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Probabilistic Answer Set Programming (PASP) combines rules, facts, and independent 
probabilistic facts. We argue that a very useful modeling paradigm is obtained by adopting 
a particular semantics for PASP, where one associates a credal set with each consistent 
program. We examine the basic properties of PASP under this credal semantics, in 
particular presenting novel results on its complexity and its expressivity, and we introduce 
an inference algorithm to compute (upper) probabilities given a program.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Combinations of probabilities and rules have been investigated for decades under the banner of “probabilistic logic 
programming”. Most research and practice has gradually concentrated on Sato’s distribution semantics and its variants. The 
key idea in Sato’s distribution semantics is to have probabilities associated with a set of independent events in such a way 
that a unique probability measure is induced over all interpretations of ground atoms.

However, if we try to apply Sato’s strategy to general answer set programs, the distribution semantics fails to guarantee 
the specification of a single probability distribution over ground atoms under the usual two-valued logic. One possible 
solution is to extend Sato’s semantics so that sets of probability measures can be specified by answer set programs.

The main goal of this paper is to show that Probabilistic Answer Set Programming (PASP) offers an elegant and enjoyable 
modeling language when coupled with a particular semantics based on sets of probability measures. As such sets are often 
referred to as credal sets, we refer to the latter extended semantics as the credal semantics. Instead of looking at the credal 
semantics of PASP merely as a way to lend meaning to pathological logic programs that defy Sato’s semantics, here the 
credal semantics is viewed as a probabilistic programming paradigm that goes beyond existing modeling languages. In short, 
we propose a programming style where one can ask questions about probability distributions satisfying sets of constraints. 
A similar movement happened some twenty years ago in logic programming, when it became clear that the stable model 
semantics was not just a strategy to handle pathological programs, but in fact an attractive programming paradigm in itself.

We also examine some key properties of PASP. We develop analogues to combined and data complexity that take into 
account the probabilistic character of PASP. We derive the descriptive complexity of PASP, proving in essence that it captures 
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the class PP�
p
2 ; that is, the class of polynomial nondeterministic Turing machines that count accepting paths with the 

support of NPNP oracles.
Finally, we introduce an inference algorithm that calculates upper probabilities given a PASP program. The algorithm 

uses the fact that answer set programs can be translated into satisfiability problems, and builds upon existing counting 
techniques for extended satisfiability problems.

The paper is organized as follows. Section 2 reviews basic concepts of logic programming, and fixes some needed termi-
nology and notation. Section 3 surveys the relevant literature on probabilistic logic programming from a particular historical 
perspective. Section 4 discusses the proposed programming paradigm. Section 5 examines properties of PASP and Section 6
presents our inference algorithm. A few concluding comments are collected in Section 7.

2. A bit of Answer Set Programming

In this section we present relevant syntactic and semantic notions related to Answer Set Programming (ASP). More 
detailed technical discussion can be found in Ref. [28].

In this paper we employ atoms, where an atom is written as r(t1, . . . , tk) with r a predicate of arity k and each t j either 
a constant or a logical variable. We do not use functions in this paper. An atom without variables is a ground atom. A literal
is either an atom r(t1, . . . , tk) where r is a predicate of arity k and each ti is either a constant or a logical variable, or an 
atom preceded by ¬ (then we say the atom is strongly negated; the logical value of the expression is given by usual Boolean 
negation).

An ASP program is a set of rules such as

H1 ∨ · · · ∨ Hm :− S1, . . . , Sn.,

where each Hi is a literal, each S j is either a literal A or a literal A preceded by not (that is, not A), and m + n > 0. The 
expression H1 ∨ · · · ∨ Hm is called the head of the rule, and S1, . . . , Sn is the body; each Si is called a subgoal. For instance, 
here is a rule meaning that if some individual X is a node that is not known to be barred, then X is red or green or blue:

red(X)∨green(X)∨blue(X) :− node(X),not barred(X)..

If a rule is such that m ≤ 1, it is said to be nondisjunctive; if m = 1 it is said to be normal. A rule with m = 0 is called a 
constraint. An example of constraint is:

:− edge(X, Y ), red(X), red(Y ).,

meaning that two adjacent nodes cannot both be colored red. A normal rule with n = 0 is called a fact, and instead of 
writing H :− ., we just write H ..

The dependency graph of a program is a graph where each grounded atom is a node, and where, for each grounded rule, 
there are edges from the atoms in the body to the atoms in the head. The edge is negative if the atom is the body is 
preceded by not (for some rule), and is positive otherwise. An acyclic program is a program with an acyclic dependency 
graph.

A program with normal rules is said to be normal. A program that is normal and contains no not and no ¬ is said to be 
definite. A program is stratified if and only if there is no cycle in the dependency graph that contains a negative edge (that 
is, an edge that goes through a negation). Every definite program is stratified. A propositional program is a program without 
logical variables.

The Herbrand base of a program is the set of ground literals (ground atoms and their strongly negated versions) that 
can be produced by combining all predicates and constants in the program. An interpretation is a consistent subset of the 
Herbrand base of the program (that is, it does not contain an atom and its strong negation). A ground literal is true (resp., 
false) with respect to an interpretation when it is (resp., is not) in the interpretation. Similarly, a ground subgoal A, where 
A is a ground literal, is true (resp., false) with respect to an interpretation when A is (resp., is not) in the interpretation, 
while not A is true (resp., false) when A is not (resp., is) in the interpretation. It is worth examining the semantics of not: 
intuitively, not A means that literal A is not known explicitly to be true (in fact we may have not ¬A where A is an atom, 
meaning that atom A is not known explicitly to be false). A ground rule is satisfied by an interpretation if and only if either 
some of the subgoals in the body are false or all the subgoals in the body and some of the literals in the head are true with 
respect to the interpretation. In that definition we assume that the head of a constraint is never satisfied (i.e., a constraint 
is satisfied if and only if some of its subgoals are false).

A model of a program is an interpretation that satisfies all the rules of the program. A model I of a program is minimal
if and only if there exists no model J of the program such that J ⊂ I .

Every definite program has a unique minimal model; hence it is natural to take this model as the semantics of the 
program. With negation, there may be no unique minimal model, and there are several proposed semantics [18].

The stable model semantics is based on reducts, defined as follows. Given a program P and an interpretation I , their 
reduct PI is the propositional program obtained by first removing all grounded rules with not A in their body and A ∈ I , 
and then by removing each subgoal not A from all remaining grounded rules. A stable model of P is an interpretation I
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that is a minimal model of the reduct PI . The set of stable models is the semantics of P. Note that a program may fail to 
have a stable model: an example is the single-rule program A :− not A..

Intuitively: if we think of an interpretation as the set of atoms that are assumed true/false, then the stable models of a 
program are those interpretations that, once assumed, are again obtained by applying the rules of the program. The stable 
models of a logic program are its answer sets.

Answer sets were proposed as a new programming paradigm in 1999 [68,78], where one writes down rules and con-
straints that characterize a problem in such a way that answer sets are solutions of the problem. Solvers that find answer 
sets for ASP are now popular, usually operating within a “Guess & Check” methodology. The idea is to use disjunctive rules 
to guess solutions nondeterministically, and constraints to check whether interpretations are actually solutions [48]. An 
example should illustrate the idea.

Suppose we are given a graph, encoded by specifying its nodes and edges, say node(n1)., node(n2)., . . . , edge(n1, n2)., . . . . 
The following program asserts that each node must have one color, and that no two adjacent nodes may share the same 
color:

red(X) ∨ green(X) ∨ blue(X) :− node(X).
:− edge(X, Y ), red(X), red(Y ).
:− edge(X, Y ),green(X),green(Y ).
:− edge(X, Y ),blue(X),blue(Y )..

Any answer set for the above program is a three-coloring; failure to have an answer set signals failure to have a three-
coloring. One can think of the program as first guessing a color for each node, and then checking whether the required 
constraint is respected.

