
International Journal of Approximate Reasoning 125 (2020) 218–239
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

The joy of Probabilistic Answer Set Programming: Semantics,
complexity, expressivity, inference

Fabio Gagliardi Cozman a,∗, Denis Deratani Mauá b

a Center for Artificial Intelligence (C4AI) and Escola Politécnica, Universidade de São Paulo, Brazil
b Center for Artificial Intelligence (C4AI) and Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2019
Received in revised form 14 May 2020
Accepted 17 July 2020
Available online 31 July 2020

Keywords:
Logic programming
Answer Set Programming
Probabilistic programming
Credal sets
Computational complexity
Descriptive complexity

Probabilistic Answer Set Programming (PASP) combines rules, facts, and independent
probabilistic facts. We argue that a very useful modeling paradigm is obtained by adopting
a particular semantics for PASP, where one associates a credal set with each consistent
program. We examine the basic properties of PASP under this credal semantics, in
particular presenting novel results on its complexity and its expressivity, and we introduce
an inference algorithm to compute (upper) probabilities given a program.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Combinations of probabilities and rules have been investigated for decades under the banner of “probabilistic logic
programming”. Most research and practice has gradually concentrated on Sato’s distribution semantics and its variants. The
key idea in Sato’s distribution semantics is to have probabilities associated with a set of independent events in such a way
that a unique probability measure is induced over all interpretations of ground atoms.

However, if we try to apply Sato’s strategy to general answer set programs, the distribution semantics fails to guarantee
the specification of a single probability distribution over ground atoms under the usual two-valued logic. One possible
solution is to extend Sato’s semantics so that sets of probability measures can be specified by answer set programs.

The main goal of this paper is to show that Probabilistic Answer Set Programming (PASP) offers an elegant and enjoyable
modeling language when coupled with a particular semantics based on sets of probability measures. As such sets are often
referred to as credal sets, we refer to the latter extended semantics as the credal semantics. Instead of looking at the credal
semantics of PASP merely as a way to lend meaning to pathological logic programs that defy Sato’s semantics, here the
credal semantics is viewed as a probabilistic programming paradigm that goes beyond existing modeling languages. In short,
we propose a programming style where one can ask questions about probability distributions satisfying sets of constraints.
A similar movement happened some twenty years ago in logic programming, when it became clear that the stable model
semantics was not just a strategy to handle pathological programs, but in fact an attractive programming paradigm in itself.

We also examine some key properties of PASP. We develop analogues to combined and data complexity that take into
account the probabilistic character of PASP. We derive the descriptive complexity of PASP, proving in essence that it captures

* Corresponding author.
E-mail address: fgcozman@usp.br (F.G. Cozman).
https://doi.org/10.1016/j.ijar.2020.07.004
0888-613X/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ijar.2020.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2020.07.004&domain=pdf
mailto:fgcozman@usp.br
https://doi.org/10.1016/j.ijar.2020.07.004

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 219
the class PP�
p
2 ; that is, the class of polynomial nondeterministic Turing machines that count accepting paths with the

support of NPNP oracles.
Finally, we introduce an inference algorithm that calculates upper probabilities given a PASP program. The algorithm

uses the fact that answer set programs can be translated into satisfiability problems, and builds upon existing counting
techniques for extended satisfiability problems.

The paper is organized as follows. Section 2 reviews basic concepts of logic programming, and fixes some needed termi-
nology and notation. Section 3 surveys the relevant literature on probabilistic logic programming from a particular historical
perspective. Section 4 discusses the proposed programming paradigm. Section 5 examines properties of PASP and Section 6
presents our inference algorithm. A few concluding comments are collected in Section 7.

2. A bit of Answer Set Programming

In this section we present relevant syntactic and semantic notions related to Answer Set Programming (ASP). More
detailed technical discussion can be found in Ref. [28].

In this paper we employ atoms, where an atom is written as r(t1, . . . , tk) with r a predicate of arity k and each t j either
a constant or a logical variable. We do not use functions in this paper. An atom without variables is a ground atom. A literal
is either an atom r(t1, . . . , tk) where r is a predicate of arity k and each ti is either a constant or a logical variable, or an
atom preceded by ¬ (then we say the atom is strongly negated; the logical value of the expression is given by usual Boolean
negation).

An ASP program is a set of rules such as

H1 ∨ · · · ∨ Hm :− S1, . . . , Sn.,

where each Hi is a literal, each S j is either a literal A or a literal A preceded by not (that is, not A), and m + n > 0. The
expression H1 ∨ · · · ∨ Hm is called the head of the rule, and S1, . . . , Sn is the body; each Si is called a subgoal. For instance,
here is a rule meaning that if some individual X is a node that is not known to be barred, then X is red or green or blue:

red(X)∨green(X)∨blue(X) :− node(X),not barred(X)..

If a rule is such that m ≤ 1, it is said to be nondisjunctive; if m = 1 it is said to be normal. A rule with m = 0 is called a
constraint. An example of constraint is:

:− edge(X, Y), red(X), red(Y).,

meaning that two adjacent nodes cannot both be colored red. A normal rule with n = 0 is called a fact, and instead of
writing H :− ., we just write H ..

The dependency graph of a program is a graph where each grounded atom is a node, and where, for each grounded rule,
there are edges from the atoms in the body to the atoms in the head. The edge is negative if the atom is the body is
preceded by not (for some rule), and is positive otherwise. An acyclic program is a program with an acyclic dependency
graph.

A program with normal rules is said to be normal. A program that is normal and contains no not and no ¬ is said to be
definite. A program is stratified if and only if there is no cycle in the dependency graph that contains a negative edge (that
is, an edge that goes through a negation). Every definite program is stratified. A propositional program is a program without
logical variables.

The Herbrand base of a program is the set of ground literals (ground atoms and their strongly negated versions) that
can be produced by combining all predicates and constants in the program. An interpretation is a consistent subset of the
Herbrand base of the program (that is, it does not contain an atom and its strong negation). A ground literal is true (resp.,
false) with respect to an interpretation when it is (resp., is not) in the interpretation. Similarly, a ground subgoal A, where
A is a ground literal, is true (resp., false) with respect to an interpretation when A is (resp., is not) in the interpretation,
while not A is true (resp., false) when A is not (resp., is) in the interpretation. It is worth examining the semantics of not:
intuitively, not A means that literal A is not known explicitly to be true (in fact we may have not ¬A where A is an atom,
meaning that atom A is not known explicitly to be false). A ground rule is satisfied by an interpretation if and only if either
some of the subgoals in the body are false or all the subgoals in the body and some of the literals in the head are true with
respect to the interpretation. In that definition we assume that the head of a constraint is never satisfied (i.e., a constraint
is satisfied if and only if some of its subgoals are false).

A model of a program is an interpretation that satisfies all the rules of the program. A model I of a program is minimal
if and only if there exists no model J of the program such that J ⊂ I .

Every definite program has a unique minimal model; hence it is natural to take this model as the semantics of the
program. With negation, there may be no unique minimal model, and there are several proposed semantics [18].

The stable model semantics is based on reducts, defined as follows. Given a program P and an interpretation I , their
reduct PI is the propositional program obtained by first removing all grounded rules with not A in their body and A ∈ I ,
and then by removing each subgoal not A from all remaining grounded rules. A stable model of P is an interpretation I

220 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
that is a minimal model of the reduct PI . The set of stable models is the semantics of P. Note that a program may fail to
have a stable model: an example is the single-rule program A :− not A..

Intuitively: if we think of an interpretation as the set of atoms that are assumed true/false, then the stable models of a
program are those interpretations that, once assumed, are again obtained by applying the rules of the program. The stable
models of a logic program are its answer sets.

Answer sets were proposed as a new programming paradigm in 1999 [68,78], where one writes down rules and con-
straints that characterize a problem in such a way that answer sets are solutions of the problem. Solvers that find answer
sets for ASP are now popular, usually operating within a “Guess & Check” methodology. The idea is to use disjunctive rules
to guess solutions nondeterministically, and constraints to check whether interpretations are actually solutions [48]. An
example should illustrate the idea.

Suppose we are given a graph, encoded by specifying its nodes and edges, say node(n1)., node(n2)., . . . , edge(n1, n2).,
The following program asserts that each node must have one color, and that no two adjacent nodes may share the same
color:

red(X) ∨ green(X) ∨ blue(X) :− node(X).
:− edge(X, Y), red(X), red(Y).
:− edge(X, Y),green(X),green(Y).
:− edge(X, Y),blue(X),blue(Y)..

Any answer set for the above program is a three-coloring; failure to have an answer set signals failure to have a three-
coloring. One can think of the program as first guessing a color for each node, and then checking whether the required
constraint is respected.

Popular ASP packages have additional features such as aggregates [29]. We avoid these features here as they would take
us too far.

3. From the origins of Prolog to the credal semantics

In this section we review some of the history behind probabilistic logic programming, emphasizing design decisions that
have gradually moved in the direction of the credal semantics. The reader who wishes to skip historical matters may jump
to the next section.

3.1. Mixing logic programs and uncertainty

A large part of logic programming, whose origins can be traced back to the sixties [55], is based on rules such as:

H ← B1 ∧ B2 ∧ · · · ∧ Bn, (1)

where all H and Bi are atoms. Programs with rules such as Expression (1) have a single minimal model.
During the seventies rules were enlarged with negation as failure, where each atom Bi in Expression (1) may appear

negated as not Bi . There was then a long debate on the best semantics to adopt in the presence of negation as failure.
Another relevant feature of the seventies was the gradual development of expert systems, many of them based on

rules. One notable expert system was MYCIN, where “certainty factors” were coupled to if-then rules, on the grounds that
probability theory would face difficulties against scarce data and uncertain information [94].1 The same term “certainty
factor” was used by Shapiro in 1983 to attach numbers to atoms in Prolog-style rules [93], later to be given a probabilistic
interpretation [52]. Say for instance that a single rule A ← B ∧ C is present with both B and C getting 0.5; then the rule
assigns 0.25 to A.

During the eighties various facets of uncertainty were captured by “annotated” extensions of logic programming, often
with connections to possibilistic and fuzzy logics [53,100]. The typical annotated logic rule has syntax:

H : ν ← B1 : μ1 ∧ B2 : μ2 ∧ · · · ∧ Bn : μn, (2)

with H and each Bi as before, perhaps with negation in the body, while ν and each μi are annotations. Usually the
annotations are numbers, but many other possibilities have been contemplated; for instance, annotations may be intervals
carrying belief and plausibility as prescribed by Dempster-Shafer theory [105].

At the cost of sacrificing some chronological consistency, in the remainder of this section we review a long line of
proposals that mix rules and probability intervals.

A notable approach by Ng and Subrahmanian appeared in 1992 [76] by pursuing interval-valued annotations. They
considered annotated clauses as in Expression (2), but where annotations are probability intervals. If A : [0.2, 0.3] is an

1 The semantics of certainty factors generated much debate and eventually was linked to Dempster-Shafer theory [40], where each event is associated
with an interval between its belief and its plausibility. The belief functions employed in Dempster-Shafer theory are infinitely monotone Choquet capacities,
objects that will be important later in this paper.

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 221
annotated atom, the intended reading is “The probability of A belongs to the interval [0.2, 0.3]”. To use an example by Ng
and Subrahmanian, the following annotated clause

path(X, Y) : [0.85,1] ← connect(X, Z) : [1,1] ∧ path(Z , Y) : [0.75,1]
says that if there is a connection between X and Z , and a path from Z and Y with probability at least 0.75, then there is a
path between X and Y with probability at least 0.85. Ng and Subrahmanian studied the models of such annotated clauses
and techniques to compute probability intervals, in work that was later expanded in many directions [95].

Lakshmanan and Sadri proposed a somewhat intimidating syntax for rules [56]:

H
〈[a,b],[c,d]〉←−−−−−− B1 ∧ B2 ∧ · · · ∧ Bn,

where [a, b] conveys the “belief” in favor of H and [c, d] conveys the “doubt” against H , both of them endowed with
probabilistic meaning. A more recent effort by Dekhtyar and Subrahmanian investigated hybrid probabilistic programs, where
one can specify relations of dependence or independence as well as operations to combine probabilities in annotated rules
[23].

We must also mention the probabilistic logic programming scheme proposed by Lukasiewicz [63], where the syntax
(H |B)[a, b] is used to indicate that the conditional probability of H given B is in [a, b]. Thus each “rule” is in fact a
constraint on conditional probabilities. Similarly, another research program that started during the nineties [42,51] looked
into rules of the form

H
[a,b]←−− B1 ∧ B2 ∧ · · · ∧ Bn,

where a and b are interpreted respectively as lower and upper bounds on conditional probabilities for the head given
the body. That work emphasized independence relations and connections with Bayesian networks (eventually investigating
Bayesian networks endowed with probability intervals [96]).

