
International Journal of Approximate Reasoning 125 (2020) 26–48
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Tractable inference in credal sentential decision diagrams

Lilith Mattei a, Alessandro Antonucci a,∗, Denis Deratani Mauá b,
Alessandro Facchini a, Julissa Villanueva Llerena b

a Istituto Dalle Molle di Studi per l’Intelligenza Artificiale, Manno-Lugano, Switzerland
b Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 December 2019
Received in revised form 2 June 2020
Accepted 18 June 2020
Available online 9 July 2020

Keywords:
Probabilistic graphical models
Imprecise probability
Credal sets
Probabilistic circuits
Sentential decision diagrams
Sum-product networks

Probabilistic sentential decision diagrams are logic circuits where the inputs of disjunctive
gates are annotated by probability values. They allow for a compact representation of
joint probability mass functions defined over sets of Boolean variables, that are also
consistent with the logical constraints defined by the circuit. The probabilities in such
a model are usually “learned” from a set of observations. This leads to overconfident and
prior-dependent inferences when data are scarce, unreliable or conflicting. In this work,
we develop the credal sentential decision diagrams, a generalisation of their probabilistic
counterpart that allows for replacing the local probabilities with (so-called credal) sets
of mass functions. These models induce a joint credal set over the set of Boolean
variables, that sharply assigns probability zero to states inconsistent with the logical
constraints. Three inference algorithms are derived for these models. These allow to
compute: (i) the lower and upper probabilities of an observation for an arbitrary
number of variables; (ii) the lower and upper conditional probabilities for the state of
a single variable given an observation; (iii) whether or not all the probabilistic sentential
decision diagrams compatible with the credal specification have the same most probable
explanation of a given set of variables given an observation of the other variables. These
inferences are tractable, as all the three algorithms, based on bottom-up traversal with
local linear programming tasks on the disjunctive gates, can be solved in polynomial
time with respect to the circuit size. The first algorithm is always exact, while the
remaining two might induce a conservative (outer) approximation in the case of multiply
connected circuits. A semantics for this approximation together with an auxiliary algorithm
able to decide whether or not the result is exact is also provided together with a
brute-force characterization of the exact inference in these cases. For a first empirical
validation, we consider a simple application based on noisy seven-segment display images.
The credal models are observed to properly distinguish between easy and hard-to-
detect instances and outperform other generative models not able to cope with logical
constraints.

© 2020 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: lilith@idsia.ch (L. Mattei), alessandro@idsia.ch (A. Antonucci), ddm@ime.usp.br (D.D. Mauá), alessandro.facchini@idsia.ch (A. Facchini),

jgville@ime.usp.br (J. Villanueva Llerena).
https://doi.org/10.1016/j.ijar.2020.06.005
0888-613X/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2020.06.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2020.06.005&domain=pdf
mailto:lilith@idsia.ch
mailto:alessandro@idsia.ch
mailto:ddm@ime.usp.br
mailto:alessandro.facchini@idsia.ch
mailto:jgville@ime.usp.br
https://doi.org/10.1016/j.ijar.2020.06.005

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 27
1. Introduction

Probabilistic graphical models [1,2] are widely used in machine learning and knowledge-based decision-support systems,
due to their ability to provide compact and intuitive descriptions of joint probability mass functions by exploiting conditional
independence relations encoded in a graph. However, the ability to provide compact representation does not imply that
inferences with the model can be computed efficiently [3–5], and practicioners need to rely on approximate inference
algorithms with no guarantees.

To allow for fast and accurate inference, some authors have proposed abandoning the intuitive (declarative) semantics
of graphical models in favour of a more procedural (and less transparent) representation of probability mass functions
as arithmetic (or logic) circuits [6–9]. The latter has been broadly termed tractable models, for their ability to provide
polynomial-time inference with respect to the circuit size. Sum-product networks (SPNs) [7] are the most popular exam-
ple in this area. Remarkably, SPNs can be also intended as a probabilistic counterpart of deep neural networks and, when
used for machine learning, they offer competitive performances in many tasks [10,11].

Another prominent example of tractable models are probabilistic sentential decision diagrams (PSDDs) [9]. Roughly speak-
ing, a PSDD is a logical circuit representation of a joint probability mass function that assigns zero probability to the
impossible states of the underlying logical constraints. Notably, PSDDs allow for enriching statistical models with knowledge
about constraints in the domain without sacrificing efficient inference [12–15].

When data are scarce, conflicting or unreliable, learning sharp estimates of probability values can lead to inferences that
are dominated by the choice of hyperparameters and priors. The area of imprecise probabilities advocate for a more flexible
and robust representation of statistical models, through the use of credal sets, that is, sets of probability mass functions
induced by a (typically finite) number of linear constraints [16]. This leads to the development of generalizations of graphical
models such as credal networks [17], that extend Bayesian networks to allow for the representation of imprecisely specified
conditional probability values.

Recently, SPNs have also been extended to the imprecise probability setting, giving rise to Credal Sum-Product Net-
works (CSPNs) [18–20]. These models allow for a richer representation of uncertainty without compromising computational
tractability of inferences.

In this work, we develop the Credal Sentential Decision Diagrams (CSDDs), a credal-set extension of probabilistic sentential
decision diagrams that allow for richer representation of uncertainty with small computational overhead. Compared to
CSPNs, CSDDs allow for a more principled semantics of local credal sets.

We take advantage of the structural similarities between PSDDs and SPNs to adapt many of the algorithms originally
proposed for CSPNs [18,20] for CSDDs. More specifically, a PSDD can be seen as a special type of selective SPNs [21], where
differently from standard SPNs, Maximum-A-Posteriori (MAP) inference and parameter learning can be performed efficiently
[22,23]. As a result we therefore deliver three algorithms for CSDDs allowing to compute: (i) marginals, that is, the lower
and upper probabilities of an observation of an arbitrary number of model variables, (ii) conditionals, that is, the lower and
upper probabilities of single queried variable given observations of some other variables; and (iii) MAP robustness, that is,
checking whether or not the most probable configuration for some queried variables given an observation of the other ones
is the same for all PSDDs consistent with a CSDD. Those inferences are tractable as all the algorithms only require a bottom-
up traversal of the logical circuit underlying the model with local linear programming tasks to be solved on the disjunctive
nodes, thus being polynomial in the circuit size. The inferences are always exact for the first task, while for the remaining
two tasks the procedure delivers a conservative (outer) approximation for multiply connected circuits (see Definition 4). For
these cases, a polynomial-time algorithm to check whether or not the inference is exact is also provided together with a
bound on the complexity required to compute exact inference by brute force.

This paper extends a preliminary version [24] with the inclusion of the algorithm for MAP robustness, the characteriza-
tion of the approximation in the multiply connected case, and an experimental validation.

The rest of the paper if organized as follows. In the next section we open the discussion with a toy example to be
used along the paper to illustrate our approach. Section 3 contains background material about credal sets and PSDDs.
The technical results are presented in Section 4 where we define CSDDs, and in Sections 5-7 where the three inference
algorithms are derived. The results of an experimental validation are discussed in Section 8, while conclusions and outlooks
are in Section 9. Proofs are in the appendix together with some additional technical material.

2. A demonstrative example

We begin the discussion with a minimalistic example to be used as an informal introduction to the basic concepts and
problems considered in the paper. Formal definitions of these basics are provided in the next section. The example is used
in the other sections to demonstrate the main ideas derived in our work and show how these can be applied.

Consider four-pixel black-and-white squared images in Fig. 1. These can be regarded as joint states of four Boolean
variables. We assume that, out of sixteen possible configurations, only those in the top row of the Fig. 1 are permitted,
while the remaining six in the bottom row are forbidden by some structural constraint (e.g., only “lines” and “points” can
be depicted).

28 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

Fig. 1. Permitted (top) and un-permitted (bottom) four-pixel squared images.

Let us denote the four variables as (X1, X2, X3, X4), where X1 corresponds to the top-left pixel and the other ones follow
a clock-wise order. If black pixel corresponds to the true state of the variable, the formula implementing the constraints can
be written as1:

γ :=
⎡
⎣ ∨

1≤i≤4

Xi

⎤
⎦ ∧

⎡
⎣ ∨

1≤i �= j≤4

¬Xi ∧ ¬X j

⎤
⎦ (1)

where the two conjunctive clauses impose, respectively, that at least one pixel is black and two pixels are white. These
constraints rule out exactly the configurations in the bottom row in Fig. 1.

Consider the logic circuit in Fig. 2, where conjunctive gates are depicted in blue and they alternate with the disjunctive
(red) ones. For the moment, ignore the parameters associated with the inputs of the disjunctive gates and the top (i.e., �)
inputs of the conjunctive ones. The reader can verify that the formula implemented by the circuit is equivalent to γ in
Equation (1).2

Consider a data set of observations for the permitted configurations is available, where each configuration occurs with
the counts n0, . . . , n9, as indicated on the top of the squares in Fig. 1 for the top row. Say that we want to learn from these
data a generative model, that is, a joint probability mass function over the four variables. Such a mass function should be
also consistent with the logical constraints, that is, the six impossible configurations should receive zero probability.

As the sub-formulae associated to the three inputs of the disjunctive gate in the circuit output are disjoint, a joint mass
function consistent with φ could be simply θ1 Iφ1 + θ2 Iφ2 + (1 − θ1 − θ2)Iφ3 , where φi is the formula associated with the i-th
input of the gate for each i = 1, 2, 3, and I denotes the indicator function of the formula in its subscript. For each i = 1, 2, 3,
the parameter θi is therefore the probability of φi , that can be estimated from the data. For example, a maximum likelihood
estimator would give θ1 = n2+n6+n9

n and θ2 = n0+n1+n4+n5+n7+n8
n where n = ∑9

i=0 ni .
More refined joint mass functions can be obtained by a recursive application of this approach to the other disjunctive

gates and multiplying the contributions associated with the inputs of a conjunctive gate. In those cases the parameters
should be intended as conditional probabilities for the corresponding sub-formula given by a so called context.3

Finally, for the circuit inputs, we specify indicator functions of their literals, these being replaced by a zero for bots (i.e.,
⊥), and by a probability mass function θ I X + (1 − θ)I¬X for a top (i.e., �) associated with variable X and annotated with a
probability θ . Accordingly, the annotated circuit in Fig. 2 induces the joint probability mass function:

θ1 · [I¬X1 I¬X2

] · [θ3 I¬X3 I X4 + (1 − θ3)I X3

[
θ6 I X4 + (1 − θ6) I¬X4

]] + θ2 · [θ4 I X1 I¬X2 + (1 − θ4)I¬X1 I X2

] ·
· [θ5 I X3 I¬X4 + (1 − θ5)I¬X3

[
θ7 I X4 + (1 − θ7)I¬X4

]] + (1 − θ1 − θ2) · [I X1 I X2

] · [I¬X3 I¬X4

]
,

(2)

where the variables of the indicator functions are left implicit for the sake of readability. An annotated circuit as that in
Fig. 2, defining a generative model as the one in Equation (2), which is consistent with the formula γ in Equation (1), is
called a probabilistic sentential decision diagram [9].