Popular ASP packages have additional features such as aggregates [29]. We avoid these features here as they would take 
us too far.

3. From the origins of Prolog to the credal semantics

In this section we review some of the history behind probabilistic logic programming, emphasizing design decisions that 
have gradually moved in the direction of the credal semantics. The reader who wishes to skip historical matters may jump 
to the next section.

3.1. Mixing logic programs and uncertainty

A large part of logic programming, whose origins can be traced back to the sixties [55], is based on rules such as:

H ← B1 ∧ B2 ∧ · · · ∧ Bn, (1)

where all H and Bi are atoms. Programs with rules such as Expression (1) have a single minimal model.
During the seventies rules were enlarged with negation as failure, where each atom Bi in Expression (1) may appear 

negated as not Bi . There was then a long debate on the best semantics to adopt in the presence of negation as failure.
Another relevant feature of the seventies was the gradual development of expert systems, many of them based on 

rules. One notable expert system was MYCIN, where “certainty factors” were coupled to if-then rules, on the grounds that 
probability theory would face difficulties against scarce data and uncertain information [94].1 The same term “certainty 
factor” was used by Shapiro in 1983 to attach numbers to atoms in Prolog-style rules [93], later to be given a probabilistic 
interpretation [52]. Say for instance that a single rule A ← B ∧ C is present with both B and C getting 0.5; then the rule 
assigns 0.25 to A.

During the eighties various facets of uncertainty were captured by “annotated” extensions of logic programming, often 
with connections to possibilistic and fuzzy logics [53,100]. The typical annotated logic rule has syntax:

H : ν ← B1 : μ1 ∧ B2 : μ2 ∧ · · · ∧ Bn : μn, (2)

with H and each Bi as before, perhaps with negation in the body, while ν and each μi are annotations. Usually the 
annotations are numbers, but many other possibilities have been contemplated; for instance, annotations may be intervals 
carrying belief and plausibility as prescribed by Dempster-Shafer theory [105].

At the cost of sacrificing some chronological consistency, in the remainder of this section we review a long line of 
proposals that mix rules and probability intervals.

A notable approach by Ng and Subrahmanian appeared in 1992 [76] by pursuing interval-valued annotations. They 
considered annotated clauses as in Expression (2), but where annotations are probability intervals. If A : [0.2, 0.3] is an 

1 The semantics of certainty factors generated much debate and eventually was linked to Dempster-Shafer theory [40], where each event is associated 
with an interval between its belief and its plausibility. The belief functions employed in Dempster-Shafer theory are infinitely monotone Choquet capacities, 
objects that will be important later in this paper.
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annotated atom, the intended reading is “The probability of A belongs to the interval [0.2, 0.3]”. To use an example by Ng 
and Subrahmanian, the following annotated clause

path(X, Y ) : [0.85,1] ← connect(X, Z) : [1,1] ∧ path(Z , Y ) : [0.75,1]
says that if there is a connection between X and Z , and a path from Z and Y with probability at least 0.75, then there is a 
path between X and Y with probability at least 0.85. Ng and Subrahmanian studied the models of such annotated clauses 
and techniques to compute probability intervals, in work that was later expanded in many directions [95].

Lakshmanan and Sadri proposed a somewhat intimidating syntax for rules [56]:

H
〈[a,b],[c,d]〉←−−−−−− B1 ∧ B2 ∧ · · · ∧ Bn,

where [a, b] conveys the “belief” in favor of H and [c, d] conveys the “doubt” against H , both of them endowed with 
probabilistic meaning. A more recent effort by Dekhtyar and Subrahmanian investigated hybrid probabilistic programs, where 
one can specify relations of dependence or independence as well as operations to combine probabilities in annotated rules 
[23].

We must also mention the probabilistic logic programming scheme proposed by Lukasiewicz [63], where the syntax 
(H |B)[a, b] is used to indicate that the conditional probability of H given B is in [a, b]. Thus each “rule” is in fact a 
constraint on conditional probabilities. Similarly, another research program that started during the nineties [42,51] looked 
into rules of the form

H
[a,b]←−− B1 ∧ B2 ∧ · · · ∧ Bn,

where a and b are interpreted respectively as lower and upper bounds on conditional probabilities for the head given 
the body. That work emphasized independence relations and connections with Bayesian networks (eventually investigating 
Bayesian networks endowed with probability intervals [96]).

3.2. The path to the distribution semantics and its close relatives

Dantsin proposed in 1990 to divide a logic program in two parts [17]. The first part consists of a set of rules as Expression 
(1), enlarged with negation as failure. The second part consists of facts that are associated with probabilities (referred to 
as uncertain clauses). At the time there was considerable debate over the semantics of negation, thus to simplify matters 
Dantsin assumed that clauses were stratified.2 Dantsin showed that the maximum entropy distribution over uncertain facts 
is a product measure that makes all uncertain facts independent (Dantsin adopted maximum entropy as suggested by 
Nilsson in the context of probabilistic logic [79]). This single product probability measure in turn induces a distribution 
over all ground atoms, given that the rules are stratified and thus induce a single truth-value assignment over the (non-
uncertain) atoms. Hence every program within Dantsin’s guidelines specifies a single probability measure over all ground 
atoms.

Poole proposed, in 1991, a language consisting of rules and assumables, where an assumable is an atom associated with 
a probability value [81]. The assumables are taken to be independent, thus a product probability measure is imposed over 
them. Poole shows that such a language can specify Bayesian networks, in some cases producing very natural descriptions. 
This scheme was refined by Poole in a very influential 1993 paper, with added material on abduction, explanations, cau-
sation [82].3 A critical decision in Poole’s original proposal was to focus on sets of rules where dependencies over atoms 
are acyclic (hence stratified), thus guaranteeing that any selection of assumables induces a single minimal model over all 
ground atoms. Consequently, the product probability measure over assumables induces a single probability measure over all 
ground atoms. Consider a trivial example, written in a simple syntax. Suppose we have assumables A, B , C with associated 
probabilities

P (A) = 0.2, P (B) = 0.4, P (C) = 0.6,

and rules

D ← A ∧ B and D ← B ∧ C .

Then D is true whenever A and B are true or B and C are true; that is, P (D) = 0.2 ×0.4 +0.4 ×0.6 −0.2 ×0.4 ×0.4 ×0.6 =
0.3008.

Similar ideas were pursued almost simultaneously by Fuhr and by Sato.

2 We discuss stratified programs later; for now it suffices to say that a stratified program has a single minimal model that assigns either true or false to 
every ground atom.

3 Recent work has returned to abduction techniques in the context of probabilistic logic programming [98].
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Fuhr’s Probabilistic Datalog4 [33] used stratified rules and allowed for additional ground facts to be associated with 
probabilities such as

0.9 indterm(d1,db).

Fuhr assumes that these facts are independent, so they behave as Dantsin’s uncertain facts and as Poole’s assumables, thus 
inducing a single probability measure over all interpretations of ground atoms.

Likewise, Sato proposed to have two distinct sets of sentences [90]. One of them consists of usual rules. The other con-
sists of random facts that are atoms associated with probability values. Sato’s distribution semantics prescribes the following 
interpretation. Each random fact is associated with a switch; these switches are independent and they select one of a set 
of associated random facts with its prescribed probability. Thus we have a product probability measure over selections of 
random facts. For each such selection, we obtain a complete logic program (selected facts plus original rules). Thus the 
product probability measure over switches induces a probability measure over programs. As Sato did not use negation, 
each realization of random facts produces a single minimal model, hence any probabilistic logic program induces a single 
probability measure. Sato implemented his distribution semantics in the popular PRISM package [91], and his ideas were 
gradually adopted by most of the related literature.

It is perhaps fair to say that Dantsin, Poole, Fuhr, and Sato proposed the same overall strategy to guarantee that a 
probabilistic logic program specifies a single probability measure. However, to guarantee uniqueness they employed different 
assumptions; Sato discarded negation, while Poole demanded acyclicity, and Dantsin and Fuhr required stratification.