3.2. The path to the distribution semantics and its close relatives

Dantsin proposed in 1990 to divide a logic program in two parts [17]. The first part consists of a set of rules as Expression
(1), enlarged with negation as failure. The second part consists of facts that are associated with probabilities (referred to
as uncertain clauses). At the time there was considerable debate over the semantics of negation, thus to simplify matters
Dantsin assumed that clauses were stratified.2 Dantsin showed that the maximum entropy distribution over uncertain facts
is a product measure that makes all uncertain facts independent (Dantsin adopted maximum entropy as suggested by
Nilsson in the context of probabilistic logic [79]). This single product probability measure in turn induces a distribution
over all ground atoms, given that the rules are stratified and thus induce a single truth-value assignment over the (non-
uncertain) atoms. Hence every program within Dantsin’s guidelines specifies a single probability measure over all ground
atoms.

Poole proposed, in 1991, a language consisting of rules and assumables, where an assumable is an atom associated with
a probability value [81]. The assumables are taken to be independent, thus a product probability measure is imposed over
them. Poole shows that such a language can specify Bayesian networks, in some cases producing very natural descriptions.
This scheme was refined by Poole in a very influential 1993 paper, with added material on abduction, explanations, cau-
sation [82].3 A critical decision in Poole’s original proposal was to focus on sets of rules where dependencies over atoms
are acyclic (hence stratified), thus guaranteeing that any selection of assumables induces a single minimal model over all
ground atoms. Consequently, the product probability measure over assumables induces a single probability measure over all
ground atoms. Consider a trivial example, written in a simple syntax. Suppose we have assumables A, B , C with associated
probabilities

P (A) = 0.2, P (B) = 0.4, P (C) = 0.6,

and rules

D ← A ∧ B and D ← B ∧ C .

Then D is true whenever A and B are true or B and C are true; that is, P (D) = 0.2 ×0.4 +0.4 ×0.6 −0.2 ×0.4 ×0.4 ×0.6 =
0.3008.

Similar ideas were pursued almost simultaneously by Fuhr and by Sato.

2 We discuss stratified programs later; for now it suffices to say that a stratified program has a single minimal model that assigns either true or false to
every ground atom.

3 Recent work has returned to abduction techniques in the context of probabilistic logic programming [98].

222 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
Fuhr’s Probabilistic Datalog4 [33] used stratified rules and allowed for additional ground facts to be associated with
probabilities such as

0.9 indterm(d1,db).

Fuhr assumes that these facts are independent, so they behave as Dantsin’s uncertain facts and as Poole’s assumables, thus
inducing a single probability measure over all interpretations of ground atoms.

Likewise, Sato proposed to have two distinct sets of sentences [90]. One of them consists of usual rules. The other con-
sists of random facts that are atoms associated with probability values. Sato’s distribution semantics prescribes the following
interpretation. Each random fact is associated with a switch; these switches are independent and they select one of a set
of associated random facts with its prescribed probability. Thus we have a product probability measure over selections of
random facts. For each such selection, we obtain a complete logic program (selected facts plus original rules). Thus the
product probability measure over switches induces a probability measure over programs. As Sato did not use negation,
each realization of random facts produces a single minimal model, hence any probabilistic logic program induces a single
probability measure. Sato implemented his distribution semantics in the popular PRISM package [91], and his ideas were
gradually adopted by most of the related literature.

It is perhaps fair to say that Dantsin, Poole, Fuhr, and Sato proposed the same overall strategy to guarantee that a
probabilistic logic program specifies a single probability measure. However, to guarantee uniqueness they employed different
assumptions; Sato discarded negation, while Poole demanded acyclicity, and Dantsin and Fuhr required stratification.

3.3. Probabilistic relational models and probabilistic inductive logic programming

The nineties also witnessed a growing, and eventually explosive, interest in probabilistic models specified by relational
means, with particular interest in enlarging Bayesian networks with the ability to handle uncertainty over relations and
individuals. Starting from template-based languages [5,37,45,66,106], many specification schemes were devised by import-
ing features of first-order logic. The term “Probabilistic Relational Model” (PRM) was coined [32,54]; related specification
languages were variously diagramatic [44] or textual, sometimes relying on logic programming — rules were used primarily
as template specification devices [11,16,30,38,50]. There are also useful languages based on functional programming [39,46]
that are less closely related to the topic of this paper. The vast ensuing literature was united in one purpose: to find ways
to specify a single probability distribution, preferably one that could be viewed as a Bayesian or a Markov network, from a
set of predicates and individuals. Recently there have been efforts to analyze complexity of such languages in an abstract
manner [14]. There was particular excitement around learning techniques for these models. Several excellent surveys about
that material are available, some in book format [12,36,49,71,85,99].

Interest in learning probabilistic logic programs also surged after 1995, often under the banner of “Probabilistic Inductive
Logic Programming”. Many such learning techniques gravitated around the distribution semantics, while others contem-
plated alternative semantics based on probabilities over proofs. Again the literature is vast but there are excellent surveys
available, several in book format [20,21,88,89].

As a digression, we mention an idiosyncratic proposal that appeared in the mid-nineties: Ngo and Haddawy’s combi-
nation of annotated rules and probabilistic relational assessments [77], where one can use probabilistic sentences of the
form

(P (H0|H1, . . . , Hm) = α) ← B1 ∧ B2 ∧ · · · ∧ Bn,

where each Hi is (in essence) an atom, and each B j is (in essence) an atom possibly preceded by negation [77]. Intuitively,
the probabilistic sentence reads “if the context given by the conjunction B1 ∧ ... ∧ Bn holds, then the conditional probability
for H0 holds”. They introduced assumptions of independence and combining functions to merge information from two or
more rules with identical heads and non-independent bodies. The proposal was very rich and required heavy machinery to
produce inferences.

3.4. The evolution and the challenges of the distribution semantics

Through the more than twenty years of the distribution semantics, several languages have been proposed and several
implementations have been released. (During that time, Answer Set Programming matured, first through the consensus over
the semantics for negation [34,101], then over disjunctive programs [72], and also over additional features such as strong
negation [28].)

A language that emerged around 2007, and whose conventions and syntax we later adopt, is ProbLog [31]. ProbLog has
been implemented in a freely available package with excellent interface and state-of-art inference algorithms for stratified
probabilistic logic programs.

4 Datalog does not allow functions. As noted already, we do not allow for functions in this paper.

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 223
Another example of evolution within the distribution semantics is the language of Logic Programs with Annotated Dis-
juctions (LPADs), where a rule is written in the form [103]:

H1 : ν1; H2 : ν2; . . . ; Hm : νm ← B1 ∧ B2 ∧ · · · ∧ Bn,

where all Hi and B j are as before (each B j may be preceded by negation), and the νi are probability values that add
up to one. The interpretation is simple: if the body is satisfied, then an atom in the head is selected with the associated
probability. And despite its apparent distance from previous languages, LPADs can be translated into ProbLog, thus satisfying
the distribution semantics [87]. It is not necessary to go over other extensions here, specially because the excellent textbook
by Riguzzi [87] presents a detailed picture of the state-of-art in probabilistic logic programming based on the distribution
semantics.

However, despite all of this progress, the distribution semantics still has a weak spot. For the distribution semantics to
yield a probability measure we must have a language such that any realization of random facts produces a logic program
with a single minimal model. If one has rules that contain negation and that are not stratified, a program may have many
minimal models, or no model; then one cannot generate a single probability measure. Riguzzi reserves the adjective “non-
sound” for probabilistic logic programs that, for at least one realization of the random facts, have more than one or no
minimal models.

Refined assumptions or techniques have been proposed to go beyond acyclic and stratified logic programs [43,83,84,86,
91,92], either by keeping restrictions that avoid the “non-sound” status, or by resorting to three-valued semantics. In this
latter scheme, we should allow three truth-values to be associated with atoms: “true”, “false”, “undefined”. The extent to
which one can make sense of the mixture between probabilities and undefined values is unclear [13]. We prefer not to
follow this route.

Matters get more complicated for the distribution semantics when one considers disjunctive heads. There is overwhelm-
ing support in favor of answer set semantics for disjunctive heads, and even the simplest logic programs with disjunctive
heads yield several answer sets. Thus a direct extension of Sato’s semantics to Answer Set Programming seems elusive.

There are a few formalisms that deal with several answer sets per realization of random facts by somehow selecting one
probability measure over the answer sets. This idea is pursued in the P-log language [6], where a uniform distribution is
adopted over answer sets whenever more than one answer set is produced. Another strategy is adopted by the language
LPMLN , where a unique Markov random field is always generated over all ground atoms [58,59]. The challenge there, of
course, is to justify the selection of a particular probability measure. The PrASP language, a flexible formalism that even
allows first-order sentences and interval-valued probabilistic rules, employs maximum entropy to select a single distribution
[74]. The use of PrASP to represent a variety of scenarios has been explored using a full-fledged implementation [75].

3.5. Semantics based on credal sets

The semantics for logic programs (with disjunctive heads, negation, cycles) we explore in this paper comes from a
proposal by Lukasiewicz [64,65]. The idea is simple: if a probabilistic logic program is such that it has more than a minimal
model for some realization of the random facts, we simply build the credal set consisting of all possible distributions
induced by the product measure over random facts. An example is perhaps the best way to clarify this idea [13, Example
9]; we formalize the credal semantics later.

Example 1. Suppose we have a random fact A associated with probability 0.3, and rules

S :− not W , not A., W :− not S..

This logic program is not stratified and it fails to have a distribution semantics. With probability 0.3, A is included in the
program; using the stable model semantics defined later, the resulting logic program has a single model where W is true
and S is false. And with probability 0.7, A is not included in the program and is false; then we get two models, one where
W is true and S is false, and another where W is false and S is true. Thus P (A = true) = 0.3 but P (W = true) ∈ [0.3, 1]
and P (S = true) ∈ [0, 0.7]. In fact all probability measures that satisfy both the probabilistic fact and the rules can be
parameterized as

P (A = true) = 0.3, P (W = true) = 0.3 + 0.7α, P (S = true) = 0.7(1 − α),

for α ∈ [0, 1]. �
This semantics was referred to simply as the “stable model” semantics by Lukasiewicz, but this is perhaps confusing as

the answer set semantics is associated with (pure) logic programs. We instead use “credal semantics”, inspired by the term
“credal set” [60].

We have previously studied the complexity of inferences under the credal semantics [13]; in that investigation we have
studied the credal semantics under many features of Answer Set Programming, such as disjunctive heads, strong negation,
and even aggregates [69].

224 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
Despite the flexibility of the credal semantics, one might ask whether it is only a technical device to lend meaning to
pathological probabilistic logic programs. The main purpose of this paper is to show that the credal semantics allows one
to specify and to solve interesting problems.

To conclude this section, we note that related interest in credal sets can be found in recent literature; for instance,
Michels et al. [70] consider a language whose semantics also relies on credal sets, even though they are built in different
ways. Similarly, Antonucci and Facchini [1] enlarge Poole’s language to allow for more general specification, this way obtain-
ing a semantics based on credal sets. An even more ambitious language is explored by Dekhtyar and Dekhtyar [22] as they
in essence combine Ng and Subrahmanian’s annotated logic [76] with disjunctive heads — thus obtaining very general sets
of probability measures as semantics.

4. The joy of Probabilistic Answer Set Programming

In this section we explore Answer Set Programming enriched with the idea that probabilities are associated with a
selected number of facts. We adopt the conventions and syntax of the ProbLog package [31]. Thus we refer to the facts
associated with probabilities as probabilistic facts; they in essence correspond to Sato’s random facts.

A probabilistic fact consists of an atom A associated with a probability α, assumed to be a rational number in [0, 1]; the
probabilistic fact is written as follows:

α :: A..

A probabilistic fact may contain logical variables; for instance we may write 0.25 :: edge(X, Y).. If we then have constants
node1 and node2, the latter probabilistic fact can be grounded into

0.25 :: edge(node1,node1)., 0.25 :: edge(node1,node2).,
0.25 :: edge(node2,node1)., 0.25 :: edge(node2,node2)..

Probabilistic Answer Set Programming (PASP) deals with programs consisting of probabilistic facts, probabilistic facts, and
rules. In ProbLog, the interpretation of the probabilistic fact α :: A. is as follows: with probability α, the probabilistic fact is
replaced by the fact A.; with probability 1 − α, the probabilistic fact is simply removed from the program. This semantics
induces a probability distribution over logic programs.

However, a different semantics for probabilistic facts is adopted in this paper, where:

• we add A. to the program with probability α; and
• we add ¬A. to the program with probability 1 − α.

We discuss the rationale for this semantics in Section 4.3.
So, take the set of probabilistic facts of the program of interest, and ground them as needed to obtain a set of ground

probabilistic facts F = {αi :: Ai .}i∈I . A total choice θ is a subset of these latter probabilistic facts. Once we collect the facts
from θ and the strongly negated facts from F\θ , and add them to the facts and rules of the original program, we obtain
an ASP program. So, if we have N ground probabilistic facts, we have 2N total choices, and we thus have 2N possible ASP
programs. The remaining bit is to define the probability of each total choice (hence the probability that each ASP program
is generated), but this is simple enough: ground probabilistic facts are supposed stochastically independent, hence

P (θ) =
⎛
⎝ ∏

i:(αi ::Ai)∈θ

αi

⎞
⎠
⎛
⎝ ∏

i:(αi ::Ai)/∈θ

(1 − αi)

⎞
⎠ . (3)

Now say that a PASP program is consistent if and only if there is at least one answer set for the logic program generated
by each total choice of probabilistic facts.

