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Bayesian Network

I A DAG over a set of variables X1, . . . , Xn

I A collection of local probability models P(Xi|pa(Xi))

I Markov Condition: P(X1, . . . , Xn) =
∏

i P(Xi|pa(Xi))

Intelligent? (I)
Marks (M)

Approved? (A)

P(I)
P(M |I)

P(A|M)
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MAP Inference Problem

Given:
I Bayesian network (G, {P(Xi|pa(Xi))}i)
I Evidence e = {E1 = e1, . . . , E = em}
I MAP variables M ⊆ {X1, . . . , Xn} \ {E1, . . . , Em}

Compute

max
m

P(M = m, e) = max
m

∑
h

P(M = m,H = h, e)

Variants:
I DMAP: Decide if maxm P(M = m, e) > k for given rational k

I SMAP: Select m̂ s.t. P(M = m̂, e) = maxm P(M = m, e)
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MPE Inference Problem

Given:
I Bayesian network (G, {P(Xi|pa(Xi))}i)
I Evidence e = {E1 = e1, . . . , E = em}
I MAP variables M = {X1, . . . , Xn} \ {E1, . . . , Em}

Compute

max
m

P(M = m, e)

Variants:
I DMPE: Decide if maxm P(M = m, e) > k for given rational k

I SMPE: Select m̂ s.t. P(M = m̂, e) = maxm P(M = m, e)
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Complexity of Inference

Upper Bound:
Marginal and MPE inference can be performed in worst-case
polynomial-time in networks of bounded treewidth

Chandrasekaran et al. 2008:
Provided that NP 6⊆ P/poly and the grid-minor hypothesis holds,
there is no graphical property that if constrained makes (marginal)
inference polynomial in high-treewidth networks

Kwisthout et al. 2010; Kwisthout 2014:
Unless the satisfiability problem admits a subexponential-time
solution, there is no algorithm that performs (MAP or marginal)
inference in worst-case subexponential time in the treewidth
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Local Probability Models

Extensive Specification
Local models are given as tables of rational numbers

Intelligent? Marks P(M |I)
yes A 0.4
yes B 0.5

...
...

...
yes D 0.1
no A 0.1
no B 0.2
...

...
...

no D 0.2
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Local Structure

Structure that cannot be read off from the graph:
I Context-specific independence: e.g.,

P(Y |X,Z = z0) = P(Y |Z = z1)

and P(Y |X,Z = z1) 6= P(Y |Z = z1) .

I Determinism:

P(Y |Z) =

{
1, if Y = f(Z),

0, if Y 6= f(Z).

I Noisy-or networks (e.g. QMR-DT)
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Local Structure

Beyond The Treewidth Barrier

“ It has long been believed (...) that exploiting the
local structure of a Bayesian network can
speed up inference to the point of beating
the treewidth barrier. (...) [However,] we still do
not have strong theoretical results that
characterize the classes of networks and the savings that
one may expect from exploiting their local structure.”

– A. Darwiche, 2010
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Local Structure

Can constraining the
expressivity of the local
probability models allow for
tractable inference?
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This Work

Complexity analysis of
DMAP and DMPE in
high-treewidth networks
parameterized by the
expresssivity of local
probability models
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Functional Bayesian Networks

Functional Bayesian Networks [Pearl 2000, Poole 2008]
Local probability models are

I arbitrary for root nodes (i.e. P(X) = α)

I deterministic for internal nodes (i.e. X = f(pa(X)))

Intelligent? (I)
Marks (M)

Approved? (A)

P(I) = 0.1
M = f(I)

A =

{
yes, if M ≥ C
no, if M < C

Every Bayesian network can be converted into an equivalent
functional Bayesian network (by adding new variables)
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Results

There are tractable models of high treewidth...
E.g.: DMPE is in P when variables are Boolean, functions are
logical conjunctions (AND) and evidence is positive (i.e. Ei = true)

...but they must be relatively simple
I DMPE is NP-complete when variables are Boolean and

functions are logical conjunctions (evidence can be positive or
negative)

I DMPE is NP-complete when variables are Boolean, functions
are disjunctions (OR) and evidence is positive

I DMAP is NPPP-complete when variables are Boolean,
functions are disjunctions and evidence is positive

I DMAP is NPPP-complete when variables are Boolean and
functions are conjunctions (evidence is arbitrary)
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Conclusion

I Continuation of previous work on complexity of marginal
inference [Cozman and Mauá 2014]

I Some results showing tractable and intractable cases when
parameters are “tied” (i.e., relational models)

I Meet me at poster session (poster #26)
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