3.3. Probabilistic relational models and probabilistic inductive logic programming

The nineties also witnessed a growing, and eventually explosive, interest in probabilistic models specified by relational 
means, with particular interest in enlarging Bayesian networks with the ability to handle uncertainty over relations and 
individuals. Starting from template-based languages [5,37,45,66,106], many specification schemes were devised by import-
ing features of first-order logic. The term “Probabilistic Relational Model” (PRM) was coined [32,54]; related specification 
languages were variously diagramatic [44] or textual, sometimes relying on logic programming — rules were used primarily 
as template specification devices [11,16,30,38,50]. There are also useful languages based on functional programming [39,46]
that are less closely related to the topic of this paper. The vast ensuing literature was united in one purpose: to find ways 
to specify a single probability distribution, preferably one that could be viewed as a Bayesian or a Markov network, from a 
set of predicates and individuals. Recently there have been efforts to analyze complexity of such languages in an abstract 
manner [14]. There was particular excitement around learning techniques for these models. Several excellent surveys about 
that material are available, some in book format [12,36,49,71,85,99].

Interest in learning probabilistic logic programs also surged after 1995, often under the banner of “Probabilistic Inductive 
Logic Programming”. Many such learning techniques gravitated around the distribution semantics, while others contem-
plated alternative semantics based on probabilities over proofs. Again the literature is vast but there are excellent surveys 
available, several in book format [20,21,88,89].

As a digression, we mention an idiosyncratic proposal that appeared in the mid-nineties: Ngo and Haddawy’s combi-
nation of annotated rules and probabilistic relational assessments [77], where one can use probabilistic sentences of the 
form

(P (H0|H1, . . . , Hm) = α) ← B1 ∧ B2 ∧ · · · ∧ Bn,

where each Hi is (in essence) an atom, and each B j is (in essence) an atom possibly preceded by negation [77]. Intuitively, 
the probabilistic sentence reads “if the context given by the conjunction B1 ∧ ... ∧ Bn holds, then the conditional probability 
for H0 holds”. They introduced assumptions of independence and combining functions to merge information from two or 
more rules with identical heads and non-independent bodies. The proposal was very rich and required heavy machinery to 
produce inferences.

3.4. The evolution and the challenges of the distribution semantics

Through the more than twenty years of the distribution semantics, several languages have been proposed and several 
implementations have been released. (During that time, Answer Set Programming matured, first through the consensus over 
the semantics for negation [34,101], then over disjunctive programs [72], and also over additional features such as strong 
negation [28].)

A language that emerged around 2007, and whose conventions and syntax we later adopt, is ProbLog [31]. ProbLog has 
been implemented in a freely available package with excellent interface and state-of-art inference algorithms for stratified 
probabilistic logic programs.

4 Datalog does not allow functions. As noted already, we do not allow for functions in this paper.
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Another example of evolution within the distribution semantics is the language of Logic Programs with Annotated Dis-
juctions (LPADs), where a rule is written in the form [103]:

H1 : ν1; H2 : ν2; . . . ; Hm : νm ← B1 ∧ B2 ∧ · · · ∧ Bn,

where all Hi and B j are as before (each B j may be preceded by negation), and the νi are probability values that add 
up to one. The interpretation is simple: if the body is satisfied, then an atom in the head is selected with the associated 
probability. And despite its apparent distance from previous languages, LPADs can be translated into ProbLog, thus satisfying 
the distribution semantics [87]. It is not necessary to go over other extensions here, specially because the excellent textbook 
by Riguzzi [87] presents a detailed picture of the state-of-art in probabilistic logic programming based on the distribution 
semantics.

However, despite all of this progress, the distribution semantics still has a weak spot. For the distribution semantics to 
yield a probability measure we must have a language such that any realization of random facts produces a logic program 
with a single minimal model. If one has rules that contain negation and that are not stratified, a program may have many 
minimal models, or no model; then one cannot generate a single probability measure. Riguzzi reserves the adjective “non-
sound” for probabilistic logic programs that, for at least one realization of the random facts, have more than one or no 
minimal models.

Refined assumptions or techniques have been proposed to go beyond acyclic and stratified logic programs [43,83,84,86,
91,92], either by keeping restrictions that avoid the “non-sound” status, or by resorting to three-valued semantics. In this 
latter scheme, we should allow three truth-values to be associated with atoms: “true”, “false”, “undefined”. The extent to 
which one can make sense of the mixture between probabilities and undefined values is unclear [13]. We prefer not to 
follow this route.

Matters get more complicated for the distribution semantics when one considers disjunctive heads. There is overwhelm-
ing support in favor of answer set semantics for disjunctive heads, and even the simplest logic programs with disjunctive 
heads yield several answer sets. Thus a direct extension of Sato’s semantics to Answer Set Programming seems elusive.

There are a few formalisms that deal with several answer sets per realization of random facts by somehow selecting one 
probability measure over the answer sets. This idea is pursued in the P-log language [6], where a uniform distribution is 
adopted over answer sets whenever more than one answer set is produced. Another strategy is adopted by the language 
LPMLN , where a unique Markov random field is always generated over all ground atoms [58,59]. The challenge there, of 
course, is to justify the selection of a particular probability measure. The PrASP language, a flexible formalism that even 
allows first-order sentences and interval-valued probabilistic rules, employs maximum entropy to select a single distribution 
[74]. The use of PrASP to represent a variety of scenarios has been explored using a full-fledged implementation [75].

3.5. Semantics based on credal sets

The semantics for logic programs (with disjunctive heads, negation, cycles) we explore in this paper comes from a 
proposal by Lukasiewicz [64,65]. The idea is simple: if a probabilistic logic program is such that it has more than a minimal 
model for some realization of the random facts, we simply build the credal set consisting of all possible distributions 
induced by the product measure over random facts. An example is perhaps the best way to clarify this idea [13, Example 
9]; we formalize the credal semantics later.

Example 1. Suppose we have a random fact A associated with probability 0.3, and rules

S :− not W , not A., W :− not S..

This logic program is not stratified and it fails to have a distribution semantics. With probability 0.3, A is included in the 
program; using the stable model semantics defined later, the resulting logic program has a single model where W is true 
and S is false. And with probability 0.7, A is not included in the program and is false; then we get two models, one where 
W is true and S is false, and another where W is false and S is true. Thus P (A = true) = 0.3 but P (W = true) ∈ [0.3, 1]
and P (S = true) ∈ [0, 0.7]. In fact all probability measures that satisfy both the probabilistic fact and the rules can be 
parameterized as

P (A = true) = 0.3, P (W = true) = 0.3 + 0.7α, P (S = true) = 0.7(1 − α),

for α ∈ [0, 1]. �
This semantics was referred to simply as the “stable model” semantics by Lukasiewicz, but this is perhaps confusing as 

the answer set semantics is associated with (pure) logic programs. We instead use “credal semantics”, inspired by the term 
“credal set” [60].

We have previously studied the complexity of inferences under the credal semantics [13]; in that investigation we have 
studied the credal semantics under many features of Answer Set Programming, such as disjunctive heads, strong negation, 
and even aggregates [69].
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Despite the flexibility of the credal semantics, one might ask whether it is only a technical device to lend meaning to 
pathological probabilistic logic programs. The main purpose of this paper is to show that the credal semantics allows one 
to specify and to solve interesting problems.

To conclude this section, we note that related interest in credal sets can be found in recent literature; for instance, 
Michels et al. [70] consider a language whose semantics also relies on credal sets, even though they are built in different 
ways. Similarly, Antonucci and Facchini [1] enlarge Poole’s language to allow for more general specification, this way obtain-
ing a semantics based on credal sets. An even more ambitious language is explored by Dekhtyar and Dekhtyar [22] as they 
in essence combine Ng and Subrahmanian’s annotated logic [76] with disjunctive heads — thus obtaining very general sets 
of probability measures as semantics.