In this paper we are interested in developing algorithms for sensitivity analysis of the inferences in these models with
respect to the parameters. This is important when only few training data are available and sharp estimates of the parameters
might be not reliable. Moreover, the parameters not associated with the output disjunctive gate are conditional probabilities

1 We assume the reader to be familiar with basic propositional logic notation. More details about that can be found in Section 3.2.
2 To see this, notice that the logic circuit in Fig. 2 encodes formula

φ := (
(¬X1 ∧ ¬X2) ∧ ((¬X3 ∧ X4) ∨ X3)

) ∨(
((X1 ∧ ¬X2) ∨ (¬X1 ∧ X2)) ∧ ((X3 ∧ ¬X4) ∨ ¬X3)

) ∨(
X1 ∧ X2 ∧ ¬X3 ∧ ¬X4

)
The three disjuncts are mutually exclusive. Models of the first disjuncts correspond to four-pixel squared images whose counts are n2, n6, n9, models of the
second disjuncts correspond to four-pixel squared images whose counts are n0, n1, n4, n5, n7 and n8, and finally the unique model of the third disjuncts
corresponds to the four-pixel squared image whose count is n3.

3 Roughly, a context of a node in the circuit is the formula determined by the path leading to it and such that, joint with the underlying SDD, implies
the formula associated to the node. A formal statement is given in Definition 3.

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 29
Fig. 2. A probabilistic sentential decision diagrams (PSDD) over four Boolean variables. The corresponding sentential decision diagram (SDD) is the underly-
ing logic circuit when the probabilistic annotations of the PSDD are not considered (For interpretation of the colours in the figure(s), the reader is referred
to the web version of this article.)

and the closer the parameter is to the input, the higher will be the number of variables involved in the conditioning event.
Thus, in deep circuits, we might have very few training data to learn those parameters even if the available training data
set is huge, thus making important the development of tools for sensitivity analysis. The notion of probabilistic sentential
decision diagrams, together with other background concepts, are formally described in the next section.

3. Background

3.1. Credal sets

Consider a variable X taking its values in a finite set X whose generic element is denoted as x. A probability mass
function (PMF) over X , denoted as P (X), is a real-valued non-negative function P :X →R such that

∑
x∈X P (x) = 1. Given

a function f of X , the expectation of f with respect to a PMF P is P [f] := ∑
x∈X f (x) · P (x). A set of PMFs over X is

called credal set (CS) and denoted as K(X). Here we consider CSs induced by a finite number of linear constraints. Given CS
K(X), the bounds of the expectation with respect to K(X) can be computed by optimizing P [f] over K(X). For example,
for the lower bound, P [f] := minP (X)∈K(X)

∑
x∈X f (x) ·P (x). This is a linear programming task, whose optimum remains

the same after replacing K(X) with its convex hull. Such optimum is attained on an extreme point of the convex closure.
Moreover, if f is an indicator function, the lower expectation is called lower probability. Notation P is used instead for the
upper bounds and duality P (f) = −P (− f) holds.

30 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
3

1

X1 X2

5

X3 X4

3

1

X1 5

X2 X3

X4

(a) (b)

Fig. 3. Two vtrees over four variables.

In the special case of Boolean variables it is easy to see that the number of extreme points of the convex closure of a CS
cannot be more than two, and the specification of a single interval constraint, say 0 ≤ l ≤ P (x) ≤ u ≤ 1 for one of the two
states is a fully general CS specification.

Learning CSs from multinomial data can be done by the imprecise Dirichlet model (IDM) [16]. This is a generalised Bayesian
approach in which a single Dirichlet prior with equivalent sample size s is replaced by the set of all the Dirichlet priors
with this size. The corresponding bounds on the probabilities are

P (x) ∈
[

n(x)

N + s
,

n(x) + s

N + s

]
(3)

where n(x) are the number of instances of the data set, whose total size is N , such that X = x, for each x ∈X .
Given PMF P (X1, X2), X1 and X2 are stochastically independent if and only if P (x1, x2) = P (x1) · P (x2) for each x1 ∈

X1 and x2 ∈ X2. We similarly say that, given CS K(X1, X2), X1 and X2 are strongly independent if and only if stochastic
independence is satisfied for each extreme point of the convex closure of the joint CS.

3.2. Sentential decision diagrams

Give a finite set of Boolean variables X , a literal is either a Boolean variable X ∈ X or its negation ¬X . The Boolean
constant always taking the value false or true is denoted, respectively, as ⊥ and �.

We start by defining a generalisation of orders on variables based on the following definition.

Definition 1 (Vtree). Consider a finite set X of Boolean variables. A vtree for X is a full binary tree v whose leaves are in
one-to-one correspondence with the elements of X. We denote by vl (resp., vr) the left (right) subtree of v , i.e., the vtree
rooted at the left (resp., right) child of the root of v .

Two vtrees for the variables in the example in Section 2 are in Fig. 3. Note that the in-order tree traversal of a vtree
induces a total order on the variables, but two distinct vtrees can induce in this way the same order (e.g., the two vtrees in
Fig. 3).

Based on the notion of vtree, we provide the following definition of SDDs.

Definition 2 (SDD). A sentential decision diagram (SDD) α normalised for vtree v and its interpretation 〈α〉 are defined induc-
tively as follows.

• If v is a leaf, let X be the variable attached to v; then α is either a constant, i.e., α ∈ {⊥, �}, or a literal, i.e., α ∈ {X, ¬X}.
• If v is not a leaf, then α = {(pi, si)}k

i=1, where the pi ’s and si ’s, called primes and subs, are SDDs normalised for vl and
vr respectively.

The interpretation of an SDD α normalised for v , denoted as 〈α〉, is a propositional sentence over the variables of v ,
defined as follows:

• If α ∈ {⊥, �, X, ¬X}: 〈⊥〉 = ⊥, 〈�〉 = � and 〈X〉 = X , 〈¬X〉 = ¬X .
• If α = {(pi, si)}k

i=1, 〈α〉 = ∨k
i=1〈pi〉 ∧ 〈si〉 and interpretations {〈pi〉}k

i=1 form a partition.

The sub-SDDs of an SDD α are α itself, its primes, its subs, and the sub-SDDs of its primes and subs. A sub-SDD will be
often called a node, more precisely a terminal node when it is normalized for a leaf, and a decision node otherwise.

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 31
Fig. 4. A PSDD whose underlying SDD is multiply connected, normalized for the second vtree in Fig. 3, and represents formula φ = (X1 ∧ X2 ∧ X4) ∨ (¬X1 ∧
X2 ∧ ¬X4).

In a decision node {(pi, si)}k
i=1, the pairs (pi, si)’s are called the elements of the node, and k is its size. The size of an

SDD is the sum of the sizes of all its decision nodes.4

At the interpretation level, each decision node represents a disjunction (actually, an exclusive disjunction, as the primes
form a partition), while each of its elements is a conjunction between a prime and a sub.

Example 1. Given the vtree v over the ordered pair of variables (A, P), α = {(A, P), (¬A, �)} is an SDD normalized for v;
the interpretation of α is 〈α〉 = (A ∧ P) ∨ (¬A ∧ �), which is logically equivalent to φ = A → P .

Given the previous discussion, we can intend the SDD α as a rooted logic circuit, like the one in Fig. 2, providing a
representation of the formula 〈α〉. The labels on decision nodes denote the vtree nodes for which the decision node is
normalized.

The following definition makes formal the notion of path in an SDD. This is needed to provide a semantics for the
parameters used to annotate SDDs.

Definition 3 (Context). Let n be a node (either terminal or decision) of an SDD. Denote as (p1, s1), . . . , (pl, sl) a path from
the root to node n. Then the conjunction of the interpretations of the primes encountered in this path, i.e., 〈p1〉 ∧ · · · ∧ 〈pl〉,
is called a context of n and denoted as γn . The context γn is feasible if and only if si �= ⊥ for each i = 1, . . . , l.

By construction, each node has at least one context. The number of contexts of a node defines its multiplicity as follows.

Definition 4. The multiplicity of an SDD node is the number of its contexts. An SDD is singly connected if all of its nodes
have multiplicity equal to one. Otherwise, it is multiply connected.

Notice that, at the circuit level, the definition of multiply connected SDD coincides with the graph-theoretical one.

Example 2. Consider SDD in Fig. 4. The terminal node with label 12 has multiplicity one and its context is γ = X1 ∧ X2. The
decision node with label 4 (in pink in the figure) has multiplicity two and its contexts are γ ′ = ((X1 ∧ X2) ∧ X1) = X1 ∧ X2
and γ ′′ := ((¬X1 ∧ X2) ∧ ¬X1) = ¬X1 ∧ X2.

The interpretation of a node is implied by its contexts and by the interpretation of the SDD it belongs to, that is, for
each node n of an SDD α, for any context γn , we have that 〈α〉 ∧ γn |= 〈n〉.

Let us finally define a notion of topological order for the nodes of an SDD. The logic circuit underlying the SDD can
be regarded as a directed graph whose arcs are oriented from the inputs to the outputs. Yet, an order in the circuit does
not induce a complete order over the SDD nodes as the conjunctive gates corresponds to pairs or nodes (i.e., elements).
Nevertheless, to obtain a complete order we might simply force both the nodes of an element to precede their decision
node, while the terminal nodes are clearly preceding all the decision nodes.

4 The size of an SDD depends on the number of variables, the base knowledge and the choice of the vtree. The notion of nicety for vtrees with respect
to a given formula provides a bound on the SDD size [25]. Yet, the existence of a nice vtree is guaranteed for CNFs only.

32 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
3.3. Probabilistic sentential decision diagrams

A probabilistic sentential decision diagram is a parametrized SDD, where parameters are PMFs specifications on the decision
nodes and on the terminal nodes labelled with constant top. A PSDD induces a joint PMF over its variables, assigning zero
probability to the impossible states of the logical constraint given by the interpretation of the underlying SDD.

To turn an SDD into a PSDD, proceed as follows. For each terminal node �, specify a positive parameter θ such that
0 ≤ θ ≤ 1. Notation for such terminal node is X : θ , where X is the variable of the leaf vtree node for which � is normalised.
Terminal nodes other than � appear as they are; for each decision node {(pi, si)}k

i=1, specify for each prime pi a real
number θi ≥ 0, such that

∑k
i=1 θi = 1 and θi = 0 if and only if si = ⊥. Notation {(pi, si, θi)}k

i=1 is used to denote such a
parametrisation. The interpretation of such parametrisation is the following. Each node n �= ⊥ normalized for vtree node v
induces a PMF Pn defined inductively as follows:

• if n is a terminal node whose corresponding variable in v is X , then Pn is a PMF over {�, ⊥} such that:
– if n = X , Pn(�) = 1 and Pn(⊥) = 0
– if n = ¬X , Pn(�) = 0 and Pn(⊥) = 1
– if n = X : θ , Pn(�) = θ and Pn(⊥) = 1 − θ

• if n = {(pi, si, θi)}k
i=1 is a decision node, let (X, Y) be the variables of vl , vr respectively. Then the joint PMF Pn(X, Y)

is defined as:

Pn(x, y) := Ppi (x) · Psi (y) · θi , (4)

for each (x, y) ∈X ×Y , where i is the unique index such that x |= 〈pi〉.