Definition 1. A probability model for a consistent PASP program is a probability measure P over interpretations of the ground
atoms of the program, such that for each total choice θ we have P (θ) given by Expression (3) and P (·|θ) a probability
distribution over the answer sets induced by θ .

Definition 2. The credal semantics of a PASP program is the credal set of all its probability models.

Under the credal semantics we cannot necessarily associate each ground atom A with a sharp probability value. Instead,
we can associate A with a lower probability P (A) and an upper probability P (A). The lower probability is the infimum over
all probability values for A, for all possible probability models; likewise, the upper probability is the supremum over these
probability values.

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 225
θ2

θ1

.

.

.

Fig. 1. The credal semantics. The set of total choices is shown to the left; there is a single product probability measure over them. Each total choice defines
an ASP program that maps to a set of answer sets, shown to the right: total choice θ1 maps to three answer sets, θ2 to two answer sets, and so on.

0.01 :: trip. 0.5 :: smoking.
tuberculosis :− trip,a1. 0.05 :: a1.
tuberculosis :− not trip,a2. 0.01 :: a2.
cancer :− smoking,a3. 0.1 :: a3.
cancer :− not smoking,a4. 0.01 :: a4.
or :− tuberculosis. or :− cancer.
test :− or,a5. 0.98 :: a5.
test :− not or,a6. 0.05 :: a6.

trip smoking

tuberculosis cancer

or

test

Fig. 2. Left: An acyclic PASP program, based on a popular Bayesian network [57]. Right: the acyclic dependency graph of the program (except auxiliary
predicates); the graph is also the structure of the corresponding Bayesian network.

The following result will be useful later.5 Basically, it clarifies the structure of the credal semantics by connecting it with
the theory of infinitely monotone Choquet capacities [2,73].

Theorem 1. Suppose we have a PASP program whose semantics is a credal set K. Then: 1) the lower probability with respect to K is
an infinitely monotone Choquet capacity; 2) K is the largest credal set dominating this capacity; 3) K is closed and convex.

Proof. Refer to Fig. 1: we have a space endowed with a single probability distribution, and a multi-valued mapping into
a second space. Results from the theory of Choquet capacities then lead to the desired representation through credal sets
[2,73]. �

One valuable consequence of Theorem 1 is that we immediately obtain expressions for lower/upper conditional proba-
bilities by applying well-known results from the theory of infinitely monotone Choquet capacities. We have, for events A
and B:

P (A|B) = P (A∩ B)

P (A∩ B) + P (Ac ∩ B)
,

P (A|B) = P (A∩ B)

P (A∩ B) + P (Ac ∩ B)
.

These expressions hold because with the multi-valued mapping in the proof of Theorem 1 we can place as much probability
as possible in A ∩ B by removing as much probability as possible from Ac ∩ B (and vice-versa). In fact, P (A∩B) +
P

(
Ac ∩B

)
is the value of P (B) for the probability measure P that attains P (A|B), a result we use later.

In the remainder of this section we show how the credal semantics of PASP can be used to represent many nontrivial
probabilistic problems. We start with nondisjunctive acyclic programs, a very simple and well-known case. We then look at
nondisjunctive stratified ones, and then face the general case.

4.1. Nondisjunctive acyclic programs

The short nondisjunctive PASP program in Fig. 2 is acyclic. Because it is acyclic, the propositional program in Fig. 2 is
quite easy to read, as its probabilistic facts and rules translate directly into probabilities. The probabilities are as follows:

P (trip = 1) = 0.01, P (smoking = 1) = 0.5,

P (tuberculosis = 1|trip = 1) = 0.05, P (tuberculosis = 1|trip = 0) = 0.01,

P (cancer = 1|smoking = 1) = 0.1, P (cancer = 1|smoking = 0) = 0.01,

P (test = 1|or = 1) = 0.98, P (test = 1|or = 0) = 0.05,

5 Note that this result has been alluded to before [13] in connection with Sato’s semantics for probabilistic facts.

226 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
0.6 :: edge(1,2).
0.1 :: edge(1,3).
0.4 :: edge(2,5).
0.3 :: edge(2,6).
0.3 :: edge(3,4).
0.8 :: edge(4,5).
0.2 :: edge(5,6).

12 3

45

6

0.6 0.1

0.4

0.3

0.3

0.8

0.2

Fig. 3. A random undirected graph.

and additionally,

or = {tuberculosis = 1} ∨ {cancer = 1}.
Note that here we conflate atoms and the random variables they correspond to (random variables that are defined over the
space of all interpretations).

In Fig. 2 we employ the pattern

A :− B1, B2. α :: B2..

We might take this pair as a “probabilistic rule” (in fact ProbLog accepts the syntax α :: A :− B1, B2. to represent this pair).
In this paper we do not use special syntax for probabilistic rules for the sake of simplicity.

Any acyclic propositional program can be viewed as the specification of a Bayesian network over binary random vari-
ables: the structure of the Bayesian network is the dependency graph; the random variables correspond to the atoms; the
probabilities can be read off of the probabilistic facts and rules. Conversely, any Bayesian network over binary variables
can be specified by an acyclic nondisjunctive PASP program [84]. In fact, the program in Fig. 2 has been generated from a
well-known Bayesian network [57].

Acyclic programs can be used to specify “relational Bayesian networks” as well.6 For instance, here is an acyclic PASP
program that captures part of the well-known University World [35], where we have courses, students, and grades:

apt(X) :− student(X),a1. 0.7 :: a1.
easy(Y) :− course(X),a2. 0.4 :: a2.
pass(X, Y) :− student(X),apt(X), course(Y),easy(Y).
pass(X, Y) :− student(X),apt(X), course(Y),not easy(Y),a3. 0.8 :: a3..

This is unrealistically simple but it conveys the idea: apt students do well in easy courses, and even in courses that are not
easy with probability 0.8 (and a student is apt with probability 0.7; a course is easy with probability 0.4).

4.2. Nondisjunctive stratified programs

A program still specifies a single probability distribution if it is nondisjunctive and stratified. Because any nondisjunctive
stratified program has a unique minimal model [18], any total choice induces a unique model and therefore the probabilistic
program induces a unique probability distribution over interpretations. Most of the literature on probabilistic logic programs
is restricted to this class of programs [31].

Here is a prototypical example of nondisjunctive stratified program:

edge(X, Y) :− edge(Y , X).
path(X, Y) :− edge(X, Y).
path(X, Y) :− edge(X, Z),path(Z , Y)..

These rules can be spelled out as follows: there is a path between two nodes if there is an undirected edge between them,
or if there is an undirected edge from one of them to some node from which there is a path to the other node. Coupled
with an explicit description of the predicate edge, this program allows one to determine whether it is possible or not to
find a path between two given nodes. For instance, if we have a random graph specified as in Fig. 3 (the drawing depicts a
visual representation of the random graph, with edges annotated with probabilities), then P (path(1,4)) = 0.2330016.

As illustrated by this example, stratified PASP programs can encode recursion. This is a feature that cannot be reproduced
with Probabilistic Relational Models (Section 3.3) based on first-order logic, as recursion goes beyond the resources of first-
order logic [24].

6 As noted in Section 3.3, there are several other languages that compactly describe Bayesian networks over repetitive domains.

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 227
4.3. The general case

If we have a nondisjunctive and non-stratified program, or a disjunctive program, then it may be the case that for some
total choices the program has no answer set, or that for some total choices the program has many answer sets. Suppose
first that some total choice leads to a program without any answer set; in this case we take that the whole probabilistic
program is inconsistent and has no semantics. Other strategies might be possible; we might try to repair the inconsistency
[8], or perhaps resort to some three-valued semantics that can accommodate such failures. We leave such strategies to
future debate.

The more interesting case is the one in which any total choice induces at least one answer set, and some total choices
lead to many answer sets. As a total choice θ is associated with a probability P (θ), the individual answer sets induced by
θ collectively get mass P (θ), but no other stipulations are present. Thus we can distribute P (θ) arbitrarily over the answer
sets, and we can use such a freedom to our advantage. A few examples illustrate possible strategies.

Consider as an example the three-colorability problem for undirected graphs:

red(X) ∨ green(X) ∨ blue(X) :− node(X).
edge(X, Y) :− edge(Y , X).
:− edge(X, Y), red(X), red(Y).
:− edge(X, Y),green(X),green(Y).
:− edge(X, Y),blue(X),blue(Y).

(4)

plus the probabilistic facts in Fig. 3 and the facts

red(1)., green(4)., green(6).. (5)

Each total choice fixes a graph; for this particular graph, each answer set is a three-coloring. If it so happens that each
total choice induces a single three-coloring, then the program defines a single probability distribution over interpretations.
If instead some total choices induce several three-colorings, then the program defines a non-singleton set of probability
distributions: for each total choice θ , the probability mass P (θ) can be attached to each one of the answer sets induced
by θ . Take for instance node 3. If both edges to 1 and 4 are present (with probability 0.03), then all answer sets must
contain blue(3). And if both edges are absent, then there are answer sets containing either red(3) or blue(3) or green(3).
Other configurations are produced by the presence/absence of edges.

We have that, in the last example, P (blue(3)) = 0.03; P (blue(3)) = 1; P (red(3)) = 0.0; P (red(3)) = 0.9.
Suppose now that on top of probabilistic facts in Fig. 3 and hard facts in Expression (5), we also have the probabilistic

fact

0.2 :: blue(5).. (6)

In this case some total choices fail to produce a three-coloring: for instance, if all edges are present, then there is no way
to produce a three-coloring when blue(5) is set to hold. To have a consistent program, we must work differently. Consider
the PASP program:

red(X) ∨ green(X) ∨ blue(X) :− node(X).
edge(X, Y) :− edge(Y , X).
¬colorable :− edge(X, Y), red(X), red(Y).
¬colorable :− edge(X, Y),green(X),green(Y).
¬colorable :− edge(X, Y),blue(X),blue(Y).
red(X) :− ¬colorable,node(X),not ¬red(X).
green(X) :− ¬colorable,node(X),not ¬green(X).
blue(X) :− ¬colorable,node(X),not ¬blue(X).
colorable :− not ¬colorable..

(7)

This program is certainly non-trivial. Basically, if there is a three-coloring for the input graph, the corresponding inter-
pretation is an answer set. But if there is no three-coloring, then colorable is set to false, and all groundings of red, blue and
green are set to true except for those groundings that are set to false via probabilistic facts. To guarantee the latter behavior
the program resorts to the idiom not ¬A, where A is an atom: basically this is true whenever it is not known explicitly
that A is false. As answer sets must be minimal, colorable is true if and only if there is a three-coloring. In our example,
P (colorable,blue(3)) = 0.976. In fact, we can ask for more: we can determine the probability that there is no coloring at all;
this is precisely 0.024. As colorable indicates the possibility of a three-coloring for each total choice, there is a sharp value
for its probability.

Thus in PASP we can formulate a combinatorial problem and ask for the lower/upper probability of its atoms; also, we
can ask for the probability that there is a solution at all.

228 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
Using the three-coloring example we can analyze in more detail the semantics of probabilistic facts. Recall that ProbLog’s
semantics takes probabilistic fact α :: A. to mean that we should impose A. with probability α and discard it with proba-
bility 1 − α. Our approach is different in that α :: A. means:{

take A with probability α;
take ¬A with probability 1 − α.

Of course we can do so because strong negation is available in ASP; however, mere availability of ¬ is not the key point.
To understand our proposal, take again the three-coloring program in Expression (7) with probabilistic facts in Expres-
sions (5) and (6). If we adopt our proposed semantics for the probabilistic facts, the credal semantics yields P (blue(5)) = 0.2
and P (colorable,blue(5)) = 0.1856 (some probability mass is “lost” to configurations without three-colorings). If we use
ProbLog’s semantics for the probabilistic facts, and continue with the construction of the credal semantics, we obtain
P (colorable,blue(5)) = 0.1856 but P (colorable,blue(5)) = 0.9280! This behavior of ProbLog’s semantics may be manageable
in acyclic programs, where the effect of probabilistic facts is relatively easy to grasp.7 In the presence of cyclic rules and
constraints, such as the ones typically found in ASP programming, it does not seem appropriate to leave this management
to the programmer, and it seems better to alert her about problems through inconsistency.

To finish this section, we briefly comment on the ability of PASP to solve complex problems.
Suppose we have a collection of companies C = {c1, . . . , cm}, such that each company manufactures a range of products.

Each product g j is manufactured by two companies, as specified by atom produce(ci1 , ci2 , g j). Each company c may be
owned by three other companies, as specified by the predicate control(ci1 , ci2 , ci3 , c) (a company may be controlled by more
than one triple). A strategic set C′ of companies is a minimal subset of C (minimal with respect to inclusion) such that:
1) the set of all products manufactured by C is identical to the set of all products manufactured by C′; 2) if the three
controlling companies of a company c are in C′ , then c is also in C′ . The question is, given a company c, is it in some
strategic set? This problem is NPNP-complete (Appendix A), hence it is widely believed to be harder than the three-coloring
problem. Amazingly, the “strategic company” problem can be solved by a short ASP program [25]:

strategic(C1) ∨ strategic(C2) :− produce(C1, C2, G).
strategic(C) :− control(C1, C2, C3, C),

strategic(C1), strategic(C2), strategic(C3)..

