, where n = |X1,2|.

(b) Consider the NPPPPP
-complete problem ∃X1#t X2#≥uX3 φ, where φ is in 3-CNF with clauses Li1 ∨ Li2 ∨ Li3, i = 1, . . . , m.

Set up the program:

true. (b0)

0.5 :: x(i,1). Xi ∈ X1,2 (b1)

x(i,0) ← #sum{−1 : x(i,0);1 : x(i,1)} ≤ 0. Xi ∈ X1,2 (b2)

ci(X1, X2, X3) ← μi j(X j). i = 1, . . . ,m (b3)

j = 1,2,3; X j = 0,1

phi ← #sum{1,X3 : c1(X11, X12, X13), . . . , cm(Xm1, Xm2, Xm3)} ≥ u. (b4)

The atoms μi j(X j) are defined as in the proof of Theorem 5(c). The MAP problem with Q 1, . . . , Q n being indicator variables
on x(i, 1) for Xi ∈ X1,2, evidence and E = phi and threshold t/2n , where n = |X1,2| then solves the satisfiability problem. �

D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154 153
5. Conclusion

We derived several new results on the complexity of probabilistic answer set programming under the credal semantics,
from cautious reasoning to MPE to MAP, for propositional and bounded-arity relational programs. In particular, we ana-
lyzed the complexity when programs have aggregates, disjunctions in rule heads and integrity constraints. Our results for
propositional programs mirror those for nonprobabilistic programs: aggregates provide the same computational power as
disjunctions, and the complexity is not altered when one construct is added to the other; moreover, stratified aggregates
behave as stratified negation. The case is more interesting when variables and bounded-arity predicates are considered.
There the aggregates introduce a complexity on their own that varies with the type of aggregate used.

We note that several results in this paper offer interesting hard problems for complexity classes in the counting hi-
erarchy; some of these classes are rarely visited in the literature. Consider, as one example, the NPPPPP

-hardness of MAP
inference for relational programs with aggregates.

We left for the future the complexity analysis when weak constraints and strong negation are allowed, and when the
program is fixed and the input is just the query. An analysis of the complexity of checking consistency of an input proba-
bilistic answer set program is also left for future work.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have influenced its outcome.

Acknowledgements

The first author received financial support by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),
grants 303920/2016-5 (PQ) and 420669/2016-7. The second author is partially supported by the CNPq grant 312180/2018-7
(PQ). This work has been supported in part by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP),
grants 2015/21880-4, 2016/18841-0, 2019/07665-4, and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES) – finance code 001.

References

[1] S. Muggleton, Learning stochastic logic programs, Electron. Trans. Artif. Intell. 4 (2000) 141–153.
[2] D. Poole, Abducing through negation as failure: stable models within the independent choice logic, J. Log. Program. 44 (2000) 5–35.
[3] T. Sato, Y. Kameya, N.-F. Zhou, Generative modeling with failure in PRISM, in: International Joint Conference on Artificial Intelligence, 2005, pp. 847–852.
[4] T. Lukasiewicz, Probabilistic description logic programs, Int. J. Approx. Reason. 45 (2) (2007) 288–307.
[5] S. Hadjichristodoulou, D. Warren, Probabilistic logic programming with well-founded negation, in: International Symposium on Multiple-Valued Logic,

2012, pp. 232–237.
[6] J. Vennekens, S. Verbaeten, M. Bruynooghe, Logic programs with annotated disjunctions, in: Proceedings of the International Conference on Logic

Programming, 2004, pp. 431–445.
[7] S. Michels, A. Hommersom, P. Lucas, M. Velikova, A new probabilistic constraint logic programming language based on a generalised distribution

semantics, Artif. Intell. 228 (2015) 1–44.
[8] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Janssens, L. De Raedt, Inference and learning in probabilistic logic

programs using weighted Boolean formulas, Theory Pract. Log. Program. 15 (3) (2015) 358–401.
[9] T. Eiter, G. Ianni, T. Krennwallner, Answer set programming: a primer, in: Tutorial Lectures of the 5th Reasoning Web International Summer School on

Reasoning Web: Semantic Technologies for Information Systems, Springer-Verlag, Berlin, 2009, pp. 40–110.
[10] L. De Raedt, Logical and Relational Learning, Springer, 2008.
[11] L. De Raedt, P. Frasconi, K. Kersting, S. Muggleton, Probabilistic Inductive Logic Programming, Springer, 2010.
[12] F. Riguzzi, E. Bellodi, R. Zese, G. Cota, E. Lamma, A survey of lifted inference approaches for probabilistic logic programming under the distribution

semantics, Int. J. Approx. Reason. 80 (2017) 313–333.
[13] F. Riguzzi, Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning, River Publishers, 2018.
[14] I. Ceylan, T. Lukasiewicz, R. Peñaloza, Complexity results for probabilistic Datalog± , in: Proceedings of the 22nd European Conference on Artificial