4. The joy of Probabilistic Answer Set Programming

In this section we explore Answer Set Programming enriched with the idea that probabilities are associated with a 
selected number of facts. We adopt the conventions and syntax of the ProbLog package [31]. Thus we refer to the facts 
associated with probabilities as probabilistic facts; they in essence correspond to Sato’s random facts.

A probabilistic fact consists of an atom A associated with a probability α, assumed to be a rational number in [0, 1]; the 
probabilistic fact is written as follows:

α :: A..

A probabilistic fact may contain logical variables; for instance we may write 0.25 :: edge(X, Y ).. If we then have constants 
node1 and node2, the latter probabilistic fact can be grounded into

0.25 :: edge(node1,node1)., 0.25 :: edge(node1,node2).,
0.25 :: edge(node2,node1)., 0.25 :: edge(node2,node2)..

Probabilistic Answer Set Programming (PASP) deals with programs consisting of probabilistic facts, probabilistic facts, and 
rules. In ProbLog, the interpretation of the probabilistic fact α :: A. is as follows: with probability α, the probabilistic fact is 
replaced by the fact A.; with probability 1 − α, the probabilistic fact is simply removed from the program. This semantics 
induces a probability distribution over logic programs.

However, a different semantics for probabilistic facts is adopted in this paper, where:

• we add A. to the program with probability α; and
• we add ¬A. to the program with probability 1 − α.

We discuss the rationale for this semantics in Section 4.3.
So, take the set of probabilistic facts of the program of interest, and ground them as needed to obtain a set of ground 

probabilistic facts F = {αi :: Ai .}i∈I . A total choice θ is a subset of these latter probabilistic facts. Once we collect the facts 
from θ and the strongly negated facts from F\θ , and add them to the facts and rules of the original program, we obtain 
an ASP program. So, if we have N ground probabilistic facts, we have 2N total choices, and we thus have 2N possible ASP 
programs. The remaining bit is to define the probability of each total choice (hence the probability that each ASP program 
is generated), but this is simple enough: ground probabilistic facts are supposed stochastically independent, hence

P (θ) =
⎛
⎝ ∏

i:(αi ::Ai)∈θ

αi

⎞
⎠
⎛
⎝ ∏

i:(αi ::Ai)/∈θ

(1 − αi)

⎞
⎠ . (3)

Now say that a PASP program is consistent if and only if there is at least one answer set for the logic program generated 
by each total choice of probabilistic facts.

Definition 1. A probability model for a consistent PASP program is a probability measure P over interpretations of the ground 
atoms of the program, such that for each total choice θ we have P (θ) given by Expression (3) and P (·|θ) a probability 
distribution over the answer sets induced by θ .

Definition 2. The credal semantics of a PASP program is the credal set of all its probability models.

Under the credal semantics we cannot necessarily associate each ground atom A with a sharp probability value. Instead, 
we can associate A with a lower probability P (A) and an upper probability P (A). The lower probability is the infimum over 
all probability values for A, for all possible probability models; likewise, the upper probability is the supremum over these 
probability values.
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θ2

θ1

.

.

.

Fig. 1. The credal semantics. The set of total choices is shown to the left; there is a single product probability measure over them. Each total choice defines 
an ASP program that maps to a set of answer sets, shown to the right: total choice θ1 maps to three answer sets, θ2 to two answer sets, and so on.

0.01 :: trip. 0.5 :: smoking.
tuberculosis :− trip,a1. 0.05 :: a1.
tuberculosis :− not trip,a2. 0.01 :: a2.
cancer :− smoking,a3. 0.1 :: a3.
cancer :− not smoking,a4. 0.01 :: a4.
or :− tuberculosis. or :− cancer.
test :− or,a5. 0.98 :: a5.
test :− not or,a6. 0.05 :: a6.

trip smoking

tuberculosis cancer

or

test

Fig. 2. Left: An acyclic PASP program, based on a popular Bayesian network [57]. Right: the acyclic dependency graph of the program (except auxiliary 
predicates); the graph is also the structure of the corresponding Bayesian network.

The following result will be useful later.5 Basically, it clarifies the structure of the credal semantics by connecting it with 
the theory of infinitely monotone Choquet capacities [2,73].

Theorem 1. Suppose we have a PASP program whose semantics is a credal set K. Then: 1) the lower probability with respect to K is 
an infinitely monotone Choquet capacity; 2) K is the largest credal set dominating this capacity; 3) K is closed and convex.

Proof. Refer to Fig. 1: we have a space endowed with a single probability distribution, and a multi-valued mapping into 
a second space. Results from the theory of Choquet capacities then lead to the desired representation through credal sets 
[2,73]. �

One valuable consequence of Theorem 1 is that we immediately obtain expressions for lower/upper conditional proba-
bilities by applying well-known results from the theory of infinitely monotone Choquet capacities. We have, for events A
and B:

P (A|B) = P (A∩ B)

P (A∩ B) + P (Ac ∩ B)
,

P (A|B) = P (A∩ B)

P (A∩ B) + P (Ac ∩ B)
.

These expressions hold because with the multi-valued mapping in the proof of Theorem 1 we can place as much probability 
as possible in A ∩ B by removing as much probability as possible from Ac ∩ B (and vice-versa). In fact, P (A∩B) +
P

(
Ac ∩B

)
is the value of P (B) for the probability measure P that attains P (A|B), a result we use later.

In the remainder of this section we show how the credal semantics of PASP can be used to represent many nontrivial 
probabilistic problems. We start with nondisjunctive acyclic programs, a very simple and well-known case. We then look at 
nondisjunctive stratified ones, and then face the general case.

4.1. Nondisjunctive acyclic programs

The short nondisjunctive PASP program in Fig. 2 is acyclic. Because it is acyclic, the propositional program in Fig. 2 is 
quite easy to read, as its probabilistic facts and rules translate directly into probabilities. The probabilities are as follows:

P (trip = 1) = 0.01, P (smoking = 1) = 0.5,

P (tuberculosis = 1|trip = 1) = 0.05, P (tuberculosis = 1|trip = 0) = 0.01,

P (cancer = 1|smoking = 1) = 0.1, P (cancer = 1|smoking = 0) = 0.01,

P (test = 1|or = 1) = 0.98, P (test = 1|or = 0) = 0.05,

5 Note that this result has been alluded to before [13] in connection with Sato’s semantics for probabilistic facts.
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0.6 :: edge(1,2).
0.1 :: edge(1,3).
0.4 :: edge(2,5).
0.3 :: edge(2,6).
0.3 :: edge(3,4).
0.8 :: edge(4,5).
0.2 :: edge(5,6).

12 3

45

6

0.6 0.1

0.4

0.3

0.3

0.8

0.2

Fig. 3. A random undirected graph.

and additionally,

or = {tuberculosis = 1} ∨ {cancer = 1}.
Note that here we conflate atoms and the random variables they correspond to (random variables that are defined over the 
space of all interpretations).

In Fig. 2 we employ the pattern

A :− B1, B2. α :: B2..

We might take this pair as a “probabilistic rule” (in fact ProbLog accepts the syntax α :: A :− B1, B2. to represent this pair). 
In this paper we do not use special syntax for probabilistic rules for the sake of simplicity.

Any acyclic propositional program can be viewed as the specification of a Bayesian network over binary random vari-
ables: the structure of the Bayesian network is the dependency graph; the random variables correspond to the atoms; the 
probabilities can be read off of the probabilistic facts and rules. Conversely, any Bayesian network over binary variables 
can be specified by an acyclic nondisjunctive PASP program [84]. In fact, the program in Fig. 2 has been generated from a 
well-known Bayesian network [57].