The first rule guarantees that all products are still sold by the strategic set. The second rule guarantees that, if three
companies are in the strategic set, then a company they control is also in the strategic set. The minimality of answer sets
guarantees the required minimality of strategic sets.

Now suppose, as it so happens in real life, that there is some uncertainty as to which company controls which. We may
then be interested in the probability that some company comp is in some strategic set. We must simply state the relevant
probabilistic facts such as

0.9 :: control(comp1, comp2, comp3, comp)..

and then compute P (strategic(comp)). In so doing we must go through the set of solutions of an NPNP-complete problem.

4.4. Some comments on interpretation

We have so far discussed our suggested programming style by posing questions such as “What is the probability that
there is a three-coloring?” or “What is the probability that a certain node is red?”. In the remainder of this section we focus
on the interpretation of the lower/upper probabilities obtained in answering such questions.

So, take a PASP program like the three-coloring one (Expression (4)). Although total choices may be associated with non-
singleton credal sets, the atom colorable has a unique value per total choice; hence the probability of this atom is sharp.
However, probabilities on the color of particular nodes may of course fail to be sharp. What is then the import of P (red(2))?
Basically, there is at least probability P (red(2)) that node 2 gets red if a three-coloring is selected after the uncertainty is
resolved (that is, after the atoms associated with probabilities have their values set). Similarly, we have at most probability
P (red(2)) that node 2 gets red if a three-coloring is selected after the uncertainty is resolved. We can thus take lower/upper
probabilities as values generated by decisions taken after the resolution of uncertainty. This is certainly in contrast to most
decision-making models where decisions are made before dice are rolled [10].

In fact we may choose to attach a more active role to the agent, supposing that she selects a three-coloring after
uncertainty is resolved: the lower probability is the probability if the agent is adversarially working against red in node 2,
while the upper probability obtains if the agent works on behalf of red in node 2.

In addition lower/upper probabilities can be viewed as sharp probabilities with respect to appropriate (quantified) ques-
tions. For instance, if one asks “What is the probability that I will be able to select a three-coloring where node 2 is red?”,

7 Even for acyclic programs we produce some surprises. Consider the simple acyclic program consisting of 0.2 :: r(a). and 0.8 :: r(X).; then P (r(a)) =
0.2 + 0.8 − 0.2 × 0.8 = 0.84 in ProbLog (not P (r(a)) = 0.2 as one might think).

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 229
the answer is P (red(2)). But the query is actually asking for P (there is some answer set such that red(2)). Similarly, the
question “What is the probability that node 2 will be red in a three-coloring, no matter what I do?” leads to a lower prob-
ability but it asks for the precise probability that all answer sets have node 2 painted red. That is, PASP indeed lets one
formulate probabilities that quantify over answer sets, disguised as lower/upper probabilities.

To conclude, the program that encodes the “probabilistic strategic company” problem also illustrates a situation where
the computation of the upper probability P (strategic(comp)) actually answers the question “What is the probability that I
will be able to place comp in a strategic set?”. While in the three-coloring problem it was necessary to introduce a predicate
colorable to determine when a total choice induces a solution (a three-coloring), here determining whether a company is in
a strategic set is the problem itself. Consequently, P (strategic(comp)) is also the probability of finding a positive solution to
the problem. More explicitly, this latter upper probability yields P (there exists an answer set such that strategic(comp)).

5. Complexity and expressivity

In this section we first discuss the computational complexity of inferences with respect to PASP programs (Section 5.1).
We then discuss the expressivity of PASP (Section 5.2). The results in this section require quite a bit of background in
complexity theory. Necessary material is available in textbooks or related publications [15,80], but to clarify the notation we
have collected the relevant notions in the Appendix.

5.1. The computational complexity of PASP

As indicated in the examples in the previous section, a PASP program can be used to compute the lower/upper probability
of some atom T . A more general question would be to compute the lower/upper conditional probability of a conjunction
of “target” atoms T1, . . . , Tt , given some “evidence” atoms E1, . . . , Ee . To simplify notation, we denote by T the conjunction
T1 ∧ · · · ∧ Tt and by E the conjunction E1 ∧ · · · ∧ Ee .

We wish to characterize the computational complexity of computing lower and upper probabilities, P (T|E) and P (T|E).
To turn this into a decision problem, we study the complexity of deciding whether P (T|E) > γ and whether P (T|E) > γ .
We adopt the convention that any probability is specified as a rational number, to avoid difficulties with non-computable real-
numbers. We assume that γ is always a rational number as well. We also assume that the decision is negative (input is rejected)
when P (E) = 0. Finally, we assume that T and E, and whatever additional atoms in the input, contain only atoms that use
the vocabulary of the program.

Note that in logic programming one distinguishes between combined and data complexity [102]. Combined complexity
focuses on whether an input atom is true or not when the program is also in the input, together with whatever facts are
deemed relevant. Data complexity takes the program as fixed and considers as input the atom of interest and the list of
relevant facts.8 In our context we can also differentiate between two questions, one where the program is given as input,
another one where it is fixed.

By examining the proof of the next theorem one can see that, as we compute lower and upper probabilities, some other
questions can be answered without any additional cost (as subproducts of the whole computation). Thus we consider a
large number of possible decisions within our problems.

Our first problem consists of getting, as input, a PASP program, a rational γ , a pair (T, E), and a flag indicating one of six
decisions of interest: (a) whether P (T|E) > γ ; (b) whether P (T|E) > γ ; (c) whether P (T ∩ E) > γ where P attains P (T|E);
(d) whether P (T ∩ E) > γ where P attains P (T|E); (e) whether P (E) > γ where P attains P (T|E); (f) whether P (E) > γ

where P attains P (T|E). We refer to the complexity of this problem as the inferential complexity.
Our second problem consists of getting, as input, a rational γ , a pair (T, E), and a flag indicating one of the decisions

listed in the previous problem (note: the program is fixed!). We refer to this complexity as the query complexity.
We can work more closely to concepts employed in logic programming by defining a third problem, consisting of getting,

as input, a rational γ , a set of facts, and a flag indicating one of the same decisions listed in the previous problems (note:
the program and the pair (T, E) are fixed!). We refer to this complexity as the data complexity.

We have:

Theorem 2. The inferential complexity of PASP programs with a bound on the arity of predicates is PP�
p
3 -complete. Both the query

complexity and the data complexity of PASP programs are PP�
p
2 -complete.

Proof. The membership of inferential complexity for the specific decision P (T|E) > γ has been derived previously using
a very short argument [69]. Here we present an explicit construction to prove membership of the various decisions we
contemplate; that is, we build nondeterministic Turing machines with access to a �p

3 oracle with input γ and (T, E), and a
flag indicating the particular inequality to verify. The construction can in essence be found in the proof of Theorem 25 of
Ref. [13], so we shorten several steps.

8 It is also common to define program complexity, where the set of facts is fixed and the program is the input. This sort of complexity seems less relevant
here but it may be of interest in future work.

230 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
We start by proving membership for the decision P (T|E) > μ/ν where μ and ν are the smallest possible integers
such that μ/ν = γ . Start by grounding the probabilistic facts to obtain a polynomial number of probabilistic facts without
variables (as the arity of predicates is bounded). Clearly if γ = 1 the machine must return NO; we assume this case is dealt
with at once so that we can assume that γ < 1 in the subsequent computation steps. Deciding P (T|E) > μ/ν is equivalent
to deciding

(ν − μ)P (T ∩ E) > μP
(
Tc ∩ E

)
.

(This covers all special cases discussed in the proof of Theorem 25 of Ref. [13] that address zero probabilities.) So we focus
on the latter inequality. Our machine starts by emulating the selection of a total choice, by creating a transition for each
probabilistic fact in the program (we can assume the machine makes transitions with arbitrary probabilities, not just 0.5;
in any case, it is possible to emulate such probabilities with a machine that only has transitions with probability 0.5, as
discussed in the proof of Theorem 25 of Ref. [13]). Denote by N the total number of computation paths the machine can
take out of these transitions (that is, the number of paths that select total choices). By selecting a total choice the machine
actually has selected an answer set program. The machine then runs cautious inference on this latter program to determine
whether T and E hold in every stable model of the answer set program (to do so, the machine must use a �p

3 computation
[27, Table 5] that can be produced with the �p

3 oracle and a negation): if so, the machine moves to a state q1. Otherwise,
the machine runs brave inference on the answer set program to determine whether T does not hold while E holds in some
stable model of the answer set program (to do so, the machine calls the �p

3 oracle [27, Table 5]): if so, the machine moves
to a state q2. In all other cases the machine moves to a state q3. Now denote by Ni the number of computation paths that
arrive at qi (for i ∈ {1, 2, 3}). From q1 the machine branches into ν − μ computation paths that move immediately to the
accepting state; from q2 the machine branches into μ computation paths that move immediately to the rejecting state;
from q3 the machine nondeterministically moves either into the accepting or the rejecting state. The number of accepting
paths is larger than the number of rejecting paths if and only if

(ν − μ)N1 + N3 > μN2 + N3 ⇔ (ν − μ)
N1

N
> μ

N2

N
⇔ (ν − μ)P (T ∩ E) > μP

(
Tc ∩ E

)
where the last equivalence follows from the fact that by construction N1/N = P (T ∩ E) and N2/N = P

(
Tc ∩ E

)
. This checks

the desired inequality.
Now suppose our task is to decide P (T|E) > μ/ν . We build a machine as in the previous paragraph, with a few changes.

The decision is now (ν − μ)P (T ∩ E) > μP
(
Tc ∩ E

)
; the machine must run brave inference (on the answer set program

specified by the selected total choice) to determine whether T and E hold in some stable model of the answer set program
(so as to move to q1) and cautious inference (on the answer set program specified by the selected total choice) to determine
whether T does not hold while E holds (to move to q2). This checks the desired inequality.

Now if the decision problem is P (T ∩ E) > γ with respect to P that attains the lower / upper probability of T given E,
then proceed respectively as in the first / second machine in the previous two paragraphs, except that from q3 the machine
branches into μ computation paths that move immediately into the rejecting state. Hence the number of accepting paths is
larger than the number of rejecting paths if and only if

(ν − μ)N1 > μN2 + μN3 ⇔ (ν − μ)
N1

N
> μ

N − N1

N
⇔ N1

N
>

μ

ν

as desired.
And if the decision problem is P (E) > γ with respect to the P that attains the lower / upper probability of T given

E, then proceed respectively as in the first / second machine in the previous paragraphs, except that from q2 the machine
branches into ν − μ computation paths that move immediately to the accepting state, and from q3 the machine branches
into μ computation paths that move immediately into to the rejecting state. Hence the number of accepting paths is larger
than the number of rejecting paths if and only if

(ν − μ)N1 + (ν − μ)N2 > μN3 ⇔ (ν − μ)
N1 + N2

N
> μ

N − (N1 + N2)

N

⇔ N1 + N2

N
>

μ

ν

as desired.
This closes the proof of membership for inferential complexity.
The hardness result for the inferential complexity of probabilistic logic programs with all features of PASP has been

derived previously [69].
Membership of query complexity follows from the fact that we can ground the fixed program in polynomial time. We

must then run propositional inference. The proof is exactly the same as the proof of membership for inferential complexity,

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 231
with the only difference that whenever the oracle is called to run cautious or brave inference, now we need only an oracle
with power �p

2 (because cautious and brave inference are respectively �p
2 and �p

2 complete for propositional answer set
programs [27, Table 5]).

To prove hardness of query complexity, consider the PP�
p
2 -complete problem of deciding whether there are more than K

assignments of X1, . . . , Xm that satisfy ∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ , where ϕ is in 3-DNF [104]. That is, ϕ is in Disjunctive
Normal Form: it is a disjunction of conjuncts c1 ∨ c2 ∨ · · · ∨ ck where each conjunct ci has three literals so that it can be
written as Ai ∧ Bi ∧ Ci for literals Ai , Bi , and Ci .

Now introduce a predicate t(T , V , P) whose meaning is this. When T is equal to 1, then V is the index of a logical
variable XV ; when T is equal to 2, then V is the index of a logical variable Y V ; finally, when T is equal to 3, then V is the
index of a logical variable Z V . Now if P is equal to 1, then t(T , V , P) gets the same value as the logical variable indicated
by (T , V); if P is equal to 0, then t(T , V , P) gets the negated value of the logical variable indicated by (T , V). We could
obviously write ϕ as

t(t1,1, v1,1, p1,1) ∧ t(t1,2, v1,2, p1,2) ∧ t(t1,3, v1,3, p1,3)) ∨ . . .

∨(t(tk,1, vk,1, pk,1) ∧ t(tk,2, vk,2, pk,2) ∧ t(tk,3, vk,3, pk,3)),
(8)

where we choose the tc, j , vc, j , and pc, j appropriately.
Introduce another predicate in(T , V , C, P) whose purpose is to “choose” the right t(T , V , P) in each conjunct. That is,

each element of the cth conjunct in Expression (8) is to be written as

in(tc, j, vc, j, c, pc, j) ∧ t(tc, j, vc, j, pc, j).

So we can run through all possible conjuncts, selecting only the appropriate atoms in the conjuncts that belong to ψ . This
is the strategy employed in the following program:

0.5 :: x(V).

