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Solution to many tasks comprises building a concrete Bayesian
network from some template model for each given domain

v

Object recognition

Viral marketing

Entity resolution

Social network analysis
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“with probability e, an individual carries disease if both
parents have a certain gene”
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RELATIONAL BAYESIAN NETWORKS

» declarative approach for specifying abstract models
» as expressive as other probabilistic relational languages

» explicit representation of repetition, determinism and
context-specific independence, which can be used to speed
up inference

» clear and rigorously defined syntax/semantics
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» Complexity of inference with RBNs has not been thoroughly
examined yet

» In particular, the effect of combination functions, which allow
summarizing information from different individuals

» This work: Complexity of marginal inference as parametrized
by combination functions
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RELATIONAL BAYESIAN NETWORK
Acyclic directed graph where each node is a relation symbol
annotated with a probability formula over atoms, numbers and

combination functions
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Pr(difficult) = 0.3 Pr(intelligent) = 0.6
Pr(passes|difficult, intelligent) =
(0.4 - difficult(X) + 0.95(1 — diffilcult(X))) - intelligent(Y)+
(0.1 - difficult(X) + 0.5(1 — difficult(X)))(1 — intelligent(Y"))
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passes(2, 2

)
- — o
m(/ intelligent(1)

passes(1, 1

Pr(difficult(1)) = Pr(difficult(2)) = 0.3

Pr(intelligent(1)) = Pr(intelligent(2)) = 0.6

Pr(passes(1, 2)|difficult(1), intelligent(2)) =
(0.4difficult(1) 4+ 0.95(1 — diffilcult(1)))intelligent(2)+
(0.1difficult(1) + 0.5(1 — difficult(1)))(1 — intelligent(2))
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PROBABILITY FORMULA
» Avrational g € [0,1] oran atom (X1, ..., X))
» Convex combination Fy Fy + (1 — F1)F3
» Combination expression:

comb{Fl, R ,Fk|Y1, o, Yo a},
where « is an equality constraint such as

X=Yor(-X=Y)V(Y =ZAX=2)

» Summarize information about individuals
Example:
F(X)=mean{0.6 - r(X)+
0.7-max{1 —s(X,V)|X;X = X}]Y,Z;Y £ XNZ # X}



SEMANTICS

INTERPRETATION

> Set of D (domain)
> Map p:
» relation symbol r relation r+ C DIl

» equality constraint standard semantics

» probability formula F’ function F* : D™ — [0, 1], where n is
the number of free variables in F’



SEMANTICS

PROBABILITY FORMULA

1 ifaer#

(X1, Xpy) L F“(a):{o R

PR+ (1= F)F = F(a)F}(a) + (1 - Ff'(a))F} ()



SEMANTICS

PROBABILITY FORMULA
If = comb{Fy,..., Fg|Y1,...,Ym;a}, then F#(a) = comb(Q)
where

» comb is the combination function

» Q is the multiset containing a number F;(a, b) for every
(a,b) € at

» D={1,2}; max{3,2,1|V;Y =Y} S max{, 2,1, 2 1}



SEMANTICS

Given a D, an with graph G = (V, A) induces a
by
Pr(uD) = [ T (@) [] (0 = Fr(a)),
reV aerkt agrk

Pr(r#|{s*:se€pa(r)},D)

s € pa(r) Fr(a)



intelligent(2)

passes(2, 2)
passes(2, 1)
passes

—
(1,2)
i) ———

intelligent(1)

Fpasses(L 2) =
(0.4difficult(1) + 0.95(1 — diffilcult(1)))intelligent(2)+
(0.1difficult(1) + 0.5(1 — difficult(1)))(1 — intelligent(2))
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COMPLEXITY OF MARGINAL INFERENCE

Given:

» Relational Bayesian Network (graph and probability formulas)

» domain D specified as a list of elements
» ground atom r(a)

Compute:
Pr(r(a) =1) = > Pr(u[D)
piacrt
Note: Pr(ry(a1) = a1, ..., rn(ay) = ay) can be computed as

Pr(r(a) = 1) by defining F,, = [1=]r1(X1) - - [1=]rn(n);
conditional probability can be computed with two such calls