In other words, PSDDs are SDDs with PMFs associated to each node distinct from ⊥. It follows that sub-SDDs of a
PSDD are in fact sub-PSDDs, except for terminal nodes ⊥ (because such nodes do not induce a PMF). According to the Base
Theorem for PSDDs [9, Theorem 1], the PMF Pn assigns zero probability to events which do not respect the propositional
sentence associated to the SDD n. More precisely, for any instantiation (x, y) of variables (X, Y) of the vtree n is normalised
for, Pn(x, y) > 0 iff (x, y) |= 〈n〉. Moreover, the probabilities Pn(〈pi〉) are the parameters θi ’s of n = {(pi, si, θi)}k

i=1.
We simply denote as P the (joint) PMF induced by the root r. PMF Pn induced by an internal node can be ob-

tained by conditioning P on a feasible context of the considered node [9, Theorem 4]: for each feasible context γn of
n, Pn(·) = P (·|γn). The topological definitions made for SDDs extend to PSDDs. Finally, we have the following result about
independence [9, Theorem 5]: according to P , the variables inside v are independent of those outside v given context γn .
This is the PSDD analogue of the Markov condition for Bayesian networks.

3.4. Inferences in PSDDs

PSDD inferences are computed with respect to the joint PMF P . The probability of a joint state e of a set of PSDD
variables E can be obtained in linear time with respect to the diagram size by the bottom-up (i.e., based on a topological
order from the inputs to the output) scheme in Algorithm 1. Note that here and in the rest of the paper we assume that the
nodes of the PSDD are labelled by integers from one to N following a topological order and N is therefore the output/root
of the circuit. Given a vtree node v , notation ev is used for the subset of e including only the variables of v . Note also that,
as the node index n in the loop follows a topological order, the message π(n), to be computed after the else statement, is
always a combination of messages already computed.

Algorithm 1 Probability of evidence [9].
input: PSDD, evidence e
for n ← 1, . . . , N (topological order) do

π(n) ← 0
if node n is terminal, n �= ⊥ then

v ← leaf vtree node that n is normalized for
π(n) ←Pn(ev)

else
(pi , si , θi)

k
i=1 ← n (decision node)

π(n) ← ∑k
i=1 π(pi) · π(si) · θi

end if
end for
output: P (e) ← π(N)

The computation of a conditional query is based on a similar strategy.
Regarding MAP inference, that is, the problem of finding the most probable configuration for a set of variables

given an observation of the other ones, the computation proceeds very similarly, replacing the sums with maximiza-
tions [26]. More formally, given a PSDD rooted at r, and evidence e for the variables in E , we are interested in finding

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 33
x∗ := arg maxx∈X Pr(x|e) for the PSDD variables other than E and denoted as X . We assume the evidence consistent with
the PSDD logical constraints and hence Pr(e) > 0. This way, the task is well-defined and it is equivalent to the maximization
of the joint, that is,

x∗ = arg max
x∈X

Pr(x, e) . (5)

Algorithm 2 takes as input a PSDD rooted at r over variables {X, E} (with X and E disjoint) and evidence e over vari-
ables E, and computes maxx∈X Pr(x, e). Correctness is implied by the following result.

Theorem 1. The output of Algorithm 2 is the probability of the configuration of Equation (5), that is,

M A P (r) = Pr(x∗, e) . (6)

Finally, the arguments realizing the maximum may be obtained by backtracking the solutions of the maximizations.

Algorithm 2 MAP.
input: PSDD r , evidence e
for n ← 1, . . . , N do

M A P (n) ← 0
if node n is terminal, n �= ⊥ then

v ← leaf vtree node that n is normalized for
if var(v) ∈ X then

if n ∈ {X, ¬X} then
M A P (n) ← 1

else if n = (�, θ) then
M A P (n) ← max{θ, 1 − θ}

end if
else

M A P (n) ←Pn(e)

end if
else

(pi , si , θi)
k
i=1 ← n (decision node)

M A P (n) ← maxk
i=1 M A P (pi) · M A P (si) · θi

end if
end for
output: M A P (N)

4. Credal sentential decision diagrams

In this section we present a generalization of PSDDs (see Section 3.3) based on the notion of credal set provided in
Section 3.1. The number of variables involved in a node’s context increases with the distance from the root when the
SDD is singly connected (see Definition 3). As the PMFs associated with decision nodes specify probabilities conditional
on the (unique) corresponding context, the amount of data used to estimate such parameters decreases rapidly with the
“depth” of the node. In the case of a multiply connected circuit, deepest nodes with high multiplicity generally do not
suffer from data scarcity, thanks to their multiple contexts. Nevertheless, data scarcity can affect single-multiplicity nodes in
multiply connected circuits, namely when a deep, singly-connected sub-circuit is present. This justifies the need of a robust
statistical learning of the parameters as the one provided by the IDM, even when data is initially abundant. This motivates
the following definition of CSDDs.

Definition 5. A credal sentential decision diagram (CSDD) is an SDD augmented as follows.

• For each terminal node �, an interval [l, u] is provided such that 0 < l ≤ u < 1. Notation X : [l, u], where X is the
variable of the leaf vtree node that � is normalised for, is consequently adopted. Terminal nodes other than � appear
as they are.

• For each decision node n = {(pi, si)}k
i=1, a CS Kn(P) is provided over a variable P , whose states are the interpretations

〈pi〉 of the primes pi ’s of n. We require that for all P (P) ∈Kn(P), for each 1 ≤ i ≤ k, P (〈pi〉) = 0 if and only if si = ⊥.

According to the above definition, the CSs associated with the decision nodes assign strictly positive (lower) probability
to all the states of P apart from those corresponding to a prime whose sub is ⊥. Similarly, the intervals [l, u] assigned
to terminal nodes � are also CS specifications (see Section 3.1), while literal terminal nodes have attached degenerate CSs
containing the single PMF induced by the same literal when regarded as a PSDD node. It follows that sub-SDDs different
from ⊥ (with their CSs) are in fact sub-CSDDs. Thanks to this requirement, it follows that each assignment of the parameters

34 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
respecting the CSDD constraints defines a compatible PSDD. Thus, the interpretation of a CSDD is a collection of PSDDs
compatible with its constraints. This also gives a semantics for the CSDD CSs, which are regarded as conditional CSs for the
variables/events in the associated nodes given a context.

Exactly as a PSDD defines a joint PMF, a CSDD defines a joint CS. Such a CS, called here the strong extension of the CSDD
and denoted as Kr(X), where r is the root node of the CSDD, is defined as the convex hull of the set of joint PMFs induced
by the collection of its compatible PSDDs. By definition of CSDD strong extension and by the Base Theorem for PSDDs, we
have the following result.

Theorem 2 (Base). For each node n of a CSDD, for each instantiation z of its variables Z,

Pn(z) > 0 iff z |= 〈n〉 , (7)

Pn(z) = 0 iff z �|= 〈n〉 , (8)

where Pn(z) = minP (Z)∈Kn(Z)P (z) and Pn(z) = maxP (Z)∈Kn(Z)P (z).

Example 3. Consider the PSDD in Fig. 2. This model can be converted into a CSDD by simply replacing the (precise) learning
of the parameters from the data set of consistent observations in Fig. 1 with IDM-based (see Section 3.1) interval-valued
estimates. The intervals associated with two of the seven parameters are:

θ1 = P (¬X1 ∧ ¬X2) ∈
[

n2 + n6 + n9

n + s
,

n2 + n6 + n9 + s

n + s

]
(9)

θ6 = P (X4|(¬X1 ∧ ¬X2) ∧ X3) ∈
[

n2

n2 + n9 + s
,

n2 + s

n2 + n9 + s

]
, (10)

while the complete set of constraints on the parameters is in the appendix.

As in PSDDs, the CSs of a CSDD are associated with conditional probabilities based on a context, which for “deep” nodes
are estimated from small amounts of data consistent with the context; the use of robust estimators such as the IDM allows
for CS size to be proportional to the amount of data (see Section 3.1), which leads to more conservative inferences.

Inference in a CSDD is intended as the computation of lower and upper bounds with respect to its strong extension.
An important remark is that, as the extreme points of the convex hull of a set also belong to the original set, the extreme
points of the strong extension are joint PMFs induced by PSDDs (whose local PMFs are compatible with the local CSs in
the CSDD). As a consequence of that, a CSDD encodes the same probabilistic independence relations of a PSDD with the
same underlying SDD, but based on the notion of strong independence instead of that of stochastic independence (see
Section 3.1). Thus, the variables of a node are strongly independent from the ones outside the node when its context is
given and feasible. In this sense, the relation between PSDDs and CSDDs retraces that between BNs and credal networks
[17]. In the next three sections we address the problem of computing inferences in CSDDs.

5. Marginal inference in CSDDs

Recall that Algorithm 1 computes the probability of a marginal query in a PSDD. Algorithm 3 provides an extension of
this procedure to CSDDs, allowing for the computation of lower/upper marginal probabilities. The procedure follows exactly
the same scheme based on a topological order. Unlike Algorithm 1, every time a decision node is processed, Algorithm 3
requires the solution of a linear programming task whose feasible region is the CS associated with the decision node.

Algorithm 3 Lower probability of evidence.
input: CSDD, evidence e
for n ← 1, . . . , N do

π(n) ← 0
if n is terminal, n �= ⊥ then

v ← leaf vtree node that n is normalized for
π(n) ←Pn(ev)

else
((pi , si)

k
i=1, Kn(P)) ← n (decision node)

π(n) ← min[θ1,...,θk]∈Kn(P)

∑k
i=1 π(pi) · π(si) · θi

end if
end for
output: P (e) ← π(N)

To see why the algorithm properly computes P (e) just regard the output of Algorithm 1 as a symbolic expression of the
local probabilities involved in the CSDD local CSs. This is a multi-linear function of these probabilities subject to the linear

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 35
constraints defining the CSs. The optimizations with respect to the CSs of the terminal nodes can be done independently of
the others, and in any order. Afterwards, the decision nodes whose primes and subs are (already processed) terminal nodes
can be safely processed too. In turn, decision nodes whose primes and subs are already processed terminal or decision nodes
can be safely processed as well, and so on. Any topological order respects such priorities. The algorithm runs in polynomial
time with respect to the SDD size, as it requires the solution of a single linear programming task for each CS of the CSDD.
Note that for terminal nodes the optimization is trivial as it only consists in the computation of a lower probability for a CS
over a Boolean variable. An analogous procedure can also be defined for upper probabilities.