0.5 :: in(T , V , C, P).
t(T , V ,0) ∨ t(T , V ,1).
t(1, V ,0) :− not x(V).
t(1, V ,1) :− x(V).
phi :− in(T 1, V 1, C, P 1), t(T 1, V 1, P 1),

in(T 2, V 2, C, P 2), t(T 2, V 2, P 2),

in(T 3, V 3, C, P 3), t(T 3, V 3, P 3).
t(3, V , P) :− phi.
negin(T , V , C, P) :− not in(T , V , C, P)..

The value of each Xi , represented by x(i), is associated with a probability (in the first line of the program) so as to simulate
counting. Note that the third line of this program guarantees that t(T , V , P) does behave in a binary way with respect to
P , so that the value of each Yi is selected by the program; values of t(1, V , P) are automatically complementary given the
fourth and fifth lines of the program, and the value of each Zk is discussed later.

So, given a formula ϕ , insert in E all facts in(1, i, c, 0) if Xi appears in the cth clause nonnegated, in(1, i, c, 1) if it
appears negated, and similarly for Y j and Zk . All other groundings of in(T , V , C, P) are forced not to hold by assembling
their corresponding grounding of negin(T , V , C, P) into E.

The counting question about the quantified formula is true if and only if P (phi|E) > K/2m . Note that computation of the
upper probability of phi collects the probabilities/proportions of the configurations of Xi such that there is a configuration of
Y j that makes ϕ true for some configuration of Zk (thus taking care of the existential quantifiers). The universal quantifiers
over the Zk are obtained by replicating a technique often used in disjunctive logic programs (for instance, consider the
proof of Theorem 6.3 in Ref. [26]): each configuration of Zk is associated with a configuration of t(3, V , P) as follows. If the
configuration of Zk is such that ϕ is false (for a fixed configuration of Xi and Y j), then we can select an interpretation for
t(3, V , P) that mirrors the same assignments (e.g., t(3, V , 0) is true if Z V = 0), satisfies all rules of the program and makes
phi false. However, if no such configuration exists (i.e., if for all Zk we have that ϕ is true), then any model must contain phi
and consequently, by the last rule, assign all t(3, V , P) to true. By minimality of answer sets, the converse is also true: there
is a minimal model that assigns all t(3, V , P) to true only if there is not a configuration of Zk that can falsify ϕ . Hence phi
is true if and only if there is no assignment that makes ϕ false.

Finally, note that the same program can be used to show the data complexity; just remove the probabilistic fact 0.5 ::
in(T , V , C, P)., the auxiliary predicate negin(T , V , C, P) and its associated rule negin(T , V , C, P) :− not in(T , V , C, P)., and
instead add the necessary groundings of in(T , V , C, P) as input facts. �
5.2. The expressivity of PASP

There are several ways to assess the expressivity of a programming language. For instance, one may compare program-
ming languages by checking whether they can express the same input-output mappings or not. In fact, there has been quite
some work on verifying how to translate programs amongst various probabilistic logic languages [87].

232 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
Another strategy to assess expressivity, an “absolute” one, is to determine a class of Turing machines that can be em-
ulated within the programming language of interest. For instance, suppose we have a programming language such that its
programs can produce exactly the same input-output mappings as nondeterministic polynomial-time Turing machines; we
would like to say that the expressivity of the programming language is given by the complexity class NP [41].

In our setting, a fixed PASP program receives as input a string with (T, E) and γ , and a flag indicating a particular
inequality to be checked. The output indicates whether or not the inequality is satisfied. Now, can we capture the behavior
of a class of Turing machines with such a programming language?

To formalize this question, we might say that a programming language P captures complexity class C exactly when [41]:
(1) the query complexity of P is in C ; (2) for each set S of strings encoding inputs, so that this set of strings is a language
in C , there is a program in P such that all and only those strings in S yield a positive output.9

We have:

Theorem 3. PASP programs capture PP�
p
2 .

Proof. Query complexity is proved by Theorem 2.
Now suppose we have a set of strings S in PP�

p
2 ; that means there is a polynomial-time probabilistic Turing machine,

with an oracle in �p
2 , that can decide whether each string is in S with error strictly less than half. We must code a PASP

program with the same behavior.
Note first that the base probabilistic Turing machine is not required to call a full-fledged Turing machine (itself with

another Turing machine as oracle); rather, the base probabilistic Turing machine can use any �p
2 -complete problem as

oracle. Thus we can use for instance the decision as to whether ∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ holds, where ϕ is in Disjunctive
Normal Form with three literals per conjunct [80].

Moreover, we can assume that the base probabilistic Turing machine calls the oracle only once per computation path,
using a transformation described by Toran [97]. Toran’s transformation does not guarantee that the call to the oracle is the
very last operation of the base machine, but we can move the call to the very last computation steps as follows. Build a
base probabilistic Turing machine that operates until the point where Toran’s transformation would call the oracle. Instead
of calling the oracle at that point, make the machine repeat the subsequent operations twice, once assuming the oracle
accepts its input, once assuming the oracle rejects its input, and storing the output of each one of these computations in
two positions in the tape. Then there are two possibilities. If each computation produces the same answer, then simply
return that answer (YES or NO). If however the computations differ, we have two possibilities. First, it may be the case that
the output is YES in the path corresponding to the oracle returning YES and NO in the path corresponding to the oracle
returning NO. In this case the machine must simply call the oracle at the very end and return the output of the oracle.
Second, it may be the case that the output is YES in the path corresponding to the oracle returning NO and NO in the path
corresponding to the oracle returning YES. In this case the machine must simply call the oracle with a negated version of
the query originally required for the oracle, and then return the output of the oracle. Hence we can focus on a probabilistic
Turing machine that makes a unique call to a �p

2 oracle and returns its output. The whole computation is depicted in Fig. 4.
So, first build a program that reproduces the operations of the base probabilistic Turing machine using a set of random

bits (these can be produced using probabilistic facts). A Turing machine can be encoded through facts and rules using for
instance the encoding by Marek and Remmel [67]. Note that their encoding makes a few assumptions about the Turing
machine; for example, that the machine runs for a precise number of steps that is a (known) polynomial of the size of the
input. These assumptions can be easily imposed on our Turing machine. There are however changes that must be made to
Marek and Remmel’s encoding to account for the oracle. Instead of encoding the oracle explicitly (oracle tape, oracle head,
and so on), we benefit from the previous discussion to simplify matters. Thus, when the program reaches the point where
both Computations A and B have finished, the program is in one of four possible cases (larger rectangle in Fig. 4). If it is
in Case 1, then it sets predicates case1 and output to true. If it is in Case 4, then it sets predicate case4 to true and the
predicate output to false.

If the program is in Case 2 or in Case 3, it must respectively set to true predicate case2 or case3. We do not need an
explicit oracle tape; rather, we simply use a predicate in(T , V , C, P) (and a few additional predicates introduced later) to
encode the formula processed by the oracle (similarly to the proof of Theorem 2). Thus we assume that an appropriate set
of groundings for in(T , V , C, P) has been fixed (the precise meaning of these groundings is described shortly).

Suppose first that we have reached Case 2; we must return whether or not some formula ∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ ,
where ϕ is in 3-DNF, holds (in this proof the particular formula ϕ is built by the program and it can depend on the
probabilistic facts). We already built rules that handle such a situation in the proof of Theorem 2:

9 There are differences between showing that a programming language captures a complexity class and showing that its query complexity is complete
for that class; the latter requires finding at least one hard query, while the former requires expressing all queries within the language [18].

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 233
Start with input Computations

Point where oracle would be called

Computations A: assume
oracle returned YES

Computations B: assume
oracle returned NO

A: YES
B: YES

A: YES
B: NO

A: NO
B: YES

A: NO
B: NO

Case 1:
Return

YES

Case 3:
Return negated
oracle output

Case 2:
Return oracle

output

Case 4:
Return

NO

Fig. 4. The operations in the Turing machine. Computations A and B are conceptually run in parallel, even though they run sequentially in the machine.
After computations B finish, there are four possible situations; two of them actually require calling the oracle.

t(T , V ,0) ∨ t(T , V ,1).
phi :− case2,

in(T 1, V 1, C, P 1), t(T 1, V 1, P 1),

in(T 2, V 2, C, P 2), t(T 2, V 2, P 2),

in(T 3, V 3, C, P 3), t(T 3, V 3, P 3).
t(3, V , P) :− case2, in(3, V , C, P),phi.,

(9)

where

• t(T , V , P) is an auxiliary predicate for which we need to handle only T = 2 (indicating the Y j) and T = 3 (indicating
the Zk), and possibly T = 1 (indicating literals associated with probabilistic facts), and

• in(T , V , C, P) encodes the formula ϕ .

The program then closes by moving to the accepting state when phi is true and to the rejecting state otherwise. Thus phi is
indeed the output; indeed, we add:

output :− case2,phi..

Note that if we were to compute the upper probability of output, then in this particular computation path we would obtain
∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ as desired (because the computation of upper probability forces the inner formula to be true as
long as there is a stable model specified by the Y1, . . . , Yn).

Now suppose we have reached Case 3. Because we need to negate the oracle output, we add:

output :− case3,not phi..

By itself, this will not do: if we compute the upper probability of output, we actually obtain ∃Y1, . . . , Yn : ∃Z1, . . . , Zo : ¬ϕ in
this computation path (instead of ∀Y1, . . . , Yn : ∃Z1, . . . , Zo : ¬ϕ). And if we compute the (unconditional) lower probability of
output we will face a mirror problem when case2 holds. What we need is to compute the lower probability in a computation
path that reaches Case 3 while computing the upper probability in a computation path that reaches Case 2.

So, we introduce a predicate through the rules:

target :− case1. target :− case2.

and ask the PASP program to decide whether P (output) > γ where P is the probability measure that attains P (target|output).
The probability P (output) for this particular probability measure P is equal to

P (case1) + P (case2,phi) + P (case3,¬phi)

given the properties of infinitely monotone Choquet capacities. And this latter expression is exactly the probability that the
original Turing machine returns YES. So the behavior of the machine is captured, as desired. �

234 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
6. Computing upper probabilities

Obviously, a powerful programming language is only useful if its programs can be run in reasonable time. Given the
expressivity of PASP, we cannot expect every PASP program to run quickly. But we must at least discuss how to exploit
problem descriptions to speed up the calculation of lower/upper probabilities.

A stratified nondisjunctive program specifies a single probability distribution and any query is answered by a sharp
probability value. As the computation of probabilities for stratified programs has been explored through a variety of counting
techniques [4,31,89], we do not discuss stratified programs in any detail.

We focus on lower/upper probabilities that arise in connection with general (non-stratified, disjunctive) programs. The
techniques we develop resort to algorithms that turn propositional logic programs into classical formulas (it should be noted
that such algorithms have been refined in particular for nondisjunctive programs).

The first observation we make is that conditional lower/upper probabilities can be easily calculated from unconditional
lower/upper probabilities, due to properties of the credal semantics discussed after Theorem 1. In the remainder of this
section we focus on the computation of the upper probability P (T1, . . . , Tt), where each Ti is a literal. The computation of
lower probabilities follows similar lines.

As input we have a PASP program and literals {Ti}. Our strategy is:

1. First ground the program.
2. Then the resulting propositional PASP program is turned into a (possibly long) propositional formula, using a conversion

algorithm (there are relatively efficient ones for non-disjunctive programs [47] and more complex ones for disjunctive
programs [61]).

3. We assume the propositional formula obtained in the previous step is turned to Conjunctive Normal Form. All literals
that appear in probabilistic facts must be left in the formula; at the end the propositions that are associated with
those facts must be marked with the corresponding probabilities. Even small programs can produce large propositional
classical formulas through this step and the previous one.

4. Finally run an adapted solution counting algorithm that computes the desired probabilities. Note that we must count
solutions with respect to some propositions while others are used to determine satisfiability; this is a prototypical
problem in NPNP .10

To illustrate these steps, consider here a simplified example. Suppose we have the program in Expression (4) together
with probabilistic facts in Fig. 3. Take one of the constraints:

:− edge(X, Y), red(X), red(Y)..

By grounding this constraint, we obtain propositional constraints

:− edge(1,2), red(1), red(2).,
:− edge(1,3), red(1), red(3).,

and so on. Each one of these constraints can be translated to a clause; for instance, the first propositional constraint imposes

¬ (edge(1,2) ∧ red(1) ∧ red(2))

and therefore the clause

(¬edge(1,2) ∨ ¬red(1) ∨ ¬red(2)) .

Now consider the rule

red(X) ∨ green(X) ∨ blue(X) :− node(X)..

Consider its grounding

red(1) ∨ green(1) ∨ blue(1) :− node(1).;
this is partially translated to clause

(red(1) ∨ green(1) ∨ blue(1) ∨ ¬node(1)) ;
this clause does not capture the complete meaning of the disjunctive rule as minimality must be imposed through additional
clauses.

10 Of course we are not reducing the general PASP inference to a problem in NPNP , because the propositional formula generated in the third step may be
exponentially large in the worst case. A guarantee of polynomial size for the formula would imply a collapse of the counting hierarchy, an unlikely event.