Acyclic programs can be used to specify “relational Bayesian networks” as well.6 For instance, here is an acyclic PASP 
program that captures part of the well-known University World [35], where we have courses, students, and grades:

apt(X) :− student(X),a1. 0.7 :: a1.
easy(Y ) :− course(X),a2. 0.4 :: a2.
pass(X, Y ) :− student(X),apt(X), course(Y ),easy(Y ).
pass(X, Y ) :− student(X),apt(X), course(Y ),not easy(Y ),a3. 0.8 :: a3..

This is unrealistically simple but it conveys the idea: apt students do well in easy courses, and even in courses that are not 
easy with probability 0.8 (and a student is apt with probability 0.7; a course is easy with probability 0.4).

4.2. Nondisjunctive stratified programs

A program still specifies a single probability distribution if it is nondisjunctive and stratified. Because any nondisjunctive 
stratified program has a unique minimal model [18], any total choice induces a unique model and therefore the probabilistic 
program induces a unique probability distribution over interpretations. Most of the literature on probabilistic logic programs 
is restricted to this class of programs [31].

Here is a prototypical example of nondisjunctive stratified program:

edge(X, Y ) :− edge(Y , X).
path(X, Y ) :− edge(X, Y ).
path(X, Y ) :− edge(X, Z),path(Z , Y )..

These rules can be spelled out as follows: there is a path between two nodes if there is an undirected edge between them, 
or if there is an undirected edge from one of them to some node from which there is a path to the other node. Coupled 
with an explicit description of the predicate edge, this program allows one to determine whether it is possible or not to 
find a path between two given nodes. For instance, if we have a random graph specified as in Fig. 3 (the drawing depicts a 
visual representation of the random graph, with edges annotated with probabilities), then P (path(1,4)) = 0.2330016.

As illustrated by this example, stratified PASP programs can encode recursion. This is a feature that cannot be reproduced 
with Probabilistic Relational Models (Section 3.3) based on first-order logic, as recursion goes beyond the resources of first-
order logic [24].

6 As noted in Section 3.3, there are several other languages that compactly describe Bayesian networks over repetitive domains.
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4.3. The general case

If we have a nondisjunctive and non-stratified program, or a disjunctive program, then it may be the case that for some 
total choices the program has no answer set, or that for some total choices the program has many answer sets. Suppose 
first that some total choice leads to a program without any answer set; in this case we take that the whole probabilistic 
program is inconsistent and has no semantics. Other strategies might be possible; we might try to repair the inconsistency 
[8], or perhaps resort to some three-valued semantics that can accommodate such failures. We leave such strategies to 
future debate.

The more interesting case is the one in which any total choice induces at least one answer set, and some total choices 
lead to many answer sets. As a total choice θ is associated with a probability P (θ), the individual answer sets induced by 
θ collectively get mass P (θ), but no other stipulations are present. Thus we can distribute P (θ) arbitrarily over the answer 
sets, and we can use such a freedom to our advantage. A few examples illustrate possible strategies.

Consider as an example the three-colorability problem for undirected graphs:

red(X) ∨ green(X) ∨ blue(X) :− node(X).
edge(X, Y ) :− edge(Y , X).
:− edge(X, Y ), red(X), red(Y ).
:− edge(X, Y ),green(X),green(Y ).
:− edge(X, Y ),blue(X),blue(Y ).

(4)

plus the probabilistic facts in Fig. 3 and the facts

red(1)., green(4)., green(6).. (5)

Each total choice fixes a graph; for this particular graph, each answer set is a three-coloring. If it so happens that each 
total choice induces a single three-coloring, then the program defines a single probability distribution over interpretations. 
If instead some total choices induce several three-colorings, then the program defines a non-singleton set of probability 
distributions: for each total choice θ , the probability mass P (θ) can be attached to each one of the answer sets induced 
by θ . Take for instance node 3. If both edges to 1 and 4 are present (with probability 0.03), then all answer sets must 
contain blue(3). And if both edges are absent, then there are answer sets containing either red(3) or blue(3) or green(3). 
Other configurations are produced by the presence/absence of edges.

We have that, in the last example, P (blue(3)) = 0.03; P (blue(3)) = 1; P (red(3)) = 0.0; P (red(3)) = 0.9.
Suppose now that on top of probabilistic facts in Fig. 3 and hard facts in Expression (5), we also have the probabilistic 

fact

0.2 :: blue(5).. (6)

In this case some total choices fail to produce a three-coloring: for instance, if all edges are present, then there is no way 
to produce a three-coloring when blue(5) is set to hold. To have a consistent program, we must work differently. Consider 
the PASP program:

red(X) ∨ green(X) ∨ blue(X) :− node(X).
edge(X, Y ) :− edge(Y , X).
¬colorable :− edge(X, Y ), red(X), red(Y ).
¬colorable :− edge(X, Y ),green(X),green(Y ).
¬colorable :− edge(X, Y ),blue(X),blue(Y ).
red(X) :− ¬colorable,node(X),not ¬red(X).
green(X) :− ¬colorable,node(X),not ¬green(X).
blue(X) :− ¬colorable,node(X),not ¬blue(X).
colorable :− not ¬colorable..

(7)

This program is certainly non-trivial. Basically, if there is a three-coloring for the input graph, the corresponding inter-
pretation is an answer set. But if there is no three-coloring, then colorable is set to false, and all groundings of red, blue and 
green are set to true except for those groundings that are set to false via probabilistic facts. To guarantee the latter behavior 
the program resorts to the idiom not ¬A, where A is an atom: basically this is true whenever it is not known explicitly 
that A is false. As answer sets must be minimal, colorable is true if and only if there is a three-coloring. In our example, 
P (colorable,blue(3)) = 0.976. In fact, we can ask for more: we can determine the probability that there is no coloring at all; 
this is precisely 0.024. As colorable indicates the possibility of a three-coloring for each total choice, there is a sharp value 
for its probability.

Thus in PASP we can formulate a combinatorial problem and ask for the lower/upper probability of its atoms; also, we 
can ask for the probability that there is a solution at all.
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Using the three-coloring example we can analyze in more detail the semantics of probabilistic facts. Recall that ProbLog’s 
semantics takes probabilistic fact α :: A. to mean that we should impose A. with probability α and discard it with proba-
bility 1 − α. Our approach is different in that α :: A. means:{

take A with probability α;
take ¬A with probability 1 − α.

Of course we can do so because strong negation is available in ASP; however, mere availability of ¬ is not the key point. 
To understand our proposal, take again the three-coloring program in Expression (7) with probabilistic facts in Expres-
sions (5) and (6). If we adopt our proposed semantics for the probabilistic facts, the credal semantics yields P (blue(5)) = 0.2
and P (colorable,blue(5)) = 0.1856 (some probability mass is “lost” to configurations without three-colorings). If we use 
ProbLog’s semantics for the probabilistic facts, and continue with the construction of the credal semantics, we obtain 
P (colorable,blue(5)) = 0.1856 but P (colorable,blue(5)) = 0.9280! This behavior of ProbLog’s semantics may be manageable 
in acyclic programs, where the effect of probabilistic facts is relatively easy to grasp.7 In the presence of cyclic rules and 
constraints, such as the ones typically found in ASP programming, it does not seem appropriate to leave this management 
to the programmer, and it seems better to alert her about problems through inconsistency.

To finish this section, we briefly comment on the ability of PASP to solve complex problems.
Suppose we have a collection of companies C = {c1, . . . , cm}, such that each company manufactures a range of products. 

Each product g j is manufactured by two companies, as specified by atom produce(ci1 , ci2 , g j). Each company c may be 
owned by three other companies, as specified by the predicate control(ci1 , ci2 , ci3 , c) (a company may be controlled by more 
than one triple). A strategic set C′ of companies is a minimal subset of C (minimal with respect to inclusion) such that: 
1) the set of all products manufactured by C is identical to the set of all products manufactured by C′; 2) if the three 
controlling companies of a company c are in C′ , then c is also in C′ . The question is, given a company c, is it in some 
strategic set? This problem is NPNP-complete (Appendix A), hence it is widely believed to be harder than the three-coloring 
problem. Amazingly, the “strategic company” problem can be solved by a short ASP program [25]:

strategic(C1) ∨ strategic(C2) :− produce(C1, C2, G).
strategic(C) :− control(C1, C2, C3, C),

strategic(C1), strategic(C2), strategic(C3)..

