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Solution to many tasks comprises building a concrete Bayesian
network from some template model for each given domain

I Object recognition
I Viral marketing
I Entity resolution
I Social network analysis
I . . .
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“with probability α, an individual carries disease if both
parents have a certain gene”
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RELATIONAL BAYESIAN NETWORKS

I declarative approach for specifying abstract models

I as expressive as other probabilistic relational languages

I explicit representation of repetition, determinism and
context-specific independence, which can be used to speed
up inference

I clear and rigorously defined syntax/semantics
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I Complexity of inference with RBNs has not been thoroughly
examined yet

I In particular, the effect of combination functions, which allow
summarizing information from different individuals

I This work: Complexity of marginal inference as parametrized
by combination functions
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RELATIONAL BAYESIAN NETWORK

Acyclic directed graph where each node is a relation symbol
annotated with a probability formula over atoms, numbers and
combination functions

passesdifficult intelligent

Pr(difficult) = 0.3 Pr(intelligent) = 0.6
Pr(passes|difficult, intelligent) =

(0.4 · difficult(X) + 0.95(1− diffilcult(X))) · intelligent(Y )+
(0.1 · difficult(X) + 0.5(1− difficult(X)))(1− intelligent(Y ))
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difficult(1)

difficult(2)

passes(1, 1)

passes(1, 2)

passes(2, 1)

passes(2, 2)

intelligent(1)

intelligent(2)

Pr(difficult(1)) = Pr(difficult(2)) = 0.3
Pr(intelligent(1)) = Pr(intelligent(2)) = 0.6
Pr(passes(1, 2)|difficult(1), intelligent(2)) =

(0.4difficult(1) + 0.95(1− diffilcult(1)))intelligent(2)+
(0.1difficult(1) + 0.5(1− difficult(1)))(1− intelligent(2))
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PROBABILITY FORMULA

I A rational q ∈ [0, 1] or an atom r(X1, . . . , X|r|)

I Convex combination F1F2 + (1− F1)F3

I Combination expression:

comb{F1, . . . , Fk|Y1, . . . , Ym;α},

where α is an equality constraint such as

X = Y or (¬X = Y ) ∨ (Y = Z ∧X = Z)

I Summarize information about individuals

Example:
F (X) = mean{0.6 · r(X)+

0.7 ·max{1− s(X,Y )|X;X = X}|Y,Z;Y 6= X ∧ Z 6= X}
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SEMANTICS

INTERPRETATION

I Set of constants D (domain)

I Map µ:

I relation symbol r into relation rµ ⊆ D|r|

I equality constraint into standard semantics

I probability formula F into function Fµ : Dn → [0, 1], where n is
the number of free variables in F
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SEMANTICS

PROBABILITY FORMULA

q
µ−→ q

r(X1, . . . , X|r|)
µ−→ Fµ(a) =

{
1 if a ∈ rµ

0 if a 6∈ rµ

F1F2 + (1− F1)F3
µ−→ Fµ1 (a)Fµ2 (a) + (1− Fµ1 (a))Fµ3 (a)
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SEMANTICS

PROBABILITY FORMULA

If F = comb{F1, . . . , Fk|Y1, . . . , Ym;α}, then Fµ(a) = comb(Q)
where

I comb is the combination function
I Q is the multiset containing a number Fi(a, b) for every

(a, b) ∈ αµ

Example:
I D={1, 2}; max{13 ,

2
3 , 1|Y ;Y = Y } µ−→ max{13 ,

2
3 , 1,

1
3 ,

2
3 , 1}
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SEMANTICS

Given a domain D, an RBN with graph G = (V,A) induces a
probability distribution over interpretations µ by

Pr(µ|D) =
∏
r∈V

∏
a∈rµ

Fr(a)
∏
a6∈rµ

(1− Fr(a))︸ ︷︷ ︸
Pr(rµ|{sµ:s∈pa(r)},D)

,

where occurrences of s ∈ pa(r) in probability formula Fr(a) are
interpreted according to sµ
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difficult(1)

difficult(2)

passes(1, 1)

passes(1, 2)

passes(2, 1)

passes(2, 2)

intelligent(1)

intelligent(2)

Fpasses(1, 2) =
(0.4difficult(1) + 0.95(1− diffilcult(1)))intelligent(2)+
(0.1difficult(1) + 0.5(1− difficult(1)))(1− intelligent(2))
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COMPLEXITY OF MARGINAL INFERENCE

Given:
I Relational Bayesian Network (graph and probability formulas)
I domain D specified as a list of elements
I ground atom r(a)

Compute:
Pr(r(a) = 1) =

∑
µ:a∈rµ

Pr(µ|D)