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 235
φ = (¬A ∨ ¬B ∨ X) ∧ (¬C ∨ ¬Y ∨ Z) ∧ (¬A ∨ C ∨ ¬Z)∧
(¬A ∨ C ∨ Y ∨ Z) ∧ (¬A ∨ C ∨ ¬Y ∨ Z) ∧ (A ∨ B)

φ1 = ¬B ∨ X

φ2 = (¬C ∨ ¬Y ∨ Z)∧
(C ∨ ¬Z)∧

(C ∨ Y ∨ Z)∧
(C ∨ ¬Y ∨ Z)

φ3 = B

φ4 = (¬C ∨ ¬Y ∨ Z)

φ5 = X 1

1

φ7 = (¬Y ∨ Z)

1

φ8 = (¬Z) ∧ (Y ∨ Z) ∧ (¬Y ∨ Z)

0

01

φ9 = (¬Y ∨ Z) 1

1

A ¬A

B ¬B

C ¬C

B ¬B

C ¬C

Fig. 5. The counting example from Aziz et al. [3].

Now consider the fourth step of the method, where counting is in fact run. The counting problem for NPNP problems has
received relatively little attention in the literature, but some clever algorithms have been proposed [3,4]. Our contribution
in this paper is to adapt one particular algorithm; in the remainder of this section we do so.

We thus have a CNF formula where some propositions are associated with probabilities; we call these the priority propo-
sitions. The remaining propositions are referred to as non-priority ones. We must count the satisfying assignments for
priority propositions (non-priority propositions are set as needed). Such a counting problem is solved by the dSharpP algo-
rithm by Aziz et al. [3].

The dSharpP algorithm modifies the celebrated DPLL algorithm. The latter algorithm is, in essence, rather simple: sup-
pose we wish to check the satisfiability of formula φ; then select a proposition C ; simplify φ as if C were true, and recurse
until it is possible to prove that the new formula is satisfiable or not; and simplify φ as if C were false, and recurse until
it is possible to prove that the new formula is satisfiable or not. The DPLL algorithm implicitly builds a tree that branches
on the selected propositions; there are many techniques to select propositions, to detect as early as possible when to stop
recursing, to store useful information, and to exploit problem decompositions [7]. Algorithms that count satisfying assign-
ments of CNF formulas are often based on the same sort of computing tree, but instead of exploring the tree only until a
satisfying assignment is found, the algorithms must go through the whole tree, explicitly or implicitly.

The basic idea in the dSharpP algorithm is to build an implicit tree as the DPLL algorithm, but to select non-priority
propositions only when there are no priority ones in the formula at hand. The counts associated with two distinct assign-
ments of the same priority proposition are added, and at the end the number of satisfying assignments (for the priority
propositions) are obtained. Two techniques are used to speed up the whole process. First, the algorithm must detect as early
as possible when the formula can be satisfied; when this happens and some priority propositions remain unassigned, the
algorithm computes in closed-form the number of assignments for those propositions (a simple calculation: 2K assignments
if there are K unassigned propositions). Second, it may be the case that a formula in CNF may be divided into several
sub-formulas, each one of them a conjunction of clauses, such that propositions in one sub-formula do not appear in other
sub-formulas. In this case the number of satisfying assignments for the original formula is the product of the number of
satisfying assignments for each one of the sub-formulas.

To illustrate this process, we use a simple example inspired by a discussion in Ref. [3]. Consider the formula φ in Fig. 5,
and suppose the goal is to count the number of assignments of A, B and C (the remaining propositions are non-priority
ones). Only branching on these priority propositions is shown; when a formula contains only non-priority propositions, the
branching required to determine satisfiability is not shown. The counts obtained by branching are the numbers shown in
the leaves. Note that when A is applied to formula φ, the result is a formula with two “disjoint” sub-formulas φ1 and φ2;
the conjunction of these sub-formulas is represented by the left dot. And when ¬A is applied to φ, “disjoint” sub-formulas
φ3 and φ4 are obtained; their conjunction is represented by the right dot. Thus φ5 “gets” 1, and φ1 gets 2; similarly, φ7 gets
1 and φ8 gets 0 (at φ8 is not satisfiable), so φ2 gets 1. The left dot gets 2 and 1, and multiplies them, “sending” 2 to φ. By
the same procedure, the right dot sends 2 to φ; at φ we obtain 2 + 2 = 4 satisfying assignments for priority propositions.

To adapt this algorithm to our setting, note that in PASP probabilities are directly associated with atoms. Thus we do
not have to pursue a sophisticated encoding of probability values (as needed for instance when running Bayesian networks
inference through counting methods [9,19]). Instead we just have to take into account that each priority proposition is
associated with a probability, and all of them are stochastically independent. What happens then is that any leaf node
sends a 1 or a 0 up (from the satisfiability of a corresponding sub-formula). These numbers are then sent up across the
edges. When a number is sent from a sub-formula to another one through an edge labeled with a literal, the number is

236 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
multiplied by the probability of that literal. Also, the numbers must be added at non-leaf nodes containing sub-formulas,
and they must be multiplied at dots that represent separation into components. It should be noted that in our setting we
do not need to multiply these numbers by any factor when there are unassigned priority propositions: any such proposition
would lead to branches containing a number and 1 minus that number; as the numbers in these branches are to be added,
the effect of the unassigned proposition is just a factor 1.

To understand the algorithm, consider again Fig. 5. Suppose that the priority propositions are actually generated from
three probabilistic facts in a PASP program:

α :: A., β :: B., γ :: C ..

Node φ1 gets β and 1 − β; it adds both and sends 1 to the left dot. Node φ2 gets γ from its left child and 0 from its right
child; thus it sends γ to the left dot. Similarly, the right dot gets β from φ3 and 1 from φ4. Consequently φ gets αγ from
the left dot and (1 − α)β from the right dot; it adds both numbers thus producing the correct upper probability that φ is
satisfied: αγ + (1 − α)β .

7. Conclusion

Hopefully the reader is convinced that PASP offers an elegant way to code probabilistic questions. Most of the existing
literature on PASP focuses on acyclic or definite or stratified programs that are already quite powerful as they can capture
Bayesian networks and their relational variants, and even introduce recursive behavior. General probabilistic logic programs,
with disjunctive heads and non-stratified behavior, have been left aside, often viewed as pathological entities devoid of
semantics. The point of this paper is that, once a proper credal semantics is given, cyclic programs provide concise encodings
for probabilistic combinatorial problems. The semantics is actually straightforward and mathematically simple as it is based
on the well-known theory of two-monotone Choquet capacities. Many applications can be considered; just as an example,
one may be interested in the robustness of planning policies to uncertainty in initial conditions, with planning problems
encoded through ASP [3].

A more detailed study of expressivity should be pursued in future work. We have considered a particular notion of
“capture” in our analysis of the expressivity of PASP, but additional analysis may be able to find other interesting results.

The real challenge ahead is to build PASP solvers that can take on practical problems. The scheme we have outlined in
this paper is certainly a first step, aimed at demonstrating the basic operations that must still be refined in future work.
Our scheme has three steps: grounding, conversion to satisfiability, and (adapted) counting techniques. Each one of these
steps deserves further analysis:

1. Many ASP solvers selectively ground rules and facts [48]. In ASP, not all grounded rules and facts are needed in a
particular calculation; finding exactly the needed ones is the goal of a grounder. Future work should consider techniques
that selectively ground PASP programs.

2. There are several ASP solvers that are based on conversion to propositional satisfiability, but usually they work by
constructing formulas gradually, introducing clauses only as needed — this is important because the size of the whole
propositional formula may be exponential on the input program [62]. Similar techniques should be examined for PASP
in future work.

3. The adapted counting algorithm we have presented should be refined in future work. There are many techniques used
in DPLL that should be tested in the context of PASP. And there are entirely different counting techniques that could be
appropriate in various scenarios [3] and that deserve attention.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The first author has been partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), grant 312180/2018-7 (Pq). The second author has been partially supported by CNPq, grant 304012/2019-0 (Pq). The
work was also supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grants 2016/18841-0 and
2019/07665-4, and also by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - finance code 001.

Appendix A. A bit of computational complexity theory

The reader can find a more detailed discussion about computational complexity theory in Ref. [80].
A complexity class is a set of languages; a language is a set of strings; a string is a sequence of 0s and 1s.
A (nondeterministic) Turing machine is a tuple (Q , �, q0, qa, qr, δ) associated with a device containing a tape with sym-

bols and a head that can move over the tape and read/write symbols, where Q is a set of states, with q0/qa/qr respectively

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 237
the initial/accepting/rejecting states; � is the alphabet that includes 0, 1, and blank, with blank never present in the input;
and δ is the transition function that takes a pair in Q × � consisting of the current state and the current symbol in the
tape, are returns a subset of Q ×� ×{−1, 0, 1}, where each element of this subset indicates the next state, the next symbol
to be written in the tape, and the movement of the head (−1 means left, 1 means right, 0 means no motion). If the ma-
chine reaches qa , the input is accepted; if the machine reaches qr , the input is rejected. A language is decided by a Turing
machine if the machine accepts all strings in the language and rejects all strings not in the language. If acceptance/rejection
happens within a number of steps that is polynomial in the size of the input, the machine is said to be polynomial-time.
The well-known complexity class NP consists of those languages that can be decided by polynomial-time (nondeterministic)
Turing machines. Now if the transition function δ is modified such that there is a uniform probability distribution over the
set of triples produced for each pair state/symbol, then we obtain a probabilistic Turing machine. The complexity class PP
is the set of languages that are decided by a probabilistic Turing machine in a number of steps polynomial in the size of
the input, with an error probability strictly less than half for all input strings. Equivalently, PP is the class of languages
satisfying the following property: there is a polynomial-time Turing machine such that a string is in the language if and
only if more than half of the computation paths of the machine end up in the accepting state (all other paths end up in the
rejecting state).

If a Turing machine has a second pair tape/head, such that it can write a string to the secondary tape and then, in a
single step, it can read whether the string is in a language L or not, then the machine is said to have an oracle for L.
The class of languages that can be decided by machines defining complexity class C , with each machine allowed to use
an additional oracle for L, is denoted by CL . If D is another complexity class, then C D is defined to be

⋃
L∈D CL . The

polynomial hierarchy contains classes �p
k+1 = NP�

p
k for k > 1, with �p

1 = NP. Wagner’s counting hierarchy contains classes

PP and PP�
p
k for k > 0 [104].

A polynomial-time many-one reduction from language L to language L′ is an algorithm that, in a number of steps that
is polynomial in the size of the input, transforms a string
 ∈ L into a string
′ ∈L′ such that
 ∈ L if and only if
′ ∈L′ . If
there is such a reduction from any language in a complexity class C to a language L, then L is C-hard. If L is in C and is
C-hard, then L is C-complete.

References

[1] Alessandro Antonucci, Alessandro Facchini, A credal extension of independent choice logic, in: International Conference on Scalable Uncertainty
Management, 2018, pp. 35–49.

[2] Thomas Augustin, Frank P.A. Coolen, Gert de Cooman, Matthias C.M. Troffaes, Introduction to Imprecise Probabilities, Wiley, 2014.
[3] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, Peter Stuckey, #∃SAT: projected model counting, in: International Conference on Theory and Appli-

cations of Satisfiability Testing, 2015, pp. 121–137.
[4] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, Peter Stuckey, Stable model counting and its application in probabilistic logic programming, in:

AAAI, 2015, pp. 3468–3474.
[5] Fahiem Bacchus, Using first-order probability logic for the construction of Bayesian networks, in: Conference on Uncertainty in Artificial Intelligence,

1993, pp. 219–226.
[6] Chitta Baral, Michael Gelfond, Nelson Rushton, Probabilistic reasoning with answer sets, Theory Pract. Log. Program. 9 (1) (2009) 57–144.
[7] Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh, Handbook of Satisfiability, IOS Press, 2009.
[8] Ísmail Ílkan Ceylan, Thomas Lukasiewicz, Rafael Peñaloza, Complexity results for probabilistic Datalog± , in: European Conference on Artificial Intelli-

gence, 2016, pp. 1414–1422.
[9] Mark Chavira, Adnan Darwiche, On probabilistic inference by weighted model counting, Artif. Intell. 172 (6–7) (2008) 772–799.

[10] Robert T. Clemen, Making Hard Decisions: An Introduction to Decision Analysis, Duxbury Press, 1997.
[11] Vítor Santos Costa, David Page, Maleeha Qazi, James Cussens, CLP(BN): constraint logic programming for probabilistic knowledge, in: Uffe Kjaerulff,

Christopher Meek (Eds.), Conference on Uncertainty in Artificial Intelligence, San Francisco, California, Morgan-Kaufmann, 2003, pp. 517–524.
[12] Fabio G. Cozman, Languages for probabilistic modeling over structured and relational domains, in: A Guided Tour of Artificial Intelligence Research

Volume 2, 2020, pp. 247–283, chapter 9.
[13] Fabio G. Cozman, Denis D. Mauá, On the semantics and complexity of probabilistic logic programs, J. Artif. Intell. Res. 60 (2017) 221–262.
[14] Fabio G. Cozman, Denis D. Mauá, The complexity of Bayesian networks specified by propositional and relational languages, Artif. Intell. 262 (2018)

96–141.
[15] Fabio G. Cozman, Denis D. Mauá, The finite model theory of Bayesian network specifications: descriptive complexity and zero/one laws, Int. J. Approx.