The first rule guarantees that all products are still sold by the strategic set. The second rule guarantees that, if three 
companies are in the strategic set, then a company they control is also in the strategic set. The minimality of answer sets 
guarantees the required minimality of strategic sets.

Now suppose, as it so happens in real life, that there is some uncertainty as to which company controls which. We may 
then be interested in the probability that some company comp is in some strategic set. We must simply state the relevant 
probabilistic facts such as

0.9 :: control(comp1, comp2, comp3, comp)..

and then compute P (strategic(comp)). In so doing we must go through the set of solutions of an NPNP-complete problem.

4.4. Some comments on interpretation

We have so far discussed our suggested programming style by posing questions such as “What is the probability that 
there is a three-coloring?” or “What is the probability that a certain node is red?”. In the remainder of this section we focus 
on the interpretation of the lower/upper probabilities obtained in answering such questions.

So, take a PASP program like the three-coloring one (Expression (4)). Although total choices may be associated with non-
singleton credal sets, the atom colorable has a unique value per total choice; hence the probability of this atom is sharp. 
However, probabilities on the color of particular nodes may of course fail to be sharp. What is then the import of P (red(2))? 
Basically, there is at least probability P (red(2)) that node 2 gets red if a three-coloring is selected after the uncertainty is 
resolved (that is, after the atoms associated with probabilities have their values set). Similarly, we have at most probability 
P (red(2)) that node 2 gets red if a three-coloring is selected after the uncertainty is resolved. We can thus take lower/upper 
probabilities as values generated by decisions taken after the resolution of uncertainty. This is certainly in contrast to most 
decision-making models where decisions are made before dice are rolled [10].

In fact we may choose to attach a more active role to the agent, supposing that she selects a three-coloring after 
uncertainty is resolved: the lower probability is the probability if the agent is adversarially working against red in node 2, 
while the upper probability obtains if the agent works on behalf of red in node 2.

In addition lower/upper probabilities can be viewed as sharp probabilities with respect to appropriate (quantified) ques-
tions. For instance, if one asks “What is the probability that I will be able to select a three-coloring where node 2 is red?”, 

7 Even for acyclic programs we produce some surprises. Consider the simple acyclic program consisting of 0.2 :: r(a). and 0.8 :: r(X).; then P (r(a)) =
0.2 + 0.8 − 0.2 × 0.8 = 0.84 in ProbLog (not P (r(a)) = 0.2 as one might think).
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the answer is P (red(2)). But the query is actually asking for P (there is some answer set such that red(2)). Similarly, the 
question “What is the probability that node 2 will be red in a three-coloring, no matter what I do?” leads to a lower prob-
ability but it asks for the precise probability that all answer sets have node 2 painted red. That is, PASP indeed lets one 
formulate probabilities that quantify over answer sets, disguised as lower/upper probabilities.

To conclude, the program that encodes the “probabilistic strategic company” problem also illustrates a situation where 
the computation of the upper probability P (strategic(comp)) actually answers the question “What is the probability that I 
will be able to place comp in a strategic set?”. While in the three-coloring problem it was necessary to introduce a predicate 
colorable to determine when a total choice induces a solution (a three-coloring), here determining whether a company is in 
a strategic set is the problem itself. Consequently, P (strategic(comp)) is also the probability of finding a positive solution to 
the problem. More explicitly, this latter upper probability yields P (there exists an answer set such that strategic(comp)).

5. Complexity and expressivity

In this section we first discuss the computational complexity of inferences with respect to PASP programs (Section 5.1). 
We then discuss the expressivity of PASP (Section 5.2). The results in this section require quite a bit of background in 
complexity theory. Necessary material is available in textbooks or related publications [15,80], but to clarify the notation we 
have collected the relevant notions in the Appendix.

5.1. The computational complexity of PASP

As indicated in the examples in the previous section, a PASP program can be used to compute the lower/upper probability 
of some atom T . A more general question would be to compute the lower/upper conditional probability of a conjunction 
of “target” atoms T1, . . . , Tt , given some “evidence” atoms E1, . . . , Ee . To simplify notation, we denote by T the conjunction 
T1 ∧ · · · ∧ Tt and by E the conjunction E1 ∧ · · · ∧ Ee .

We wish to characterize the computational complexity of computing lower and upper probabilities, P (T|E) and P (T|E). 
To turn this into a decision problem, we study the complexity of deciding whether P (T|E) > γ and whether P (T|E) > γ . 
We adopt the convention that any probability is specified as a rational number, to avoid difficulties with non-computable real-
numbers. We assume that γ is always a rational number as well. We also assume that the decision is negative (input is rejected) 
when P (E) = 0. Finally, we assume that T and E, and whatever additional atoms in the input, contain only atoms that use 
the vocabulary of the program.

Note that in logic programming one distinguishes between combined and data complexity [102]. Combined complexity 
focuses on whether an input atom is true or not when the program is also in the input, together with whatever facts are 
deemed relevant. Data complexity takes the program as fixed and considers as input the atom of interest and the list of 
relevant facts.8 In our context we can also differentiate between two questions, one where the program is given as input, 
another one where it is fixed.

By examining the proof of the next theorem one can see that, as we compute lower and upper probabilities, some other 
questions can be answered without any additional cost (as subproducts of the whole computation). Thus we consider a 
large number of possible decisions within our problems.

Our first problem consists of getting, as input, a PASP program, a rational γ , a pair (T, E), and a flag indicating one of six 
decisions of interest: (a) whether P (T|E) > γ ; (b) whether P (T|E) > γ ; (c) whether P (T ∩ E) > γ where P attains P (T|E); 
(d) whether P (T ∩ E) > γ where P attains P (T|E); (e) whether P (E) > γ where P attains P (T|E); (f) whether P (E) > γ

where P attains P (T|E). We refer to the complexity of this problem as the inferential complexity.
Our second problem consists of getting, as input, a rational γ , a pair (T, E), and a flag indicating one of the decisions 

listed in the previous problem (note: the program is fixed!). We refer to this complexity as the query complexity.
We can work more closely to concepts employed in logic programming by defining a third problem, consisting of getting, 

as input, a rational γ , a set of facts, and a flag indicating one of the same decisions listed in the previous problems (note: 
the program and the pair (T, E) are fixed!). We refer to this complexity as the data complexity.

We have:

Theorem 2. The inferential complexity of PASP programs with a bound on the arity of predicates is PP�
p
3 -complete. Both the query 

complexity and the data complexity of PASP programs are PP�
p
2 -complete.

Proof. The membership of inferential complexity for the specific decision P (T|E) > γ has been derived previously using 
a very short argument [69]. Here we present an explicit construction to prove membership of the various decisions we 
contemplate; that is, we build nondeterministic Turing machines with access to a �p

3 oracle with input γ and (T, E), and a 
flag indicating the particular inequality to verify. The construction can in essence be found in the proof of Theorem 25 of 
Ref. [13], so we shorten several steps.

8 It is also common to define program complexity, where the set of facts is fixed and the program is the input. This sort of complexity seems less relevant 
here but it may be of interest in future work.
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We start by proving membership for the decision P (T|E) > μ/ν where μ and ν are the smallest possible integers 
such that μ/ν = γ . Start by grounding the probabilistic facts to obtain a polynomial number of probabilistic facts without 
variables (as the arity of predicates is bounded). Clearly if γ = 1 the machine must return NO; we assume this case is dealt 
with at once so that we can assume that γ < 1 in the subsequent computation steps. Deciding P (T|E) > μ/ν is equivalent 
to deciding

(ν − μ)P (T ∩ E) > μP
(
Tc ∩ E

)
.