Note: Pr(r1(a1) = α1, . . . , rn(an) = αn) can be computed as
Pr(r(a) = 1) by defining Fr = [1−]r1(X1) · · · · [1−]rn(n);
conditional probability can be computed with two such calls
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COUNTING TURING MACHINE

Non-deterministic Turing machine that writes on a separate tape
and in binary notation the number of accepting paths

1 0 1 1 1 0 . . . Input/Working Tape

input

0 1 0 . . . Counting Tape

count

#P

integer-valued functions computed by counting Turing machine
with polynomial steps

#EXP

integer-valued functions computed by counting Turing machine
with exponential steps

14 / 24



ORACLE TURING MACHINE

Turing machine which can query an “oracle”, which then
reads/writes content from/to the oracle tape in one step

1 0 1 1 1 0 . . . Input/Working Tape

input

0 1 0 . . . Oracle Tape

oracle

ORACLE COMPLEXITY CLASSES:
For complexity classes A and B, say that a problem is in AB if it
can be computed by an A-complete problem with access to an
oracle that is complete for B. Examples: PNP, NPPSPACE.
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COUNTING HIERARCHY

#Σp
k = #P

k times

NPNP...

integer-valued functions computed by counting Turing machine
with oracle Σp

k (k “stacks” of NP machines) with polynomial steps

#PH = #PPH

integer-valued functions computed by counting Turing machine
with oracle PH (arbitrary stacking of NP machines) with polynomial
steps

FP⊆ NP⊆#P⊆#Σp
1⊆ · · · ⊆#PH⊆ FPSPACE

=#PSPACE
⊆#EXP⊆ FEXP
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COMPLETENESS

A problem is said complete for a class if it is the hardest problem in
that class

We cannot establish e.g. #P-completeness of inference as it
returns rationals (and #P does not seem to be closed under
division)

EQUIVALENCE

A problem A is X-equivalent for counting class X if it is X-hard
(via parsimonious reduction) up to a polynomial scaling and can be
solved with FPX

Marginal inference in Bayesian networks specified by CPTs is
#P-equivalent
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RESULTS

THEOREM

Inference in RBNs without combination functions is #P-equivalent,
even if the domain is specified solely by its size in binary notation

Proof: RBNs without combination functions encode plate models,
which are #P-equivalent (Cozman & Mauá, 2015)

passes(X,Y )difficult(Y ) intelligent(X)

courses students
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RESULTS

THEOREM

Inference is #EXP-equivalent when the only combination function is
max.

Proof: RBNs with max
combination functions encode
enhanced plate models, which
are #EXP-equivalent by reduction
from domino tiling (Cozman &
Mauá, 2015)
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RESULTS

Exponential behavior due to unbounded arity (which allows us to
specify an exponential number of relevant individuals)

THEOREM

Inference is FPSPACE-complete when the arity is bounded and the
only combination function is max.

Proof: Hardness is by reduction from counting QBF solutions:
I Input: A formula ϕ(X1, . . . , Xn) =
Q1 Y1Q2 Y2 . . . Qm Ymψ(X1, . . . , Xn, Y1, . . . , Ym), where each
Qi is either ∃ or ∀, and ψ is a 3-CNF formula over variables
X1, . . . , Xn, Y1, . . . , Ym.

I Output: The number of assignments to the variables
X1, . . . , Xn that satisfy ϕ.
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RESULTS

NESTING LEVEL

I Nesting level of F = q or F = r(X1, . . . , Xn) is zero
I Nesting level of F = F1F2 + (1− F2)F3 is the highest nesting

level of F1, F2, F3

I Nesting level of F = comb{F1, . . . , Fk|Y1, . . . , YM ;α} is the
highest nesting level over all Fi, plus one.

THEOREM

Inference is #ΣP
k-equivalent when arity is bounded, nesting level is

at most k, and the only combination function is max.

Proof: Reduction from #ΠkSAT (counting satisfying assignments
of CNF formulas with at most k alternating quantifiers)
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RESULTS

Other combination functions

THEOREM

Inference is FEXP-complete when arity is bounded and
combination functions are polynomial in their arguments

Proof: Succinct specification of an exponential multiset allows
exponential computation (as in succinct circuits).
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RESULTS

Other combination functions

THEOREM

Inference is #P-equivalent when arity is bounded and combination
formulas are polynomial

Proof: Ground the model into a Bayesian network with polynomial
effort.
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CONCLUSION

I No combination functions,→ inference is #P-equivalent

I Only maximization as combination function
I #EXP-equivalent
I FPSPACE-complete with bound on arity of relations
I #Σk-complete with bound on arity of relations and bound on

number of nestings

I FEXP-complete if combination function is polynomial

I #P -equivalent if probability formula is polynomial
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