Reason. 110 (2019) 107–126.
[16] Paulo C.G. da Costa, Kathryn B. Laskey, Of Klingons and starships: Bayesian logic for the 23rd century, in: Conference on Uncertainty in Artificial

Intelligence, 2005.
[17] E. Dantsin, Probabilistic logic programs and their semantics, in: Proceedings of the First Russian Conference on Logic Programming, Springer, 1990,

pp. 152–164.
[18] Evgeny Dantsin, Thomas Eiter, Andrei Voronkov, Complexity and expressive power of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–425.
[19] Adnan Darwiche, Modeling and Reasoning with Bayesian Networks, Cambridge University Press, 2009.
[20] Luc De Raedt, Logical and Relational Learning, Springer, 2008.
[21] Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen Muggleton, Probabilistic Inductive Logic Programming, Springer, 2008.
[22] Alex Dekhtyar, Michael Dekhtyar, The theory of interval probabilistic programs, Ann. Math. Artif. Intell. 55 (2009) 355–388.
[23] Alex Dekhtyar, V.S. Subrahmanian, Hybrid probabilistic programs, J. Log. Program. 43 (3) (2000) 187–250.
[24] Heinz-Dieter Ebbinghaus, J. Flum, Finite Model Theory, Springer-Verlag, 1995.
[25] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, Declarative problem-solving using the DLV system, in: Logic-Based Artificial Intelligence,

Springer, 2000, pp. 79–103.
[26] Thomas Eiter, Georg Gottlob, Heikki Mannila, Disjunctive datalog, ACM Trans. Database Syst. 22 (3) (1997) 364–418.
[27] Thomas Eiter, Wolfgang Faber, Michael Fink, Stefan Woltran, Complexity results for answer set programming with bounded predicate arities and

implications, Ann. Math. Artif. Intell. 51 (2007) 123–165.

http://refhub.elsevier.com/S0888-613X(20)30201-2/bib72D183D49ECA2EC32321D3235E41D02Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib72D183D49ECA2EC32321D3235E41D02Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibCC2EF1889A8235F911DE147A8A11054Fs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib4E1C85C827A0CB2E2973C8FCD2514F9Cs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib4E1C85C827A0CB2E2973C8FCD2514F9Cs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib6448F54430F1ACE9ABE32215D9CF04F8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib6448F54430F1ACE9ABE32215D9CF04F8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB05957253ADCAD45DBAF2F5E2C2B800Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB05957253ADCAD45DBAF2F5E2C2B800Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibDC71EA64EC6B42893276278BAD691D45s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1F95D0F71C3D1EEBBBD44D80BCC6BD22s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib15EE388D59F65EA097D38E86C592D4BDs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib15EE388D59F65EA097D38E86C592D4BDs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib6BB3CE91DA843D108E2459A03F90E0A5s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibFD86C567FFA3BD396C30BD2EB30F8D10s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib361E389B8A7155D6D758679B97F0C6DAs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib361E389B8A7155D6D758679B97F0C6DAs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibF3AFD05C667B641C805D1CBD8CDB79ACs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibF3AFD05C667B641C805D1CBD8CDB79ACs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib5F5E49563F9CF179597A10ECBA54EF72s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1BD15B43DEE33BD06C0703B88575D58As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1BD15B43DEE33BD06C0703B88575D58As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib98F4535AB0DADDF138FB16A4D63EA945s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib98F4535AB0DADDF138FB16A4D63EA945s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib93D84F7E1C49875D15111D79099D6E51s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib93D84F7E1C49875D15111D79099D6E51s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibA2CC7108976C57FF5B43CB8F0C7DC5D8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibA2CC7108976C57FF5B43CB8F0C7DC5D8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibEBD39D057E66B12BAC86FFC405CB4AAEs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibBE1FDCE09DB67D5277067CF730034BB8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib860A9AA8CE35371253C56ED7B0E1B6A3s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib77C7655CF8529E6C9FA6B8EC81354FCCs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib891459A7815B474B1C0263D5A0014AEBs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibDFE83F76370514F4741B6C510E7E6663s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE69EC1DF0B5AA783379B62E4850A5938s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib8C8BB87E210259B44C29108B692DA871s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib8C8BB87E210259B44C29108B692DA871s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib73C1BB0E551C455A9A0C783B9BC61247s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib12898B64151A3CED0C2438FE649A1B89s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib12898B64151A3CED0C2438FE649A1B89s1

238 F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239
[28] Thomas Eiter, Giovambattista Ianni, Thomas Krennwalner, Answer set programming: a primer, in: Reasoning Web: Semantic Technologies for Infor-
mation Systems, 2009.

[29] Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Semantics and complexity of recursive aggregates in answer set programming, Artif. Intell. 175 (2011)
278–298.

[30] D. Fierens, H. Blockeel, M. Bruynooghe, J. Ramon, Logical Bayesian networks and their relation to other probabilistic logical models, in: Conference on
Inductive Logic Pogramming, 2005, pp. 121–135.

[31] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shrerionov, Bernd Gutmann, Gerda Janssens, Luc De Raedt, Inference and learning in
probabilistic logic programs using weighted Boolean formulas, Theory Pract. Log. Program. 15 (3) (2014) 358–401.

[32] Nir Friedman, Lise Getoor, Daphne Koller, A. Pfeffer, Learning probabilistic relational models, in: International Joint Conference on Artificial Intelli-
gence, 1999, pp. 1300–1309.

[33] Norbert Fuhr, Probabilistic Datalog – a logic for powerful retrieval methods, in: Conference on Research and Development in Information Retrieval,
Seattle, Washington, 1995, pp. 282–290.

[34] Michael Gelfond, Vladimir Lifschitz, The stable model semantics for logic programming, in: International Logic Programming Conference and Sympo-
sium, vol. 88, 1988, pp. 1070–1080.

[35] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, Ben Taskar, Probabilistic relational models, in: Introduction to Statistical Relational Learning, MIT
Press, 2007.

[36] Lise Getoor, Ben Taskar, Introduction to Statistical Relational Learning, MIT Press, 2007.
[37] Walter R. Gilks, Andrew Thomas, David Spiegelhalter, A language and program for complex Bayesian modelling, Statistician 43 (1993) 169–178.
[38] Sabine Glesner, Daphne Koller, Constructing flexible dynamic belief networks from first-order probabilistic knowledge bases, in: Symbolic and Quan-

titative Approaches to Reasoning with Uncertainty, 1995, pp. 217–226.
[39] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, Sriram K. Rajmani, Probabilistic programming, in: Future of Software Engineering, ACM,

2014, pp. 167–181.
[40] J. Gordon, E.H. Shortliffe, The Dempster-Shafer theory of evidence, in: E.H. Shortliffe, B.G. Buchanan (Eds.), Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project, Addison-Wesley, 1984, pp. 272–292, chapter 13.
[41] Erich Grädel, Finite model theory and descriptive complexity, in: Finite Model Theory and Its Applications, Springer, 2007, pp. 125–229.
[42] Ulrich Guntzer, Werner Kiessling, Helmut Thone, New directions for uncertainty reasoning in deductive databases, in: ACM SIGMOD Conference, 1991,

pp. 178–187.
[43] Spyros Hadjichristodoulou, David S. Warren, Probabilistic logic programming with well-founded negation, in: International Symposium on Multiple-

Valued Logic, 2012, pp. 232–237.
[44] David Heckerman, Christopher Meek, Daphne Koller, Probabilistic entity-relationship models, PRMs, and plate models, in: L. Getoor, B. Taskar (Eds.),

Introduction to Statistical Relational Learning, MIT Press, 2007, pp. 201–238.
[45] Michael C. Horsch, David Poole, A dynamic approach to probabilistic inference using Bayesian networks, in: Conference of Uncertainty in Artificial

Intelligence, 1990, pp. 155–161.
[46] Manfred Jaeger, Complex probabilistic modeling with recursive relational Bayesian networks, Ann. Math. Artif. Intell. 32 (2001) 179–220.
[47] Tomi Janhunen, Representing normal programs with clauses, in: European Conference on Artificial Intelligence, ECAI, 2004, pp. 358–362.
[48] Tomi Janhunen, Ilkka Niemela, The answer set programming paradigm, AI Mag. 37 (3) (2016) 13–24.
[49] Kristian Kersting, Lifted probabilistic inference, in: L. De Raedt, C. Bessiere, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, P. Lucas (Eds.), European

Conference on Artificial Intelligence, IOS Press, 2012.
[50] Kristian Kersting, Luc De Raedt, Stefan Kramer, Interpreting Bayesian logic programs, in: AAAI-2000 Workshop on Learning Statistical Models from

Relational Data, 2000.
[51] Werner Kiessling, Helmut Thone, Ulrich Guntzer, Database support for problematic knowledge, in: EDBT, in: LNCS, vol. 580, Springer, 1992,

pp. 421–436.
[52] M. Kifer, A. Li, On the semantics of rule-based expert systems with uncertainty, in: ICDT, in: Lecture Notes in Computer Science, Springer Verlag,

1988, pp. 102–117.
[53] M. Kifer, V.S. Subrahmanyan, Theory of generalized annotated logic programming and its applications, J. Log. Program. 12 (4) (1992) 335–367.
[54] Daphne Koller, Probabilistic relational models, in: Inductive Logic Programming, in: LNCS, vol. 1634, Springer, 1999, pp. 3–13.
[55] Robert Kowalski, History of logic programming, in: Joerg Siekmann (Ed.), Computational Logic, Elsevier, 2014, pp. 523–569.
[56] Lars V.S. Lakshmanan, Fereidoon Sadri, Probabilistic deductive databases, in: Symposium on Logic Programming, 1994, pp. 254–268.
[57] Steffen L. Lauritzen, David J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. R.

Stat. Soc. B 50 (2) (1988) 157–224.
[58] Joohyung Lee, Yi Wang, A probabilistic extension of the stable model semantics, in: AAAI Spring Symposium on Logical Formalizations of Common-

sense Reasoning, 2015, pp. 96–102.
[59] Joohyung Lee, Zhun Yang, LPMLN weak constraints, and P-log, in: AAAI Conference on Artificial Intelligence, 2017, pp. 1170–1177.
[60] Isaac Levi, The Enterprise of Knowledge, MIT Press, Cambridge, Massachusetts, 1980.
[61] Y. Lierler, Disjunctive Answer Set Programming via satisfiability, in: Answer Set Programming, vol. 142, CEUR Workshop Proceedings, 2005.
[62] Vladimir Lifschitz, Alexander Razborov, Why are there so many loop formulas?, ACM Trans. Comput. Log. 7 (2) (2006) 261–268.
[63] Thomas Lukasiewicz, Probabilistic logic programming with conditional constraints, ACM Trans. Comput. Log. 2 (3) (2001) 289–339.
[64] Thomas Lukasiewicz, Probabilistic description logic programs, in: European Conference on Symbolic and Quantitative Approaches to Reasoning with

Uncertainty, ECSQARU 2005, Springer, Barcelona, Spain, July 2005, pp. 737–749.
[65] Thomas Lukasiewicz, Probabilistic description logic programs, Int. J. Approx. Reason. 45 (2) (2007) 288–307.
[66] Suzanne Mahoney, K.B. Laskey, Network engineering for complex belief networks, in: Conference on Uncertainty in Artificial Intelligence, 1996.
[67] Victor Marek, Jeffrey B. Remmel, On the expressibility of stable logic programming, Theory Pract. Log. Program. 3 (4) (2003) 551–567.
[68] Victor Marek, Miroslaw Truszczynski, Stable models and an alternative logic programming paradigm, in: The Logic Programming Paradigm: A 25-Year

Perspective, Springer Verlag, 1999, pp. 375–398.
[69] Denis Deratani Mauá, Fabio Gagliardi Cozman, Complexity results for probabilistic answer set programming, Int. J. Approx. Reason. 118 (2020)

133–154.
[70] Steffen Michels, Arjen Hommersom, Peter J.F. Lucas, Marina Velikova, A new probabilistic constraint logic programming language based on a gener-

alised distribution semantics, Artif. Intell. J. 228 (2015) 1–44.
[71] Brian Milch, Stuart Russell, First-order probabilistic languages: into the unknown, in: Int. Conference on Inductive Logic Programming, 2007.
[72] Jack Minker, Overview of disjunctive logic programming, Ann. Math. Artif. Intell. 12 (1994) 1–24.
[73] Ilya Molchanov, Theory of Random Sets, Springer, 2005.
[74] Matthias Nickles, Alessandra Mileo, A system for probabilistic inductive answer set programming, in: International Conference on Scalable Uncertainty

Management, 2015, pp. 99–105.
[75] Matthias Nickles, A tool for probabilistic reasoning based on logic programming and first-order theories under stable model semantics, in: European

Conference on Logics in Artificial Intelligence, JELIA, 2016, pp. 369–384.