The intuition above is made formal by the next theorem, stating that the output of Algorithm 3 is indeed the lower
bound of a query with respect to the strong extension of the CSDD.

Theorem 3. Consider a CSDD and a node n �= ⊥ normalized for vtree v with variables Z. Let e be a partial or total evidence over
variables in Z:

π(n) = Pn(e) , (11)

where π(n) is the message associated to node n by Algorithm 3.

In the above theorem, there are no restrictions on the topology of the CSDD. Indeed, for any node n, the computation
of π(n) only depends on n’s predecessors with respect to a topological order. To make this clear, assume that the CSDD
is multiply connected, i.e., that there exist two distinct decision nodes n and n′ sharing a sub-CSDD m, say in the i-th,
respectively j-th element.5 Then m is a predecessor of both n and n′ . Hence, π(m) will be already computed when the
algorithm is about to compute π(n) and π(n′), and will appear in the computations of the latter as a factor of the ith,
respectively jth coefficient of two LPs over distinct local CSs attached to n, n′ respectively. This means that the optimal
configuration of m will not be modified in any manner during the optimizations relative to n and n′ , and so multiply
connectedness does not compromise the operations of Algorithm 3.

Example 4. As an example of application of Algorithm 3, assume the counts for the observations of the ten permitted four-
pixel images in Fig. 1 are n0 = 30, n1 = 8, n2 = 5, n3 = 17, n4 = 3, n5 = 0, n6 = 12, n7 = 2, n8 = 9, and n9 = 14, this leading
to a total of n = 100 observations. Using the IDM with s = 1, the PSDD in Fig. 2 becomes a CSDD whose parameters are
constrained by the following constraints:

θ1 ∈
[

31

101
,

32

101

]
, θ2 ∈

[
52

101
,

53

101

]
, θ3 ∈

[
12

32
,

13

32

]
,

θ4 ∈
[

39

53
,

40

53

]
, θ5 ∈

[
8

53
,

9

53

]
, θ6 ∈

[
5

20
,

6

20

]
, θ7 ∈

[
33

45
,

34

45

]
.

Consider a complete evidence (X1 = ⊥, X2 = ⊥, X3 = ⊥, X4 = �). The output of Algorithm 3 corresponds to the following
minimization:

min
θ1∈

[
31

101 , 32
101

]
θ2∈

[
52

101 , 53
101

]
π(24) · π(25) · θ1 + π(26) · π(27) · θ2 + π(28) · π(29) · (1 − θ1 − θ2) , (12)

where π(24) requires no minimization because of the sharp parameters on the arcs of node 24 and has therefore value
π(0) · π(1) · 1 = 1, while

π(25) = min
θ3∈

[
12
32 , 13

32

]π(4) · π(5) · θ3 + π(6) · π(7) · (1 − θ3) . (13)

As π(6) = 0 and π(4) · π(5) = 1 · 1 = 1 the result of the minimization in Equation (13) is 12
32 . It is an easy exercise to verify

that both π(26) and π(28) are equal to zero. It follows that the output π(15), i.e. the lower probability P (X1 = ⊥, X2 =
⊥, X3 = ⊥, X4 = �) has value 12

32 · 31
101 � 0.1151. Note that the complete evidence considered in this example corresponds

to the four-pixel image in Fig. 1 whose count is n6, and value returned for the lower probability looks reasonably consistent
with the maximum likelihood estimate n6

n = 12
100 .

5 The case in which two nodes n and n′ share a common sub-CSDD possibly lower than a prime or sub relies on the one treated here.

36 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
6. Conditional queries in CSDDs

In the previous section we discussed the computation by Algorithm 3 of lower (or upper) marginal probabilities in a
CSDD. This corresponds to a sequence of linear programming tasks whose feasible regions are the CSs of the CSDD processed
in topological order, thus taking polynomial time with respect to the diagram size. In this section we show that something
similar can also be done for conditional queries.

Let X = x denote the variable and state to be queried, and let e be the available evidence about other variables in a
CSDD α rooted at r with variables X . The task is to compute the lower conditional probability with respect to the strong
extension, i.e.,

P (x|e) = min
P (X)∈Kr(X)

P (x, e)

P (e)
. (14)

To have P (x|e) well defined, we assume e to be consistent with the underlying SDD interpretation 〈α〉. To see this, assume
there is a total instantiation of X extending e. Then, given an extreme point P (X) of the strong extension Kr(X), the Base
Theorem for PSDDs tells us that P (x) > 0 if and only if x |= 〈α〉. This immediately yields that the denominator in the right-
hand side of Equation (14) is positive for each extreme point of the strong extension Kr(X) if and only if e is consistent
with 〈α〉.

Note also that if e |= ¬x, then P (x, e) = 0, and similarly if e |= x, then P (¬x, e) = 0. Otherwise both (x, e) = (x, ev) and
(¬x, e) = (¬x, ev), and therefore P (x, e) = P (x, ev) and P (¬x, e) = P (¬x, ev), where v is the leaf node with variable X in
the vtree the CSDD is normalized for. In the following we might therefore assume ev = e.

The task in Equation (14) corresponds to the linearly constrained minimization of a (multilinear) fractional function of
the probabilities. This prevents a straightforward application of the same approach considered in the previous section. Thus,
we consider instead a decision version of the optimization task in Equation (14), i.e., deciding whether or not the following
inequality is satisfied for a given μ ∈ [0, 1]:

P (x|e) > μ. (15)

As for the algorithm in [27], an algorithm able to solve Equation (15) for any μ ∈ [0, 1] inside a bracketing scheme
linearly converges to the actual value of the lower probability.

As P (x|e) + P (¬x|e) = 1 for each P (X) ∈ Kr(X), and assuming that P (e) > 0, Equation (15) holds if and only if the
following inequality holds:

min
P (X)∈Kr(X)

[(1 − μ)P (x, e) − μP (¬x, e)] > 0 . (16)

In order to define an algorithm solving the task of deciding whether or not inequality (16) is satisfied for a given
μ ∈ [0, 1] we need to define the following auxiliary quantities.

(i) For a given value of μ and any node n �= ⊥ normalized for vtree node v:

ρ
n
(μ) := (1 − 2μ) · Pn(ev) . (17)

(ii) For a given value of μ and a terminal node n �= ⊥:

�n(μ) :=
{

λn(μ) if X occurs in n
ρ

n
(μ) otherwise ,

(18)

with

λn(μ) := min

{
(1 − μ)Pn(x) − μPn(¬x),
(1 − μ)Pn(x) − μPn(¬x)

}
, (19)

where the lower and upper probabilities in the above expression are those associated with the bounds in the CS
specification for X = � and the other values are obtained by the conjugacy relation P (x) = 1 −P (¬x).

(iii) For any node n normalized for vtree node v , for z ∈R:

σ n(z) =
{
Pn(ev) if z < 0

Pn(ev) otherwise ,
(20)

for n �= ⊥, while if n = ⊥ we set σ n(z) = 0 for any z ∈R.

We are ready to define Algorithm 4.
The following result proves the correctness of Algorithm 4 for singly connected CSDDs.

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 37
Algorithm 4 Lower conditional probability.
input: CSDD, μ, X = x, e
for n ← 1, . . . , N do

π(n) ← 0
v ← vtree node that n is normalized for
if node n is terminal, n �= ⊥ then

π(n) ← �n(μ) as in Eq. (18)
else

((pi , si)
k
i=1, Kn(P)) ← n (decision node)

if X occurs in v then
if X occurs in vl then

ui ← pi and wi ← si for 1 ≤ i ≤ k
else if X occurs in vr then

ui ← si and wi ← pi for 1 ≤ i ≤ k
end if
π(n) ← min[θ1,...,θk]∈Kn(P)

∑k
i=1 π(ui) · σ wi

(π(ui)) · θi

with σ as in Eq. (20)
else

π(n) ← ρ
n
(μ)

end if
end if

end for
output: sign[P (x|e) − μ] ← sign[π(N)]

Theorem 4. Consider a singly connected CSDD and a node n �= ⊥ normalized for vtree node v, whose variables are X. For any instan-
tiation x of a single variable X ∈ X and any coherent evidence e over some or all of the remaining variables,

π(n) = min
P (X)∈Kn(X)

[(1 − μ)P (x, e) − μP (¬x, e)] , (21)

where π(n) is the message of node n in Algorithm 4.

Observe that, both for terminal and decision nodes whose variables do not contain the queried variable X , the value
π(n) does not really matter, meaning that it does not affect the computation of the messages of the nodes processed after
them. Indeed, consider a node n′ (terminal or decision) appearing as prime or sub in a decision node n, and assume X
occurs in n but not in n′ . Then the message π(n′) will not contribute to π(n), but σ n′(π(n′′)) will, instead, where n′′ is the
node that, together with n′ , forms an element of n. An implementation of Algorithm 4 might therefore simply set π(n) = 0
for each node n in which the queried variable does not occur, in order to avoid useless computations.

The procedure described by Algorithm 4 requires the solution of a number of linear programming tasks, whose feasible
regions are the CSs associated with the CSDD, equal to the number of decision nodes. The computation of the coefficients of
the objective function in these tasks requires a call of Algorithm 3 for each optimization variable to compute the quantities
in Equation (20). Note also that, for each decision node n = ({(pi, si)}k

i=1, Kn(P)) the optimization in the recursive call is
performed before the one in Equation (20). As discussed before, by iterated calls of Algorithm 4, we can therefore compute
lower conditional queries in polynomial time in singly connected CSDDs.

Example 5. Let us demonstrate how Algorithm 4 works in practice by considering the same CSDD, with the same training
data, as in the Example 4. Consider the query X1 = � given evidence (X2 = ⊥, X3 = ⊥, X4 = �). Take a generic μ ∈ [0, 1].
As the queried variable is the left-most variable in the variables ordering induced by the vtree in Fig. 3a, the output of
Algorithm 4 is the result of the following minimization:

min
θ1∈

[
31

101 , 32
101

]
θ2∈

[
52

101 , 53
101

]
π(24) · σ 25(π(24)) · θ1 + π(26) · σ 27(π(26)) · θ2 + π(28) · σ 29(π(28)) · (1 − θ1 − θ2) . (22)

Computing π(24) requires no minimization because of the sharp parameters on the arcs of node 24 and its value is π(0) ·
σ 1(π(0)) · 1. As node 0 is a terminal node containing the queried variable, π(0) = λ0(μ). The latter quantity is equal to −μ

because the query X1 = � does not agree with node 0 whose literal is ¬X1. Since π(0) < 0, σ 1(π(0)) = P 1(X2 = ⊥) = 1.
Hence, π(24) = −μ < 0, and σ 25(π(24)) = P 25(X3 = ⊥, X4 = �) = 13

32 . The value of π(26) is the result of the following
minimization:

min
θ4∈

[
39
53 , 40

53

]π(8) · σ 9(π(8)) · θ4 + π(10) · σ 11(π(10)) · (1 − θ4) . (23)

Both node 8 and node 10 contain the queried variable, hence π(8) = λ8(μ) = (1 − μ) and π(10) = λ10(μ) = −μ. Ac-
cordingly to the signs of the latter, σ 9(π(8)) = P 9(X2 = ⊥) = 1 and σ 11(π(10)) = P11(X2 = ⊥) = 0. Hence, π(26) =
(1 − μ) · 39 > 0. Moreover, σ 27(π(26)) is equal to P 27(X3 = ⊥, X4 = �) and hence corresponds to:
53

38 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
min
θ5∈

[
8

53 , 9
53

]P 12(X3 = ⊥) · P 13(X4 = �) · θ5 + P14(X3 = ⊥) · P 15(X4 = �) · (1 − θ5)

= min
θ5∈

[
8

53 , 9
53

] 33

45
· (1 − θ5) = 33

45
· 44

53
= 484

795
.