(This covers all special cases discussed in the proof of Theorem 25 of Ref. [13] that address zero probabilities.) So we focus 
on the latter inequality. Our machine starts by emulating the selection of a total choice, by creating a transition for each 
probabilistic fact in the program (we can assume the machine makes transitions with arbitrary probabilities, not just 0.5; 
in any case, it is possible to emulate such probabilities with a machine that only has transitions with probability 0.5, as 
discussed in the proof of Theorem 25 of Ref. [13]). Denote by N the total number of computation paths the machine can 
take out of these transitions (that is, the number of paths that select total choices). By selecting a total choice the machine 
actually has selected an answer set program. The machine then runs cautious inference on this latter program to determine 
whether T and E hold in every stable model of the answer set program (to do so, the machine must use a �p

3 computation 
[27, Table 5] that can be produced with the �p

3 oracle and a negation): if so, the machine moves to a state q1. Otherwise, 
the machine runs brave inference on the answer set program to determine whether T does not hold while E holds in some 
stable model of the answer set program (to do so, the machine calls the �p

3 oracle [27, Table 5]): if so, the machine moves 
to a state q2. In all other cases the machine moves to a state q3. Now denote by Ni the number of computation paths that 
arrive at qi (for i ∈ {1, 2, 3}). From q1 the machine branches into ν − μ computation paths that move immediately to the 
accepting state; from q2 the machine branches into μ computation paths that move immediately to the rejecting state; 
from q3 the machine nondeterministically moves either into the accepting or the rejecting state. The number of accepting 
paths is larger than the number of rejecting paths if and only if

(ν − μ)N1 + N3 > μN2 + N3 ⇔ (ν − μ)
N1

N
> μ

N2

N
⇔ (ν − μ)P (T ∩ E) > μP

(
Tc ∩ E

)
where the last equivalence follows from the fact that by construction N1/N = P (T ∩ E) and N2/N = P

(
Tc ∩ E

)
. This checks 

the desired inequality.
Now suppose our task is to decide P (T|E) > μ/ν . We build a machine as in the previous paragraph, with a few changes. 

The decision is now (ν − μ)P (T ∩ E) > μP
(
Tc ∩ E

)
; the machine must run brave inference (on the answer set program 

specified by the selected total choice) to determine whether T and E hold in some stable model of the answer set program 
(so as to move to q1) and cautious inference (on the answer set program specified by the selected total choice) to determine 
whether T does not hold while E holds (to move to q2). This checks the desired inequality.

Now if the decision problem is P (T ∩ E) > γ with respect to P that attains the lower / upper probability of T given E, 
then proceed respectively as in the first / second machine in the previous two paragraphs, except that from q3 the machine 
branches into μ computation paths that move immediately into the rejecting state. Hence the number of accepting paths is 
larger than the number of rejecting paths if and only if

(ν − μ)N1 > μN2 + μN3 ⇔ (ν − μ)
N1

N
> μ

N − N1

N
⇔ N1

N
>

μ

ν

as desired.
And if the decision problem is P (E) > γ with respect to the P that attains the lower / upper probability of T given 

E, then proceed respectively as in the first / second machine in the previous paragraphs, except that from q2 the machine 
branches into ν − μ computation paths that move immediately to the accepting state, and from q3 the machine branches 
into μ computation paths that move immediately into to the rejecting state. Hence the number of accepting paths is larger 
than the number of rejecting paths if and only if

(ν − μ)N1 + (ν − μ)N2 > μN3 ⇔ (ν − μ)
N1 + N2

N
> μ

N − (N1 + N2)

N

⇔ N1 + N2

N
>

μ

ν

as desired.
This closes the proof of membership for inferential complexity.
The hardness result for the inferential complexity of probabilistic logic programs with all features of PASP has been 

derived previously [69].
Membership of query complexity follows from the fact that we can ground the fixed program in polynomial time. We 

must then run propositional inference. The proof is exactly the same as the proof of membership for inferential complexity, 
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with the only difference that whenever the oracle is called to run cautious or brave inference, now we need only an oracle 
with power �p

2 (because cautious and brave inference are respectively �p
2 and �p

2 complete for propositional answer set 
programs [27, Table 5]).

To prove hardness of query complexity, consider the PP�
p
2 -complete problem of deciding whether there are more than K

assignments of X1, . . . , Xm that satisfy ∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ , where ϕ is in 3-DNF [104]. That is, ϕ is in Disjunctive 
Normal Form: it is a disjunction of conjuncts c1 ∨ c2 ∨ · · · ∨ ck where each conjunct ci has three literals so that it can be 
written as Ai ∧ Bi ∧ Ci for literals Ai , Bi , and Ci .

Now introduce a predicate t(T , V , P ) whose meaning is this. When T is equal to 1, then V is the index of a logical 
variable XV ; when T is equal to 2, then V is the index of a logical variable Y V ; finally, when T is equal to 3, then V is the 
index of a logical variable Z V . Now if P is equal to 1, then t(T , V , P ) gets the same value as the logical variable indicated 
by (T , V ); if P is equal to 0, then t(T , V , P ) gets the negated value of the logical variable indicated by (T , V ). We could 
obviously write ϕ as

t(t1,1, v1,1, p1,1) ∧ t(t1,2, v1,2, p1,2) ∧ t(t1,3, v1,3, p1,3)) ∨ . . .

∨(t(tk,1, vk,1, pk,1) ∧ t(tk,2, vk,2, pk,2) ∧ t(tk,3, vk,3, pk,3)),
(8)

where we choose the tc, j , vc, j , and pc, j appropriately.
Introduce another predicate in(T , V , C, P ) whose purpose is to “choose” the right t(T , V , P ) in each conjunct. That is, 

each element of the cth conjunct in Expression (8) is to be written as

in(tc, j, vc, j, c, pc, j) ∧ t(tc, j, vc, j, pc, j).

So we can run through all possible conjuncts, selecting only the appropriate atoms in the conjuncts that belong to ψ . This 
is the strategy employed in the following program:

0.5 :: x(V ).

0.5 :: in(T , V , C, P ).
t(T , V ,0) ∨ t(T , V ,1).
t(1, V ,0) :− not x(V ).
t(1, V ,1) :− x(V ).
phi :− in(T 1, V 1, C, P 1), t(T 1, V 1, P 1),

in(T 2, V 2, C, P 2), t(T 2, V 2, P 2),

in(T 3, V 3, C, P 3), t(T 3, V 3, P 3).
t(3, V , P ) :− phi.
negin(T , V , C, P ) :− not in(T , V , C, P )..

The value of each Xi , represented by x(i), is associated with a probability (in the first line of the program) so as to simulate 
counting. Note that the third line of this program guarantees that t(T , V , P ) does behave in a binary way with respect to 
P , so that the value of each Yi is selected by the program; values of t(1, V , P ) are automatically complementary given the 
fourth and fifth lines of the program, and the value of each Zk is discussed later.

So, given a formula ϕ , insert in E all facts in(1, i, c, 0) if Xi appears in the cth clause nonnegated, in(1, i, c, 1) if it 
appears negated, and similarly for Y j and Zk . All other groundings of in(T , V , C, P ) are forced not to hold by assembling 
their corresponding grounding of negin(T , V , C, P ) into E.

