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Bayesian Network

» A DAG over a set of variables Xy,..., X,
» A collection of local probability models P(X;|pa(X;))
» Markov Condition: P(Xy, ..., X,) = [[; P(X;|pa(X;))

P(I)
Marks (M) | P(M|I)
Intelligent? (1)

[Approved? (A)]

P(A|M)



MAP Inference Problem

Given:
» Bayesian network (G, {P(X;|pa(X;))}:i)
» Evidencee = {E; =e1,...,E=ey}
» MAP variables M C {X1,..., X, } \{E1,..., En}

Compute

m

maxP(M =m,e) = maXZIP’(M =m,H="h,e)
h

Variants:
» DMAP: Decide if maxm P(M = m, e) > k for given rational k

» SMAP: Select m s.t. P(M = m, €) = maxy, P(M = m, e)



MPE Inference Problem

Given:
» Bayesian network (G, {P(X;|pa(X;))}i)
» Evidencee = {E; =e1,...,E=ey}
» MAP variables M = {X1,..., X, } \{E1, ..., En}

Compute

maxP(M = m, e)

m

Variants:
» DMPE: Decide if maxm P(M = m, e) > k for given rational k

» SMPE: Select m s.t. P(M = m, e) = maxmy, P(M = m, e)



Complexity of Inference

Upper Bound:

Marginal and MPE inference can be performed in worst-case
polynomial-time in networks of bounded treewidth

Chandrasekaran et al. 2008:

Provided that NP Z P/poly and the grid-minor hypothesis holds,
there is no graphical property that if constrained makes (marginal)
inference polynomial in high-treewidth networks

Kwisthout et al. 2010; Kwisthout 2014:

Unless the satisfiability problem admits a subexponential-time
solution, there is no algorithm that performs (MAP or marginal)
inference in worst-case subexponential time in the treewidth



Local Probability Models

Extensive Specification
Local models are given as tables of rational numbers

Intelligent? Marks P(M|I)
yes A 0.4
yes B 0.5
yes D 0.1
no A 0.1
no B 0.2
no D 0.2




Local Structure

Structure that cannot be read off from the graph:
» Context-specific independence: e.g.,

P(Y|X,Z = 2) =P(Y|Z = )
and PY|X,Z=2xn)£PYI|Z=2z).

» Determinism:

1, itY = f(2),

MH@Z{QHY%ﬂ@.

» Noisy-or networks (e.g. QMR-DT)



Local Structure

Beyond The Treewidth Barrier

“It has long been believed (...) that exploiting the
local structure of a Bayesian network can
speed up inference to the point of beating
the treewidth barrier. (...) [However,] we Still do
not have strong theoretical results that
characterize the classes of networks and the savings that
one may expect from exploiting their local structure.”

— A. Darwiche, 2010



Local Structure

Can constraining the
expressivity of the local
probability models allow for
tractable inference?



This Work

Complexity analysis of

DMAP and DMPE in
high-treewidth networks

parameterized by the
expresssivity of local
probability models



Functional Bayesian Networks

Functional Bayesian Networks [Pearl 2000, Poole 2008]
Local probability models are
» arbitrary for root nodes (i.e. P(X) = «)

» deterministic for internal nodes (i.e. X = f(pa(X)))

P(I) =0.1
Marks (M) | M = f(I)
Intelligent? (1)

Ao yes, ifM >C
Approved? (A)| = \no, ifM<C

Every Bayesian network can be converted into an equivalent
functional Bayesian network (by adding new variables)



Results

There are tractable models of high treewidth...

E.g.: DMPE is in P when variables are Boolean, functions are
logical conjunctions (AND) and evidence is positive (i.e. E; = true)

...but they must be relatively simple

» DMPE is NP-complete when variables are Boolean and
functions are logical conjunctions (evidence can be positive or
negative)

» DMPE is NP-complete when variables are Boolean, functions
are disjunctions (OR) and evidence is positive

» DMAP is NPPP-complete when variables are Boolean,
functions are disjunctions and evidence is positive

» DMAP is NPPP-complete when variables are Boolean and
functions are conjunctions (evidence is arbitrary)



Conclusion

» Continuation of previous work on complexity of marginal
inference [Cozman and Maua 2014]

» Some results showing tractable and intractable cases when
parameters are “tied” (i.e., relational models)

» Meet me at poster session (poster #26)