One can easily verify that π(28) = 0. Thus, the minimization of Equation (22) rewrites as the following linear programming
task:

min
θ1∈

[
31

101 , 32
101

]
θ2∈

[
52

101 , 53
101

]
−μ · 13

32
· θ1 + (1 − μ) · 39

53
· 484

795
· θ2 , (24)

whose optimum is a numerical zero for μ � 0.657.

The assumption of singly connected topology is crucial for the proof of Theorem 4. Yet, nothing prevents us from applying
Algorithm 4 to a multiply connected CSDD. Considered the last iteration of the algorithm leading to the value of μ for which
the output of Algorithm 4 is a numerical zero. The CSs associated with nodes of multiplicity higher than one have been
used more than once as the feasible region of a linear programming tasks during the recursive calls of the algorithm. If the
optima of those linear programming tasks corresponds to different extreme points of the same CS, we might have that an
outer approximation has been introduced, i.e., the estimate of the lower (upper) probability returned by the algorithm is
smaller (greater) than the exact one. Vice versa, if this is not the case, we might conclude that the algorithm returned an
exact inference. To check this, we only need to store the extreme points of the CSs leading to the optima of the different
linear programming tasks executed by the algorithm. In other words, no additional computational costs are required to
decide whether or not the output of the algorithm is exact. Moreover, if an approximation has been introduced, a simple
brute-force approach to the computation of the exact solution consists in running the same inferential task in the PSDDs
compatible with the input CSDD and such that: (i) the PMFs of the nodes with multiplicity one and of the nodes with
multiplicity more than one in case all the linear programming tasks have the same optimum are just the extreme points of
the CSs that led to the optimum; (ii) the PMFs for the other nodes are any possible extreme points of the CSs, each with its
multiplicity. This represents a brute-force algorithm involving a number of PSDD inference tasks exponential in the number
of credal sets such as in (ii). These ideas are clarified by the following example.

Example 6. Consider a CSDD over the PSDD structure in Fig. 4, whose CSs are all precise (i.e., made of a single PMF)
apart from specifications for each node except for node 3 for which we assume a CS induced by the constraint θ1 ∈ [l, u].
Consider the conditional query X1 = � given evidence X3 = �. For a given μ ∈]0, 1[, it is straightforward to verify that
the messages π(n) of terminal nodes n ∈ {0, 1, 2, 3, 4, 7, 10, 12, 14} are all equal to zero, while π(5) = π(9) = 1 − μ and
π(6) = π(8) = −μ. Consider now the decision nodes 11 and 13, sharing node 4. We have:

π(11) = π(5) · σ 4(π(5)) · 1 + π(6) · σ 7(π(6)) · 0 = (1 − μ) · P 4(X3 = �) , (25)

and

π(13) = π(8) · σ 4(π(8)) · 1 + π(9) · σ 10(π(9)) · 0 = −μ · P 4(X3 = �) . (26)

The two optimizations in Equations (25) and (26) with respect to θ1 give divergent values, i.e., θ1 = l in the first case and
θ1 = u in the second. This is not consistent with the definition of strong extension in Section 4 and it would lead to an
approximate value of the lower probability smaller than the exact one because of fewer constraints.

7. Robustness of MAP inference in PSSDs

CSDD can be also intended as tool for sensitivity analysis in PSDDs. Here we show how to evaluate the robustness of a
MAP inference in a PSDD. Let us first apply Algorithm 2 to a PSDD rooted at r with evidence e. We might ask ourselves
whether or not the resulting configuration is sensitive to variations in the PSDD parameters. In order to do so, we also con-
sider a CSDD the PSDD is consistent with. If all the PSDDs consistent with this CSDD have the same optimal configuration,
and hence this is equal to the one obtained in the original PSDD, we say that the MAP inference is robust. The following
definition formalizes this idea.

Definition 6. Given a PSDD r over variables {X, E} - with X and E disjoint - and an evidence e over variables E, x∗ :=
arg maxx∈X Pr(x, e) is robust with respect to a CSDD with which r is consistent if:

max∗ max
r

P (x,e)

∗ < 1 . (27)

x �=x P∈K P (x ,e)

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 39
If (x∗, e) is inconsistent with r, we say that the inference is not robust by definition and gives to the maximum in
Equation (27) a reference value one.

Algorithm 5 is a subroutine used to decide the robustness of a MAP instance. It takes as input a CSDD rooted at r over
variables {X, E} – with X and E disjoint – and an evidence e over variables E, and computes maxx∈X P r(x, e).

Algorithm 5 “Credal MAP”.
input: CSDD r , evidence e
for n ← 1, . . . , N do

M(n) ← 0
if node n is terminal then

v ← leaf vtree node that n is normalized for
if var(v) ∈ X then

if n ∈ {X, ¬X} then
M(n) ← 1

else if n = (X, [l, u]) then
M(n) ← max{u, 1 − l}

end if
else

M(n) ← Pn(ev)

end if
else

((pi , si)
k
i=1, Kn(P)) ← n (decision node)

M(n) ← max1≤i≤k θi · M(pi) · M(si) with θi := maxKn θi

end if
end for
output: M(N)

The following theorem gives a semantics for the output of Algorithm 5.

Theorem 5. Consider a CSDD and a node n �= ⊥ normalized for vtree node v whose variables are {X, E}, with X and E disjoint. Let e
be a total evidence over variables E. Then:

M(n) = max
x∈X

Pn(x, e) . (28)

Algorithm 6 is used to decide the robustness of a MAP inference x∗ ∈ arg maxx∈X Pr(x, e) in PSDD r in the following
way. Following a topological order, each node n is processed and gives message V (n), which is a relaxed version of the left-
hand side of Equation (27), in which we do not require the configurations x ∈ X to be distinct from x∗ (with the adequate
restrictions to n’s variables). Observe that the message of decision nodes n not realized by (x∗

v , ev) is 0. In fact, this value
does not matter: the contribution of such nodes will be taken into account - as Credal-MAP message - when processing the
first higher decision node consistent with (the adequate restriction of) (x∗, e).

Because of the previously relaxed constraint, the message of the root V (r) is greater or equal than 1. If V (r) > 1, we can
conclude that x∗ is not robust. If V (r) = 1, we need to re-take into account the constraint. In order to do so, we observe:

• if x∗ is the only configuration realizing the maximum, we can state its robustness;
• if x∗ is between several configurations realizing the maximum, we can say that it is weakly robust;
• if x∗ does not realize the maximum, we conclude that it is not robust.

Note that Equation (27) holds if and only if the first situation occurs.
The following theorem states the correctness of Algorithm 6 for singly connected CSDDs.

Theorem 6. Let r be a singly connected CSDD over variables {X, E}, with X and E disjoint. Consider an evidence e over variables E and
an instance x∗ ∈ arg maxx∈X Pr(x, e) obtained by applying Algorithm 2 to a consistent PSDD. For each node n �= ⊥ in r normalized
for vtree node v:

V (n) = max
xv∈val(Xv)

max
P∈Kn

P (xv , ev)

P (x∗
v , ev)

. (29)

The motivations for which we are not in measure to state the theorem for general CSDDs are analogous to the ones
for conditional inference. In the induction step of the previous proof, in the case of i �= j, we perform a maximization on
the numerator and a minimization on the denominator, this being possible because nodes on the numerator and nodes
on the denominator have distinct CSs. Nevertheless, this does not prevent the algorithm from selecting several distinct
optimal sub-configurations in the case of a multiple node possibly shared by pi and p j , or si and s j , when the CSDD
is multiply connected. Thus, exactly as in the case of conditional queries, we obtain an outer approximation meaning

40 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
Algorithm 6 Robustness.
input: CSDD r , evidence e, x∗ ∈ arg maxx∈val(X) Pr(x, e)

for n ← 1, . . . , N do
V (n) ← 1
v ← leaf vtree node that n is normalized for
if node n is terminal then

if n = (X : [l, u]) then
V (n) ← max{1, 1−l

l } when x∗
v = �

V (n) ← max{1, u
1−u } when x∗

v = ⊥
end if

else
({(pi , si)}k

i=1, Kn(P)) ← n (decision node)
if x∗

v ev |= 〈n〉 then
V (n) ← max{V (p j) · V (s j), max1≤i≤k,i �= j U i, j} // j is the unique index such that x∗

v,lev,l |= 〈p j〉 and Ui, j := maxKn
θi ·M(pi)·M(si)

θ j ·P p j
(x∗

v,l ,ev,l)·P s j
(x∗

v,r ,ev,r)

end if
end if

end for
output: V (N)

Fig. 5. Digits represented by a seven-segment display.

that the output of Algorithm 6 might be greater than the left-hand side of Equation (27). In other words, for multiply
connected models, if the algorithm says that the configuration is robust we are certain, while it might be the case that
the algorithm says that the configuration is not robust, while this is not the case. This might be therefore intended as
a conservative approximation. Finally, exactly as in the conditional case, we might decide whether or not the algorithm
returned an approximation by simply inspecting the extreme points of the CSs with multiplicity higher than one leading
to the optima of the linear programs solved during the execution of the algorithm and, in case of approximation, run a
brute-force algorithm exponential in the number of CSs for which different tasks gave different optimal extreme points.

8. Experiments

As a first application of the algorithms derived in the previous section, we consider a simple machine learning task
involving logical constraints over the model variables. The problem consists in the identification of the digit depicted by a
seven-segment display (Fig. 5), whose segments might occasionally fail to turn on. More specifically, given an input digit
to be displayed, the control unit activates the corresponding set of segments in the display; each segment can however
fail to be switched on independently with an identical probability. We note that while this scenario is relatively simple,
it can easily be extended to more complex and realistic scenarios involving a large number of components/devices, whose
interdependence is described as a logical function, and whose probability of failures is interconnected in a complicated way.

Our setup can be described by fourteen Boolean variables: say that X := (X1, . . . , X7) are the hidden states of the seg-
ments as decided by the control unit, and O := (O 1, . . . , O 7) are the observable states of the segments as depicted in the
display. Let us also assume that the true state of these Boolean variables corresponds to the segment on.