COUNTING TURING MACHINE

Non-deterministic Turing machine that writes on a separate tape
and in binary notation the number of accepting paths

1]j]of1(1]1]60 -+ Input/Working Tape

€<
oj1]o0 --- Counting Tape
>

#pP

integer-valued functions computed by counting Turing machine
with polynomial steps

H#EXP

integer-valued functions computed by counting Turing machine
with exponential steps



ORACLE TURING MACHINE
Turing machine which can query an “oracle”, which then
reads/writes content from/to the oracle tape in one step

110111 [1]0 -+ Input/Working Tape

"
0j1]0 -+ Oracle Tape
e

oracle

ORACLE COMPLEXITY CLASSES.:

For complexity classes A and B, say that a problem is in A if it
can be computed by an A-complete problem with access to an
oracle that is complete for B. Examples: pNP, NPPSPACE,



COUNTING HIERARCHY

k times

#3 = #PNT

integer-valued functions computed by counting Turing machine
with oracle ZZ (k “stacks” of NP machines) with polynomial steps

#PH = #pPPH

integer-valued functions computed by counting Turing machine
with oracle PH (arbitrary stacking of NP machines) with polynomial
steps

FPCNPC #PC#XPC ... C#PHC FPSPACE C #EXP C FEXP

=#PSPACE



COMPLETENESS
A problem is said complete for a class if it is the hardest problem in
that class

We cannot establish e.g. #P-completeness of inference as it
returns rationals (and #P does not seem to be closed under
division)

EQUIVALENCE

A problem A is X-equivalent for counting class X if it is X-hard
(via parsimonious reduction) up to a polynomial scaling and can be
solved with FPX

Marginal inference in Bayesian networks specified by CPTs is
#P-equivalent



RESULTS

THEOREM

Inference in RBNS without combination functions is #P-equivalent,
even if the domain is specified solely by its size in binary notation

RBNs without combination functions encode plate models,
which are #pP-equivalent (Cozman & Maua, 2015)

difficult(Y") passes(X,Y) intelligent(X)

courses students



RESULTS

THEOREM

Inference is #EXP-equivalent when the only combination function is
max.

®ED O

RBNs with max
combination functions encode
plate models, which
are #EXP-equivalent by reduction
from domino tiling (Cozman &
Maua, 2015)




RESULTS

(which allows us to
specify an exponential number of relevant individuals)

THEOREM

Inference is FPSPACE-complete when the arity is bounded and the
only combination function is max.

Hardness is by reduction from counting QBF solutions:
> A formula o(X1,...,X,) =
Ql HQQ Y2 ... Qm me(Xl, R 7Xn, Yl, c. ,Ym), where each

Q; is either 3 or V, and v is a 3-CNF formula over variables
Xi,..., X, Y1,...,Y,,.

> The number of assignments to the variables
X1,..., X, that satisfy .



RESULTS

NESTING LEVEL
» Nesting level of F = qor F = r(Xy,...,X,) is zero

» Nesting level of F' = F} F, + (1 — F») F3 is the highest nesting
level of Fy, Fy, F3

» Nesting level of F' = comb{Fi,..., F|Y1,...,Ya;a} is the
highest nesting level over all F;, plus one.

THEOREM

Inference is #33 -equivalent when arity is bounded, nesting level is
at most k, and the only combination function is max.

Reduction from #I11;SAT (counting satisfying assignments
of CNF formulas with at most k alternating quantifiers)



RESULTS

THEOREM
Inference is FEXP-complete when arity is bounded and
combination are polynomial in their arguments

Succinct specification of an exponential multiset allows
exponential computation (as in succinct circuits).



RESULTS

THEOREM

Inference is #P-equivalent when arity is bounded and combination
are polynomial

Ground the model into a Bayesian network with polynomial
effort.



CONCLUSION

v

No combination functions, — inference is #P-equivalent

v

Only maximization as combination function
» #EXP-equivalent
» FPSPACE-complete with bound on arity of relations
» #Y ,-complete with bound on arity of relations and bound on
number of nestings

v

FEXP-complete if combination function is polynomial

v

# P-equivalent if probability formula is polynomial