http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE431C4F077805CC43AA42D0F4ADE575As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE431C4F077805CC43AA42D0F4ADE575As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2521BC952C52E887EEB717FCD202FDF6s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2521BC952C52E887EEB717FCD202FDF6s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib0DF6641A0DDC36DA247D0AD56496305Ds1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib0DF6641A0DDC36DA247D0AD56496305Ds1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib813E32F20A418493E96B73908FBC7026s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib813E32F20A418493E96B73908FBC7026s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib7E5F2A56DF36A3844B76FB6746D0BC1As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib7E5F2A56DF36A3844B76FB6746D0BC1As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1E6574625378AF9EA76B48635035ADE5s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1E6574625378AF9EA76B48635035ADE5s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibAF410FDDB29DADD997B9A9BAA6DEA65Cs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibAF410FDDB29DADD997B9A9BAA6DEA65Cs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib502304E98EC60BBA58E08E0225573B4Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib502304E98EC60BBA58E08E0225573B4Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibCA3577BC9A9A76C9E501EE9AC0047CA4s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib14A730106812E01C58C9776872C4ED6Cs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibA764FC72E7E8EFE7D6E699BAF79E4236s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibA764FC72E7E8EFE7D6E699BAF79E4236s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib73254394A321F365A8C71DCDC70A383As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib73254394A321F365A8C71DCDC70A383As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibCAA02337A8B6CBD487D751B414B2C168s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibCAA02337A8B6CBD487D751B414B2C168s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib041680CEADE4DC27144FAB203004CB2As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib46C9EE978226699F0D90DF4171CB4782s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib46C9EE978226699F0D90DF4171CB4782s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib5A183DC3FE2EFF3DF133E20143EA98B2s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib5A183DC3FE2EFF3DF133E20143EA98B2s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib58775DE0C2882757EA05F7B1512260EFs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib58775DE0C2882757EA05F7B1512260EFs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib73DF95629DAE7EBF44ED60C616162191s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib73DF95629DAE7EBF44ED60C616162191s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB481A0B20270763E17140E5A0456DCE6s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib602365D7BAFD306AE315C63656654F0Fs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib7EDC12DEB36D616E41FA9B212A9FF4CDs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib627F33A1188B2AA93D26E77E20FD1E39s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib627F33A1188B2AA93D26E77E20FD1E39s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib9E26B9F743456A0CA77C812184AEB431s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib9E26B9F743456A0CA77C812184AEB431s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC193CE6C6341FD2D656D031ABED06E6Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC193CE6C6341FD2D656D031ABED06E6Es1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE81EFD6D06C04DA7B872CD45A9E37CE9s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE81EFD6D06C04DA7B872CD45A9E37CE9s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibDA182364A94985CDA9E28E5C75AE031Cs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib26922AA1840AA1581918E545A9E94EDDs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib7D558343DAAE81A535E85D4AC78199A7s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE668161AAC640983B7A5E951413EC175s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib60E0DFF67AC7EC4E098A13DE1C29BE79s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib60E0DFF67AC7EC4E098A13DE1C29BE79s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2CB7EF58CC530B64BC50D96298602DA7s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2CB7EF58CC530B64BC50D96298602DA7s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib4695958EE14805A118D980E082ED4314s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1EF9CF51F2D1AF465E0A8C201DD1C4DAs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibEDC9D59F134B1C8A576374BE82CDE596s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC749A7AA9C14BC776AE79E0A327CF053s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC979E8F92A7E7B938DB577311E186557s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib76E7412E68A542050CE5BCB3AD2A1F92s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib76E7412E68A542050CE5BCB3AD2A1F92s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib9776B08290ED96F1F9C02224D0A99A59s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib086FD177B151EC3CD447266E10D359E3s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibADC11D580125E0FF9D49253234ABBBA1s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib16096D31AC1927399362A168523A37B9s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib16096D31AC1927399362A168523A37B9s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib4E569F2DB7FF2CB71187441CA60AEF21s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib4E569F2DB7FF2CB71187441CA60AEF21s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2A73DF550E827F5038D87D614D9DDF56s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2A73DF550E827F5038D87D614D9DDF56s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib36A9010FEBCCE0D85D8ACA49357A0B55s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB4CC2C39E121FA477F5FC5017DFD737As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib6070608BD488B89B27B36515B4C33D73s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB9F0628EB725ABD7DACEFD11B4AD0707s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB9F0628EB725ABD7DACEFD11B4AD0707s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB42EFEC298F77622C56889488D49CA8Ds1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB42EFEC298F77622C56889488D49CA8Ds1

F.G. Cozman, D.D. Mauá / International Journal of Approximate Reasoning 125 (2020) 218–239 239
[76] Raymond Ng, V.S. Subrahmanian, Probabilistic logic programming, Inf. Comput. 101 (2) (1992) 150–201.
[77] Liem Ngo, Peter Haddawy, Answering queries from context-sensitive probabilistic knowledge bases, Theor. Comput. Sci. 171 (1–2) (1997) 147–177.
[78] Ilkka Niemela, Logic programs with stable model semantics as a constraint programming paradigm, Ann. Math. Artif. Intell. 25 (1999) 241–273.
[79] Nils J. Nilsson, Probabilistic logic, Artif. Intell. 28 (1986) 71–87.
[80] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing, 1994.
[81] David Poole, Representing Bayesian networks within Probabilistic Horn Abduction, in: Conference on Uncertainty in Artificial Intelligence, 1991,

pp. 271–278.
[82] David Poole, Probabilistic Horn abduction and Bayesian networks, Artif. Intell. 64 (1993) 81–129.
[83] David Poole, The Independent Choice Logic for modelling multiple agents under uncertainty, Artif. Intell. 94 (1/2) (1997) 7–56.
[84] David Poole, The Independent Choice Logic and beyond, in: Luc De Raedt, Paolo Frasconi, Kristian Kersting, Stephen Muggleton (Eds.), Probabilistic

Inductive Logic Programming, in: Lecture Notes in Computer Science, vol. 4911, Springer, 2008, pp. 222–243.
[85] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, David Poole, Statistical Relational Artificial Intelligence: Logic, Probability, and Computation, Mor-

gan & Claypool Publishers, 2016.
[86] Fabrizio Riguzzi, The distribution semantics is well-defined for all normal programs, in: Fabrizio Riguzzi, Joost Vennekens (Eds.), International Work-

shop on Probabilistic Logic Programming, in: CEUR Workshop Proceedings, vol. 1413, 2015, pp. 69–84.
[87] Fabrizio Riguzzi, Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning, River Publishers, 2018.
[88] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, A history of probabilistic inductive logic programming, Front. Robot. AI 1 (2014) 1–5.
[89] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, Evelina Lamma, A survey of lifted inference approaches for probabilistic logic program-

ming under the distribution semantics, Int. J. Approx. Reason. 80 (2017) 313–333.
[90] Taisuke Sato, A statistical learning method for logic programs with distribution semantics, in: Conference on Logic Programming, 1995, pp. 715–729.
[91] Taisuke Sato, Yoshitaka Kameya, Parameter learning of logic programs for symbolic-statistical modeling, J. Artif. Intell. Res. 15 (2001) 391–454.
[92] Taisuke Sato, Yoshitaka Kameya, Neng-Fa Zhou, Generative modeling with failure in PRISM, in: International Joint Conference on Artificial Intelligence,

2005, pp. 847–852.
[93] Ehud Y. Shapiro, Logic programs with uncertainties: a tool for implementing rule-based systems, in: International Joint Conference on Artificial

Intelligence, 1983, pp. 529–532.
[94] E.H. Shortliffe, B.G. Buchanan, Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, Addison-Wesley,

Reading, Mass, 1984.
[95] V.S. Subrahmanian, Amalgamating knowledge bases, ACM Trans. Database Syst. 19 (2) (1994) 291–331.
[96] Helmut Thone, Ulrich Guntzer, Werner Kießling, Increased robustness of Bayesian networks through probability intervals, Int. J. Approx. Reason. 17

(1997) 37–76.
[97] Jacobo Tóran, Complexity classes defined by counting quantifiers, J. ACM 38 (3) (1991) 753–774.
[98] Calin Rares Turliuc, Luke Dickens, Alessandra Russo, Krysia Broda, Probabilistic abductive logic programming using Dirichlet priors, Int. J. Approx.

Reason. 78 (2016) 223–240.
[99] Guy Van den Broeck, Dan Suciu, Query processing on probabilistic: a survey, Found. Trends® Databases (2017) 197–341.

[100] M.H. Van Emden, Quantitative deduction and its fixpoint theory, J. Log. Program. 3 (1) (1986) 37–53.
[101] Allen Van Gelder, Kenneth A. Ross, John S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (3) (1991) 620–650.
[102] Moshe Y. Vardi, The complexity of relational query languages, in: Annual ACM Symposium on Theory of Computing, 1982, pp. 137–146.
[103] Joost Vennekens, Sofie Verbaeten, Maurice Bruynooghe, Logic programs with annotated disjunctions, in: Logic Programming - ICLP, in: LNCS, vol. 3132,

2004, pp. 431–445.
[104] Klaus W. Wagner, The complexity of combinatorial problems with succinct input representation, Acta Inform. 23 (1986) 325–356.
[105] Hui Wan, Michael Kifer, Belief logic programming: uncertainty reasoning with correlation of evidence, in: International Conference on Logic Program-

ming and Nonmonotonic Reasoning, 2009, pp. 316–328.
[106] M.P. Wellman, J.S. Breese, R.P. Goldman, From knowledge bases to decision models, Knowl. Eng. Rev. 7 (1) (1992) 35–53.

http://refhub.elsevier.com/S0888-613X(20)30201-2/bib81E1C1D45519CE3E59A32F9CFEB42709s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib30FA049E3B65707415DF5CC36C7E45CCs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib5E834390A8D98679A927D415CD872292s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibDFA8D8C489D0DD10520C169C8A56BA4Bs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC5655DC08EB674778C7E7A18648B4184s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib07E7B409BD333E58846EA7BA6D487805s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib07E7B409BD333E58846EA7BA6D487805s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibF426F46EA725197FD252570AC801F837s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib07B448AFA6429A6855BCD5D18307FF88s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC34190E21AFF68A7A431A3D47674E760s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibC34190E21AFF68A7A431A3D47674E760s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib0AF638ECE09DEC1ED9A1C7C5AE7440E8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib0AF638ECE09DEC1ED9A1C7C5AE7440E8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib53B9D6AC1083BD372BA36DE1EC34844As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib53B9D6AC1083BD372BA36DE1EC34844As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib76D1D16090CCFF832CB03E2E69B0B5D7s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibD292BE260941A7C1B9CAC61F0B07B2D0s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibBC902E3F692BA7C5A4ADCE1A3F241492s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibBC902E3F692BA7C5A4ADCE1A3F241492s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibB2A0920DF3515E0A137F21985D8205E9s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE5C0065B2625F9E7544E09DF63B6CEB2s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1B5FCCB4E2CBF1C952263B9CE90CF55Bs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1B5FCCB4E2CBF1C952263B9CE90CF55Bs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib507DA3CFD01ABA15457E88EBE60ED1D8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib507DA3CFD01ABA15457E88EBE60ED1D8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib945509B1CDBB2336203CF90021A72C84s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib945509B1CDBB2336203CF90021A72C84s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibF3F3211DC9E7E2BCBA6B392B5A87F99Bs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2C4840C61677A16941E3F95361F49434s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2C4840C61677A16941E3F95361F49434s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib1010C647B4F36B65BA137AF5A8CF3FD4s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib6FB01757D6542111617F8C7E67E0FADBs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib6FB01757D6542111617F8C7E67E0FADBs1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibCC01C5BCC3EC98E09617FDE34DF6D1E3s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibE98A64C20558BF6CAE81F69D75C00F1As1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib2A4506563C395A5618AE66FFA583F8B6s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib5E088A9AC160076AD0D9F27320A39400s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibA122CF85ED46E594EC0BD10322740936s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibA122CF85ED46E594EC0BD10322740936s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibECD37340EF96CFD27CCC24C81190B3E8s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibF08E6EB5E6B4086ABFA71B1CBD3FC650s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bibF08E6EB5E6B4086ABFA71B1CBD3FC650s1
http://refhub.elsevier.com/S0888-613X(20)30201-2/bib87BABA48C2E4EF3D6C3535472CA9DD7As1

	The joy of Probabilistic Answer Set Programming: Semantics, complexity, expressivity, inference
	1 Introduction
	2 A bit of Answer Set Programming
	3 From the origins of Prolog to the credal semantics
	3.1 Mixing logic programs and uncertainty
	3.2 The path to the distribution semantics and its close relatives
	3.3 Probabilistic relational models and probabilistic inductive logic programming
	3.4 The evolution and the challenges of the distribution semantics
	3.5 Semantics based on credal sets

	4 The joy of Probabilistic Answer Set Programming
	4.1 Nondisjunctive acyclic programs
	4.2 Nondisjunctive stratified programs
	4.3 The general case
	4.4 Some comments on interpretation

	5 Complexity and expressivity
	5.1 The computational complexity of PASP
	5.2 The expressivity of PASP

	6 Computing upper probabilities
	7 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A A bit of computational complexity theory
	References