We create synthetic data as follows. Given digit j, the corresponding configuration of X is provided by the formula δ j(X)

as in Table 1. Then, for each i = 1, . . . , 7, if Xi is false, we also set O i false, while if Xi is true, O i might be false with a
given failure probability p f . Such mechanism obeys the formula:

φ := ∧7
i=1(O i → Xi) ∧

(
∨9

j=0δ j(X1, . . . , X7)
)

. (30)

Given formula φ in Equation (30), we use the algorithm proposed in [28] to build an SDD α normalized for a vtree
such that, for each i = 1, . . . , 7, the pair (Xi, O i) corresponds to a pair of leaves with the same parent and with a so-called
balanced shape. The resulting SDD has a multiply connected structure, 128 nodes (82 of them decision nodes) and maximum
number of elements for decision node equal to eight.

Given a training data set D of size d, generated according to the above described procedure, we can obtain from α a
PSDD or a CSDD. In the first case we use a Bayesian procedure, with Perks’ prior and equivalent sample size s = 1, to learn
PMFs associated with the decision nodes and the non-bot terminal nodes. In the second case, IDM with the same equivalent
sample size is used to learn the CSs.

As a rival setup we consider a hidden Markov model (HMM) whose hidden variables are those in X , while the observations
are those in O . The model is trained from the same data set D and with the same prior as the PSDD. A credal extension of
HMMs, perfectly analogous to the one we presented here for PSDDs, has been proposed in [29]. Thus, we can also quantify
the HMM parameters as CSs obtained by IDM with the same equivalent sample size. We refer to this model as IHMM, while
HMM is its precise counterpart.

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 41
Table 1
Digits configuration as disjunctive formulae.

j δ j(X)

0 X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 ∧ X6 ∧ ¬X7

1 ¬X1 ∧ X2 ∧ X3 ∧ ¬X4 ∧ ¬X5 ∧ ¬X6 ∧ ¬X7

2 X1 ∧ X2 ∧ ¬X3 ∧ X4 ∧ X5 ∧ ¬X6 ∧ X7

3 X1 ∧ X2 ∧ X3 ∧ X4 ∧ ¬X5 ∧ ¬X6 ∧ X7

4 ¬X1 ∧ X2 ∧ X3 ∧ ¬X4 ∧ ¬X5 ∧ X6 ∧ X7

5 X1 ∧ ¬X2 ∧ X3 ∧ X4 ∧ ¬X5 ∧ X6 ∧ X7

6 X1 ∧ ¬X2 ∧ X3 ∧ X4 ∧ X5 ∧ X6 ∧ X7

7 X1 ∧ X2 ∧ X3 ∧ ¬X4 ∧ ¬X5 ∧ ¬X6 ∧ ¬X7

8 X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 ∧ X6 ∧ ¬X7

9 X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 ∧ X6 ∧ X7

0 X1 ∧ X2 ∧ X3 ∧ X4 ∧ ¬X5 ∧ X6 ∧ X7

Given a test instance (x′, o′), generated by the same mechanism discussed for the training set, we therefore have four
different models to perform reasoning. As a first task, we predict, given the observation o′ , the most probable configuration
of X ′

i for each i = 1, . . . , 7. In the PSDD, this is prediction is driven by the conditional inference P (X ′
i = 1|o′). The same

can be done with the HMM by the classical filtering algorithm (we create a different HMM for each i such that Xi and O i
are always the last elements of the sequence). For the CSDD, Algorithm 4 is used instead to compute posterior intervals
[P (X ′

i = 1|o′), P (X ′
i = 1|o′)], while the same task can be solved in polynomial time also in IHMMs by the (credal) filtering

algorithm proposed in [29]. With 0/1 losses, the rule to decide whether or not the segment X ′
i is on according to a PSDD

or HMM is simply whether or not the probability of the true state is larger than half, the segment being off otherwise.
For CSDDs and IHMMs, we say that the segment is certainly on, if the lower conditional probability is more than half, and
certainly off if the upper probability is less than half. If none of the two above cases is satisfied, we say that we are in a
condition of indecision between the two options. This is an example of so-called credal classifier [30], which suspends the
judgement about the actual state of the segment when the available information is not sufficient to take a determinate
decision.

In summary, given o′ , we classify each segment separately by using: (i) PSDDs and HMMs as standard classifiers, whose
performance is described by the accuracy, i.e., the percentage of segments whose state was properly recognized; (ii) CSDDs
and IHMMs as credal classifiers, whose performance is described by the u80 utility-based performance measure, which
is commonly used to evaluate the performance of credal classifiers as it balances the quality of the prediction and the
lack of informativeness associated to indeterminate classifications and it is considered a proper measure to compare the
performance of credal classifiers against the accuracy of a standard classifier [31].

In our experiments we consider training sets of size d ∈ {10, 15, 20, 50, 100} and test the four models trained with these
data with a test set of size d′ = 140. Different failure probabilities p f ∈ {0.05, 0.1, 0.2, 0.3, 0.4} are also considered.

The CSDD inference algorithms have been implemented by the authors in Python together with the necessary data
structures.6 The PySDD library was used to build the SDDs associated with a formula.7 The PyPSDD library was used instead
to validate the consistency between PSDDs and CSDDs.8 The iHMM library was finally used instead for experiments with
HMMs/IHMMs.9

Fig. 6 depicts five plots showing the accuracies of the four different models as a function of p f for different training
set sizes d. The behaviour is clear PSDDs/CSDDs models outperform HMMs/IHMMs most of the times, with the differences
being typically narrower for low failure probabilities. This is expected and the gap between the two models should be
intended as the effect of the additional information about the logical constraints in Equation (30), that is not available to
the HMMs/IHMMs. The smaller gap for low failure probabilities can be also explained by noticing that the emission term
P (O j |X j) involved in the parametrization of HMMs/IHMMs takes almost diagonal form for low failure probabilities and, in
these cases, the observation of O j induces a high probability for the same state of X j , thus making irrelevant the effect
of the logical constraints. Moreover, we notice that the CSDD tends to outperform the PSDD for larger failure probabilities.
This is also expected: increasing the noise level in the data promptly induces a degradation of the PSDD accuracy, while the
CSDD is able to contain that effect by allowing for indeterminate classifications of some segments.

Credal classifiers are typically used as preprocessing systems able to distinguish easy-to-classify instances for which the
output of the standard method is considered sufficiently reliable, from the hard-to-classify ones, for which other dedicated
and typically more demanding/expensive techniques should be invoked. Such a separation is naturally provided by the
classifier, as it corresponds to the difference between the instances for which the output of the classifier is determinate
and the other ones. A typical description of such discriminative power is the difference between the accuracies of the
precise counterpart of a credal classifier on these two sets of instances. In Fig. 7, we plot the so-called determinate and

6 https://github .com /alessandroantonucci /pycsdd.
7 https://github .com /wannesm /PySDD.
8 https://github .com /art -ai /pypsdd.
9 https://github .com /denismaua /ihmm.

https://github.com/alessandroantonucci/pycsdd
https://github.com/wannesm/PySDD
https://github.com/art-ai/pypsdd
https://github.com/denismaua/ihmm

42 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
0.1 0.2 0.3 0.4 0.5

0.8

0.85

0.9

0.95

1

p f

ac
cu

ra
cy

d=10

PSDD
CSDD
HMM
IHMM

0.1 0.2 0.3 0.4 0.5

0.8

0.85

0.9

0.95

1

p f

ac
cu

ra
cy

d=15

PSDD
CSDD
HMM
IHMM

0.1 0.2 0.3 0.4 0.5
0.75

0.8

0.85

0.9

0.95

1

p f

ac
cu

ra
cy

d=20

PSDD
CSDD
HMM
IHMM

0.1 0.2 0.3 0.4 0.5

0.8

0.85

0.9

0.95

1

p f

ac
cu

ra
cy

d=50

PSDD
CSDD
HMM
IHMM

0.1 0.2 0.3 0.4

0.8

0.85

0.9

0.95

p f

ac
cu

ra
cy

d=100

PSDD
CSDD
HMM
IHMM

Fig. 6. Accuracies.

indeterminate accuracies of the PSDD, i.e., the accuracy of the PSDD on the instances (i.e., segments) for which the credal
classifier was determinate or indeterminate. As expected, the CSDD is properly able to distinguish these two sets and keeps
a level of accuracy very close to one even for high perturbation levels (the perturbation only affecting the determinacy, i.e.,
the percentage of determinate classifications).

Finally, for a validation of Algorithm 6, we perform an analysis analogous to that in Fig. 7 but at the level of joint
configuration of the hidden variables corresponding to a particular digit. In practice, we compute the MAP configuration of
X = x∗ given o′ in the PSDD and use Algorithm 6 to check whether or not the configuration was robust. The corresponding
determinate and indeterminate, joint, accuracies are reported in Fig. 8 only for d ≥ 20 as for lower training set size the
amount of detected digits is very low in both cases. As expected the behaviour is analogous to that in Fig. 7.

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 43
0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=10

Accuracy

Indet. accuracy
Det. accuracy

Determinacy

0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=15

Accuracy
Det. accuracy

Indet. accuracy

Determinacy

0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=20

Accuracy
Det. accuracy

Indet. accuracy

Determinacy

0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=50

Accuracy
Det. accuracy

Indet. accuracy

Determinacy

0.1 0.2 0.3 0.4
0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=100

Accuracy
Det. accuracy

Indet. accuracy

Determinacy

Fig. 7. PSDD determinate vs. indeterminate accuracies.

9. Conclusions

We have introduced a new class of imprecise probabilistic graphical models based on a credal set extension of probabilis-
tic sentential diagrams. Three efficient algorithms for marginal, conditional and MAP queries are derived. The first algorithm
is exact for any topology, while the second and the third might induce a conservative approximation in the multiply con-
nected case. Yet, a fast procedure to test whether or not an approximation has been also derived. An empirical validation
on a synthetic setup shows that the credal extension allows to properly distinguish between easy-to-classify and hard-to-
classify instances. Regarding the multiply connected case, whether or not for conditional queries and for the robustness of
a MAP task, exact inferences can be efficiently computed remains an open question to be addressed as a future work.