Intelligence, 2016, pp. 1414–1422.
[15] F. Cozman, D. Mauá, On the semantics and complexity of probabilistic logic programs, J. Artif. Intell. Res. 60 (2017) 221–262.
[16] F. Cozman, D. Mauá, The complexity of inferences and explanations in probabilistic logic programming, in: Proceedings of the 14th European Confer-

ence on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2017, pp. 449–458.
[17] T. Sato, A statistical learning method for logic programs with distribution semantics, in: International Conference on Logic Programming, 1995,

pp. 715–729.
[18] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive aggregates in answer set programming, Artif. Intell. 175 (2011) 278–298.
[19] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–425.
[20] K.R. Apt, H.A. Blair, A. Walker, Foundations of deductive databases and logic programming, chap. Towards a Theory of Declarative Knowledge, Morgan

Kaufmann Publishers Inc., 1988, pp. 89–148.
[21] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: Proceedings of the Fifth International Conference on Logic Programming,

1988, pp. 1070–1080.
[22] T.C. Son, E. Pontelli, A constructive semantic characterization of aggregates in answer set programming, Theory Pract. Log. Program. 7 (3) (2007)

355–375.
[23] P. Ferraris, Logic programs with propositional connectives and aggregates, ACM Trans. Comput. Log. 12 (4) (2011) 25.
[24] M. Gelfond, Y. Zhang, Vicious circle principle and logic programs with aggregates, Theory Pract. Log. Program. 14 (4–5) (2014) 587–601.

http://refhub.elsevier.com/S0888-613X(19)30275-0/bib534C50s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib506F6F6C6532303030s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib5361746F32303035s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib4C756B617369657769637A32303037s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib485732303132s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib485732303132s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib6C706164s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib6C706164s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib636C70s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib636C70s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib50726F626C6F6732303135s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib50726F626C6F6732303135s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib45494B32303039s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib45494B32303039s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib526165647432303038s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib526165647432303130s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib526967757A7A6932303137s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib526967757A7A6932303137s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib526967757A7A6932303138s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib434C5032303136s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib434C5032303136s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib434D32303137s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib6563737161727532303137s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib6563737161727532303137s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib5361746F3935s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib5361746F3935s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib46504C32303131s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib64616E7473696Es1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib41707431393838s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib41707431393838s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib737461626C65s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib737461626C65s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib536F6E506F6E74656C6C69s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib536F6E506F6E74656C6C69s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib466572726172697332303131s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib47656C666F6E645A68616E6732303134s1

154 D.D. Mauá, F.G. Cozman / International Journal of Approximate Reasoning 118 (2020) 133–154
[25] T. Eiter, W. Faber, M. Fink, S. Woltran, Complexity results for answer set programming with bounded predicate arities and implications, Ann. Math.
Artif. Intell. (2007) 51–123.

[26] C. Baral, M. Gelfond, N. Rushton, Probabilistic reasoning with answer sets, Theory Pract. Log. Program. 9 (1) (2009) 57–144.
[27] J. Lee, Y. Wang, Weighted rules under the stable model semantics, in: Proceedings of the 15th International Conference on Principles of Knowledge

Representation and Reasoning, 2016, pp. 145–154.
[28] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[29] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (4) (1977) 675–695.
[30] K. Wagner, The complexity of combinatorial problems with succinct input representation, Acta Inform. 23 (3) (1986) 325–356.
[31] J. Tóran, Complexity classes defined by counting quantifiers, J. ACM 38 (3) (1991) 753–774.
[32] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1977) 1–22.
[33] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic programming: propositional case, Ann. Math. Artif. Intell. 15 (3–4) (1995) 289–323.
[34] J. Goldsmith, M. Hagen, M. Mundhenk, Complexity of DNF minimization and isomorphism testing for monotone formulas, Inf. Comput. 206 (6) (2008)

760–775.
[35] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20 (5) (1991) 865–877.
[36] L. Fortnow, A simple proof of Toda’s theorem, Theory Comput. 5 (2009) 135–140.
[37] F. Green, J. Kobler, J. Tóran, The power of the middle bit, in: Proceedings of the 7th Annual Structure in Complexity Theory Conference, 1992,

pp. 111–117.

http://refhub.elsevier.com/S0888-613X(19)30275-0/bib4546465732303037s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib4546465732303037s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib706C6F67s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib6C706D6C6Es1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib6C706D6C6Es1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib7061706164696D697472696F75s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib47696C6C3737s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib5761676E65723836s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib746F72616E3931s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib73746F636B6D657965723737s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib454731393935s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib476F6C64736D697468s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib476F6C64736D697468s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib546F64613931s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib466F72746E6F7732303039s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib477265656E3932s1
http://refhub.elsevier.com/S0888-613X(19)30275-0/bib477265656E3932s1

	Complexity results for probabilistic answer set programming
	1 Introduction
	2 Answer set programming
	2.1 Syntax
	2.2 Semantics
	2.3 Inference

	3 Probabilistic logic programs
	3.1 Syntax
	3.2 The distribution semantics
	3.3 The credal semantics
	3.4 Languages
	3.5 Inference

	4 Complexity results
	4.1 Cautious reasoning
	4.1.1 Membership
	4.1.2 Hardness

	4.2 Most probable explanation
	4.2.1 Membership
	4.2.2 Hardness

	4.3 MAP complexity

	5 Conclusion
	Acknowledgements
	References