44 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=20

Accuracy
Det. accuracy

Indet. accuracy

Determinacy

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

p f

ac
cu

ra
cy

d=100

Accuracy
Det. accuracy

Indet. accuracy

Determinacy

Fig. 8. PSDD determinate vs. indeterminate joint accuracies.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Proofs

Proof of Theorem 1. If r is a terminal PSDD, it is easy to see the correctness of the algorithm. Suppose that r is a decision
node, r = (pi, si, θi)

k
i=1. For a given x ∈ val(X), xe is a total instantiation of its variables. By definition of PSDDs distribution,

Pr(xe) = ∑k
i=1 Ppi (xlel) ·Psi (xler) · θi . Now, remember that for each x, xlel realizes a unique prime, so this maximum is of

the form Ppi (xlel) ·Psi (xler) · θi for a unique 1 ≤ i ≤ k. Hence,

max
x∈val(X)

Pr(x, e) = max
1≤i≤k

max
x∈val(X)

Ppi (xlel) · Psi (xrer) · θi

= max
1≤i≤k

θi · [max
xl∈val(Xl)

Ppi (xlel)] · [max
xr∈val(Xr)

Psi (xrer)]
= max

1≤i≤k
θi · M A P (pi) · M A P (si) �

Proof of Theorem 2. Base case: Let n be a terminal node normalized for leaf vtree node v . Let X be the variable of leaf v
and x an instantiation of X . If n = X , on one hand � |= X and P X (�) = 1, on the other hand ⊥ �|= X and P X (⊥) = 0. Simi-
larly for n = ¬X . If n = (X : [α, β]), Pn(�) = α and Pn(⊥) = 1 − β , which are both strictly positive, and remember that this
node’s interpretation is �, so that both � and ⊥ trivially model the node. Induction step: Let v be an internal vtree node
and assume the statement of the theorem true for CSDD nodes normalized for v ’s descendant. Let n = ({(pi, si)}k

i=1, Kn) be
a decision node normalized for v . Let X and Y be the left respectively right variables of v . Now, for any instantiation xy of
XY:

Pn(xy) = min
P (XY)∈Kn(XY)

P (xy)

= min
Pn(XY)∈Kn(XY)

k∑
i=1

Ppi (x) · Psi (y) · θi

= min
[θ1,...,θk]∈Kn(P)

k∑
i=1

P pi
(x) · P si

(y) · θi .

Similarly, we can derive

Pn(xy) = max
[θ1,...,θk]∈Kn(P)

k∑
i=1

P pi (x) · P si (y) · θi .

We have that xy |= 〈n〉 if and only if y |= 〈s j〉 for the unique 1 ≤ j ≤ k such that x |= 〈p j〉. By induction hypothesis, this
happens if and only if P p j

(x) ·P s j
(y) > 0. This is equivalent to min[θ1,...,θk]∈Kn(P)

∑k
i=1 P pi

(x) ·P si
(y) · θi > 0 (observe that,

because y |= 〈si〉, si �= ⊥ and hence by definition θi is constrained to be strictly positive). Similarly xy �|= 〈n〉 if and only if

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 45
y �|= 〈s j〉 for the unique 1 ≤ j ≤ k such that x |= 〈p j〉. By induction hypothesis, this happens if and only if P p j (x) ·P s j (y) = 0.
By definition of j and by induction hypothesis, P pi (x) = 0 for all i �= j, making max[θ1,...,θk]∈Kn(P)

∑k
i=1 P pi (x) ·P si (y) · θi =

0. �
Proof of Theorem 3. If n is a terminal node, the theorem is true by definition of Algorithm 3 (the computation of Pn(e) is
immediate). Let n = ({(pi, si)}k

i=1, Kn(P)) be a decision node and assume that the theorem holds for n’s primes and subs. If
l and r are the left, respectively right sub-vtree of v , we have that:

Pn(e) = min
P (Z)∈Kn(Z)

P (e)

(1)= min
Pn(Z)∈Kn(Z)

k∑
i=1

Ppi (el) · Psi (er) · θi

(2)= min
[θ1,...,θk]∈Kn(P)

k∑
i=1

min
Ppi (Zl)∈Kpi

Ppi (el) · min
Psi (Zr)∈Ksi

Psi (er) · θi

(3)= min
[θ1,...,θk]∈Kn(P)

k∑
i=1

π(pi) · π(si) · θi

(1) is because optima are attained in extreme points, plus [9, Theorem 7]. In (2) we move the minimizations concerning
Ppi (el) and Psi (er) inside the sum. This can be done because these minimizations are done over two distinct CSs (the strong
extension of the sub-CSDD rooted at pi and the strong extension of the sub-CSDD rooted at si) and then, with the obtained
values, solve the LP over the CS Kn(P) attached to node n. Hence, the induction hypothesis applies in (3), knowing again
that the argument used in (1) applies to nodes pi and si , for all 1 ≤ i ≤ k. �
Proof of Theorem 4. Let n be a node normalized for a vtree node v in the input CSDD. If X does not occur in v , P (x, e) =
P (¬x, e) =P (e) for all P (X) ∈Kn(X). The result of the right hand side minimization is then (1 − 2μ) ·P (e), i.e., ρ

n
(μ).

Now assume that X occurs in v .
If v is a leaf, n is a terminal node. As optimal values are attained on the borders of the domain, the left hand side of

Equation (16) rewrites exactly as λn(μ). Hence, for a terminal node, the result of the right hand side minimization is �(n),
thus the base case is proved. Assume now that the Theorem is true for nodes normalized for v ’s sub-vtrees.

Consider a decision node n = ({(pi, si)}k
i=1, Kn(P)) (normalized for v) and assume that X occurs in the left sub-vtree of

v , vl , the case when X occurs in the right sub-vtree being mutatis mutandis the same. The right hand side of the equality
to be proven can be rewritten as

min
P (X)∈Kn(X)

[(1 − μ)P (x, e) − μP (¬x, e)]
(1)= min

Pn(X)∈Kn(X)
[(1 − μ)Pn(x, e) − μPn(¬x, e)]

(2)= min
Pn(X)∈Kn(X)

[
(1 − μ)

k∑
i=1

Ppi (x, el)Psi (er)θi − μ

k∑
i=1

Ppi (¬x, el)Psi (er)θi

]

= min
Pn(X)∈Kn(X)

[
k∑

i=1

[(1 − μ)Ppi (x, el) − μPpi (¬x, el)] · Psi (er) · θi

]

(3)= min
(θ1,...,θk)∈Kn(P)

[
k∑

i=1

min
Ppi (X l)∈Kpi (X l)

[
(1 − μ)Ppi (x, el) − μPpi (¬x, el)

] · min
Psi (Xr)∈Ksi (Xr)

Psi (er) · θi

]

(4)= min
(θ1,...,θk)∈Kn(P)

[
k∑

i=1

min
P (X l)∈Kpi (X l)

[(1 − μ)P (x, el) − μP (¬x, el)] · min
P (Xr)∈Ksi (Xr)

P (er) · θi

]

(5)= min
(θ1,...,θk)∈Kn(P)

[
k∑

i=1

π(pi) · σ si
(π(pi)) · θi

]

where equalities (1) and (4) are because optimal values are attained in extreme points of the strong extension, (2) is thanks
to Theorem [9, Theorem 6]. Equality (3) is because the strong extensions of pi and si are distinct, thus the optimization can
be performed separately. Note that here the singly connectedness assumption is necessary, as explained in the last part of
this section. Equality (5) is by induction hypothesis plus σ s ’s definition. �
i

46 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
Proof of Theorem 5. If n is a terminal, it is easy to see the correctness of the algorithm. Suppose that n is a decision node,
n = ({(pi, si)}k

i=1, Kn). For a given x ∈ val(X), xe is a total instantiation of its variables. Since the maximum on Kn is realized
on extreme points we can consider PSDDs probability distributions when computing the maximum. Remember that each
considered instantiation of X selects a unique branch 1 ≤ i ≤ k of n. With the same reasoning adopted in the proof of
Algorithm 2, we can argue that

max
x∈val(X)

max
P∈Kn

P (x, e) = max
1≤i≤k

max
x∈val(X)

max
Kn,i

θi · max
Kpi

Ppi (xlel) · max
Ksi

Psi (xrer)

= max
1≤i≤k

max
Kn,i

θi · [max
xl∈val(Xl)

max
Kpi

Ppi (xlel)] · [max
Ksi

max
xr∈val(Xr)

Psi (xrer)]

= max
1≤i≤k

max
Kn,i

θi · M(pi) · M(si) �

Proof of Theorem 6. Base case: Let n be a terminal node.

• If var(n) ∈ X:
– if n ∈ {X, ¬X}, then if x∗

v |= n the maximization clearly reduces to 1, while if x∗
v �|= n, the expression is not defined

and we refer to the convention;
– if n = (X : [l, u]): if x∗

v = �,

max
θ∈[l,u]

{Pn(�)

Pn(�)
,
Pn(⊥)

Pn(�)
} = max{ max

θ∈[l,u]
θ
θ
, max
θ∈[l,u]

1−θ
θ

} = max{1, 1−l
l },

otherwise, if x∗
v = ⊥,

max
θ∈[l,u]

{Pn(⊥)

Pn(⊥)
,
Pn(�)

Pn(⊥)
} = max{ max

θ∈[l,u]
1−θ
1−θ

, max
θ∈[l,u]

θ
1−θ

} = max{1, u
1−u }.

• If var(n) ∈ E: if e |= n, the fraction reduces to 1, while if e �|= n, again the expression is not defined hence we refer to
the convention.

Induction step: Let n = ((pi, si)
k
i=1, Kn(P)) be a decision node. If x∗

v ev �|= 〈n〉, V (n) = 1, in accord with the convention.
Assume now that x∗

v ev |= 〈n〉. Since x∗ is fixed, there is a unique 1 ≤ j ≤ k such that x∗
v,lev,l |= p j . Then (as usual, we can

perform the optimization on the extreme points of the strong extension)

max
xv∈val(Xv)

max
Pn∈Kn

Pn(xv ,ev)

Pn(x∗
v ,ev)

= max
Pn∈Kn

maxxv∈val(Xv) Pn(xv ,ev)

Pp j (x∗
vl ,evl) · Ps j (x∗

vr ,evr) · θ j

= max
Kn

max1≤i≤k θi maxxvl Ppi (xvl ,evl) · maxxvr Psi (xvr ,evr)

Pp j (x∗
vl ,evl) · Ps j (x∗

vr ,evr) · θ j

Now, for 1 ≤ i ≤ k, if i = j the above expression simplifies and becomes

max
Pp j ∈K

p j

maxxvl Pp j (xvl ,evl)

Pp j (x∗
vl ,evl)

· max
Ps j ∈K

s j

maxxvr Ps j (xvr ,evr)

Ps j (x∗
vr ,evr)

that is, by induction hypothesis,

V (p j) · V (s j).

If we fix a i �= j instead, the optimizations might be performed independently since the CSs above and below are distinct:

= max
Kn

θi maxxvl maxPpi ∈Kpi Ppi (xvl ,evl) · maxxvr maxPsi ∈Ksi Psi (xvr ,evr)

θ j · P p j
(x∗

vl ,evl) · P s j
(x∗

vr ,evr)

that is,

= max
Kn

θi · M(p j) · M(s j)

θ j · P p j
(x∗

vl ,evl) · P s j
(x∗

vr ,evr)
,

which completes the proof. �

L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48 47
Appendix B. CSDD quantification for Example 3

θ1 = P (¬X1 ∧ ¬X2) ∈
[

nθ1

n + s
,

nθ1 + s

n + s

]

θ2 = P ((X1 ∧ ¬X2) ∨ (¬X1 ∧ X2)) ∈
[

nθ2

n + s
,

nθ2 + s

n + s

]

θ3 = P (¬X3|¬X1 ∧ ¬X2) ∈
[

nθ3

nθ1 + s
,

nθ3 + s

nθ1 + s

]

θ4 = P (X1|(X1 ∧ ¬X2) ∨ (¬X1 ∧ X2)) ∈
[

nθ4

nθ2 + s
,

nθ4 + s

nθ2 + s

]

θ5 = P (X3|(X1 ∧ ¬X2) ∨ (¬X1 ∧ X2)) ∈
[

nθ5

nθ2 + s
,

nθ5 + s

nθ2 + s

]

θ6 = P (X4|(¬X1 ∧ ¬X2) ∧ X3) ∈
[

nθ6

nθ1 − nθ3 + s
,

nθ6 + s

nθ1 − nθ3 + s

]

θ7 = P (X4|(X1 ∧ ¬X2) ∨ (¬X1 ∧ X2) ∧ ¬X3) ∈
[

nθ7

nθ2 − nθ5 + s
,

nθ7 + s

nθ2 − nθ5 + s

]

where

nθ1 = n2 + n6 + n9

nθ2 = n0 + n1 + n4 + n5 + n7 + n8

nθ3 = n6

nθ4 = n0 + n5 + n8

nθ5 = n1 + n5

nθ6 = n2

nθ7 = n0 + n4

References

[1] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
[2] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cambridge University Press, 2009.
[3] D. Roth, On the hardness of approximate reasoning, Artif. Intell. 82 (1–2) (1996) 273–302.
[4] J. Kwisthout, H.L. Bodlaender, L.C. van der Gaag, The necessity of bounded treewidth for efficient inference in Bayesian networks, in: ECAI, vol. 215,

2010, pp. 237–242.
[5] C.P. de Campos, New complexity results for MAP in Bayesian networks, in: Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence, 2011, pp. 2100–2106.
[6] D. Lowd, P. Domingos, Learning arithmetic circuits, in: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, 2008, pp. 383–392.
[7] H. Poon, P. Domingos, Sum-product networks: a new deep architecture, in: 2011 IEEE International Conference on Computer Vision Workshops, ICCV

Workshops, IEEE, 2011, pp. 689–690.
[8] T. Rahman, P. Kothalkar, V. Gogate, Cutset networks: a simple, tractable, and scalable approach for improving the accuracy of Chow-Liu trees, in:

Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML-PKDD, 2014, pp. 630–645.
[9] D. Kisa, G. Van den Broeck, A. Choi, A. Darwiche, Probabilistic sentential decision diagrams, in: Proceedings of the Fourteenth International Conference

on the Principles of Knowledge Representation and Reasoning, 2014.
[10] R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, K. Kersting, Z. Ghahramani, Probabilistic deep learning using random sum-product networks,

preprint arXiv:1806 .01910, 2018.
[11] R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, X. Shao, K. Kersting, Z. Ghahramani, Random sum-product networks: a simple and effective

approach to probabilistic deep learning, in: Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, UAI, 2019.
[12] A. Choi, G.V. den Broeck, A. Darwiche, Tractable learning for structured probability spaces: a case study in learning preference distributions, in:

Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI, 2015, pp. 2861–2868.
[13] A. Choi, N. Tavabi, A. Darwiche, Structured features in naive Bayes classification, in: Proceedings of the 30th AAAI Conference on Artificial Intelligence,

AAAI, 2016, pp. 3233–3240.
[14] A. Choi, Y. Shen, A. Darwiche, Tractability in structured probability spaces, in: Advances in Neural Information Processing Systems, vol. 30, 2017,

pp. 3480–3488.
[15] Y. Shen, A. Choi, A. Darwiche, A tractable probabilistic model for subset selection, in: Proceedings of the 33rd Conference on Uncertainty in Artificial

Intelligence, 2017.
[16] P. Walley, Inferences from multinomial data: learning about a bag of marbles, J. R. Stat. Soc. B 58 (1) (1996) 3–34.
[17] F.G. Cozman, Credal networks, Artif. Intell. 120 (2000) 199–233.
[18] D. Mauá, F.G. Cozman, D. Conaty, C.P. de Campos, Credal sum-product networks, in: Proceedings of the Tenth International Symposium on Imprecise

Probability: Theories and Applications, 2017, pp. 205–216.
[19] D.D. Mauá, D. Conaty, F.G. Cozman, K. Poppenhaeger, C.P. de Campos, Robustifying sum-product networks, Int. J. Approx. Reason. 101 (2018) 163–180.

http://refhub.elsevier.com/S0888-613X(20)30184-5/bibAFF5E1A32643ABAEBBD83FDDE5F3D4AAs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibBE1FDCE09DB67D5277067CF730034BB8s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibAC7F6B792613DAFA51CD5608334DA5D0s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib75CC7A818E3568EC12F88E16967E5A6Cs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib75CC7A818E3568EC12F88E16967E5A6Cs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib66344005108847995CAF927C12A91B4As1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib66344005108847995CAF927C12A91B4As1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib77C1FDD80C91593FF851E71AE3865FCBs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibEF75820A16C1B1E15CF73C7CADBCB55Ds1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibEF75820A16C1B1E15CF73C7CADBCB55Ds1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9029C1AE6FF645E4398A3652CA2745F9s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9029C1AE6FF645E4398A3652CA2745F9s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib15842B4BD05555E9A1E3158B43500C57s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib15842B4BD05555E9A1E3158B43500C57s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibA5D6A2C635B7CE892BCC88FD5150E962s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibA5D6A2C635B7CE892BCC88FD5150E962s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibE756F6AAFAFDEF4DEBDB5E49BCBD3F11s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibE756F6AAFAFDEF4DEBDB5E49BCBD3F11s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib32234519C88D862C5DF3934BD134AA9Cs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib32234519C88D862C5DF3934BD134AA9Cs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibDE98DF916C14108FDE2085DFD5F516B6s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibDE98DF916C14108FDE2085DFD5F516B6s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib1755347E5F6A762B84A3F6512A3E4E53s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib1755347E5F6A762B84A3F6512A3E4E53s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib83E8B3D3E01DFA7592DA027760EF8629s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib83E8B3D3E01DFA7592DA027760EF8629s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib970B5D0258926E1FF2270968DB2862EAs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibE8F784F7C50F61F820C6157E375A83E6s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9A5FD89553FD208854B0A714781FAE5Es1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9A5FD89553FD208854B0A714781FAE5Es1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibEC136C532EDBC3AA3598F430C49F39EDs1

48 L. Mattei et al. / International Journal of Approximate Reasoning 125 (2020) 26–48
[20] J.V. Llerena, D.D. Mauá, Robust analysis of MAP inference in selective sum-product networks, in: Proceedings of the 11th International Symposium on
Imprecise Probabilities: Theories and Applications, 2019, pp. 430–440.

[21] R. Peharz, R. Gens, P. Domingos, Learning selective sum-product networks, in: Workshop on Learning Tractable Probabilistic Models, 2014.
[22] R. Peharz, R. Gens, F. Pernkopf, P. Domingos, On the latent variable interpretation in sum-product networks, IEEE Trans. Pattern Anal. Mach. Intell.

(2016) 1–14.
[23] D. Conaty, D.D. Mauá, C.P. de Campos, Approximations complexity of maximum a posteriori inference in sum-product networks, in: Proceedings of the

33rd Conference on Uncertainty in Artificial Intelligence, 2017, pp. 322–331.
[24] L. Mattei, D. Soares, A. Antonucci, D. Mauà, A. Facchini, Exploring the space of probabilistic sentential decision diagrams, in: 3rd Workshop of Tractable

Probabilistic Modeling, 2019.
[25] A. Darwiche, SDD: a new canonical representation of propositional knowledge bases, in: Proceedings of the Twenty-Second International Joint Confer-

ence on Artificial Intelligence, IJCAI’11, AAAI Press, 2011, pp. 819–826.
[26] J. Bekker, J. Davis, A. Choi, A. Darwiche, G. Van den Broeck, Tractable learning for complex probability queries, in: Advances in Neural Information

Processing Systems, 2015, pp. 2242–2250.
[27] G. de Cooman, F. Hermans, A. Antonucci, M. Zaffalon, Epistemic irrelevance in credal nets: the case of imprecise Markov trees, Int. J. Approx. Reason.

51 (9) (2010) 1029–1052.
[28] A. Choi, A. Darwiche, Dynamic minimization of sentential decision diagrams, in: Proceedings of the Twenty-Seventh AAAI Conference on Artificial

Intelligence, 2013.
[29] D.D. Mauá, A. Antonucci, C.P. de Campos, Hidden Markov models with set-valued parameters, Neurocomputing 180 (2016) 94–107.
[30] M. Zaffalon, The naive credal classifier, J. Stat. Plan. Inference 105 (1) (2002) 5–21.
[31] M. Zaffalon, G. Corani, D. Mauá, Evaluating credal classifiers by utility-discounted predictive accuracy, Int. J. Approx. Reason. 53 (8) (2012) 1282–1301.

http://refhub.elsevier.com/S0888-613X(20)30184-5/bib54908A5C0CF44C8CC91C82087B5A3782s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib54908A5C0CF44C8CC91C82087B5A3782s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9BF18D329FFC2102ABD1BC5A8B837784s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib963B8712DA1874F27024F175B95F39D7s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib963B8712DA1874F27024F175B95F39D7s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib41ACF2DC58BD53BDD6258B5911077D6Ds1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib41ACF2DC58BD53BDD6258B5911077D6Ds1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibE1616F6CAA3C4BB207576EBFFB6ED7D8s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibE1616F6CAA3C4BB207576EBFFB6ED7D8s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibB662CAF49EB9B9685170A1A4A29B53EDs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibB662CAF49EB9B9685170A1A4A29B53EDs1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib1F0D98AFF9848B90B5185E686ED11B8Ds1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib1F0D98AFF9848B90B5185E686ED11B8Ds1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9F23509AD75DE2AC3211FF9422477AB3s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib9F23509AD75DE2AC3211FF9422477AB3s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib0C63B48F22B002C338FFB77566A9D37As1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib0C63B48F22B002C338FFB77566A9D37As1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib8FAC4E3C55AA1C7E2EBD5F9A1AF26106s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bib0C1977AB149E29CEDA6D0ACF8E2965A2s1
http://refhub.elsevier.com/S0888-613X(20)30184-5/bibC8009476A13FC9FBC08235BE31F431C3s1

	Tractable inference in credal sentential decision diagrams
	1 Introduction
	2 A demonstrative example
	3 Background
	3.1 Credal sets
	3.2 Sentential decision diagrams
	3.3 Probabilistic sentential decision diagrams
	3.4 Inferences in PSDDs

	4 Credal sentential decision diagrams
	5 Marginal inference in CSDDs
	6 Conditional queries in CSDDs
	7 Robustness of MAP inference in PSSDs
	8 Experiments
	9 Conclusions
	Appendix A Proofs
	Appendix B CSDD quantification for Example 3
	References