The counting question about the quantified formula is true if and only if P (phi|E) > K/2m . Note that computation of the 
upper probability of phi collects the probabilities/proportions of the configurations of Xi such that there is a configuration of 
Y j that makes ϕ true for some configuration of Zk (thus taking care of the existential quantifiers). The universal quantifiers 
over the Zk are obtained by replicating a technique often used in disjunctive logic programs (for instance, consider the 
proof of Theorem 6.3 in Ref. [26]): each configuration of Zk is associated with a configuration of t(3, V , P ) as follows. If the 
configuration of Zk is such that ϕ is false (for a fixed configuration of Xi and Y j), then we can select an interpretation for 
t(3, V , P ) that mirrors the same assignments (e.g., t(3, V , 0) is true if Z V = 0), satisfies all rules of the program and makes 
phi false. However, if no such configuration exists (i.e., if for all Zk we have that ϕ is true), then any model must contain phi
and consequently, by the last rule, assign all t(3, V , P ) to true. By minimality of answer sets, the converse is also true: there 
is a minimal model that assigns all t(3, V , P ) to true only if there is not a configuration of Zk that can falsify ϕ . Hence phi
is true if and only if there is no assignment that makes ϕ false.

Finally, note that the same program can be used to show the data complexity; just remove the probabilistic fact 0.5 ::
in(T , V , C, P )., the auxiliary predicate negin(T , V , C, P ) and its associated rule negin(T , V , C, P ) :− not in(T , V , C, P )., and 
instead add the necessary groundings of in(T , V , C, P ) as input facts. �
5.2. The expressivity of PASP

There are several ways to assess the expressivity of a programming language. For instance, one may compare program-
ming languages by checking whether they can express the same input-output mappings or not. In fact, there has been quite 
some work on verifying how to translate programs amongst various probabilistic logic languages [87].
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Another strategy to assess expressivity, an “absolute” one, is to determine a class of Turing machines that can be em-
ulated within the programming language of interest. For instance, suppose we have a programming language such that its 
programs can produce exactly the same input-output mappings as nondeterministic polynomial-time Turing machines; we 
would like to say that the expressivity of the programming language is given by the complexity class NP [41].

In our setting, a fixed PASP program receives as input a string with (T, E) and γ , and a flag indicating a particular 
inequality to be checked. The output indicates whether or not the inequality is satisfied. Now, can we capture the behavior 
of a class of Turing machines with such a programming language?

To formalize this question, we might say that a programming language P captures complexity class C exactly when [41]: 
(1) the query complexity of P is in C ; (2) for each set S of strings encoding inputs, so that this set of strings is a language 
in C , there is a program in P such that all and only those strings in S yield a positive output.9

We have:

Theorem 3. PASP programs capture PP�
p
2 .

Proof. Query complexity is proved by Theorem 2.
Now suppose we have a set of strings S in PP�

p
2 ; that means there is a polynomial-time probabilistic Turing machine, 

with an oracle in �p
2 , that can decide whether each string is in S with error strictly less than half. We must code a PASP 

program with the same behavior.
Note first that the base probabilistic Turing machine is not required to call a full-fledged Turing machine (itself with 

another Turing machine as oracle); rather, the base probabilistic Turing machine can use any �p
2 -complete problem as 

oracle. Thus we can use for instance the decision as to whether ∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ holds, where ϕ is in Disjunctive 
Normal Form with three literals per conjunct [80].

Moreover, we can assume that the base probabilistic Turing machine calls the oracle only once per computation path, 
using a transformation described by Toran [97]. Toran’s transformation does not guarantee that the call to the oracle is the 
very last operation of the base machine, but we can move the call to the very last computation steps as follows. Build a 
base probabilistic Turing machine that operates until the point where Toran’s transformation would call the oracle. Instead 
of calling the oracle at that point, make the machine repeat the subsequent operations twice, once assuming the oracle 
accepts its input, once assuming the oracle rejects its input, and storing the output of each one of these computations in 
two positions in the tape. Then there are two possibilities. If each computation produces the same answer, then simply 
return that answer (YES or NO). If however the computations differ, we have two possibilities. First, it may be the case that 
the output is YES in the path corresponding to the oracle returning YES and NO in the path corresponding to the oracle 
returning NO. In this case the machine must simply call the oracle at the very end and return the output of the oracle. 
Second, it may be the case that the output is YES in the path corresponding to the oracle returning NO and NO in the path 
corresponding to the oracle returning YES. In this case the machine must simply call the oracle with a negated version of 
the query originally required for the oracle, and then return the output of the oracle. Hence we can focus on a probabilistic 
Turing machine that makes a unique call to a �p

2 oracle and returns its output. The whole computation is depicted in Fig. 4.
So, first build a program that reproduces the operations of the base probabilistic Turing machine using a set of random 

bits (these can be produced using probabilistic facts). A Turing machine can be encoded through facts and rules using for 
instance the encoding by Marek and Remmel [67]. Note that their encoding makes a few assumptions about the Turing 
machine; for example, that the machine runs for a precise number of steps that is a (known) polynomial of the size of the 
input. These assumptions can be easily imposed on our Turing machine. There are however changes that must be made to 
Marek and Remmel’s encoding to account for the oracle. Instead of encoding the oracle explicitly (oracle tape, oracle head, 
and so on), we benefit from the previous discussion to simplify matters. Thus, when the program reaches the point where 
both Computations A and B have finished, the program is in one of four possible cases (larger rectangle in Fig. 4). If it is 
in Case 1, then it sets predicates case1 and output to true. If it is in Case 4, then it sets predicate case4 to true and the 
predicate output to false.

If the program is in Case 2 or in Case 3, it must respectively set to true predicate case2 or case3. We do not need an 
explicit oracle tape; rather, we simply use a predicate in(T , V , C, P ) (and a few additional predicates introduced later) to 
encode the formula processed by the oracle (similarly to the proof of Theorem 2). Thus we assume that an appropriate set 
of groundings for in(T , V , C, P ) has been fixed (the precise meaning of these groundings is described shortly).

Suppose first that we have reached Case 2; we must return whether or not some formula ∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ , 
where ϕ is in 3-DNF, holds (in this proof the particular formula ϕ is built by the program and it can depend on the 
probabilistic facts). We already built rules that handle such a situation in the proof of Theorem 2:

9 There are differences between showing that a programming language captures a complexity class and showing that its query complexity is complete 
for that class; the latter requires finding at least one hard query, while the former requires expressing all queries within the language [18].
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Start with input Computations

Point where oracle would be called

Computations A: assume
oracle returned YES

Computations B: assume
oracle returned NO

A: YES
B: YES

A: YES
B: NO

A: NO
B: YES

A: NO
B: NO

Case 1:
Return

YES

Case 3:
Return negated
oracle output

Case 2:
Return oracle

output

Case 4:
Return

NO

Fig. 4. The operations in the Turing machine. Computations A and B are conceptually run in parallel, even though they run sequentially in the machine. 
After computations B finish, there are four possible situations; two of them actually require calling the oracle.

t(T , V ,0) ∨ t(T , V ,1).
phi :− case2,

in(T 1, V 1, C, P 1), t(T 1, V 1, P 1),

in(T 2, V 2, C, P 2), t(T 2, V 2, P 2),

in(T 3, V 3, C, P 3), t(T 3, V 3, P 3).
t(3, V , P ) :− case2, in(3, V , C, P ),phi.,

(9)

where

• t(T , V , P ) is an auxiliary predicate for which we need to handle only T = 2 (indicating the Y j) and T = 3 (indicating 
the Zk), and possibly T = 1 (indicating literals associated with probabilistic facts), and

• in(T , V , C, P ) encodes the formula ϕ .

The program then closes by moving to the accepting state when phi is true and to the rejecting state otherwise. Thus phi is 
indeed the output; indeed, we add:

output :− case2,phi..

Note that if we were to compute the upper probability of output, then in this particular computation path we would obtain 
∃Y1, . . . , Yn : ∀Z1, . . . , Zo : ϕ as desired (because the computation of upper probability forces the inner formula to be true as 
long as there is a stable model specified by the Y1, . . . , Yn).

Now suppose we have reached Case 3. Because we need to negate the oracle output, we add:

output :− case3,not phi..

By itself, this will not do: if we compute the upper probability of output, we actually obtain ∃Y1, . . . , Yn : ∃Z1, . . . , Zo : ¬ϕ in 
this computation path (instead of ∀Y1, . . . , Yn : ∃Z1, . . . , Zo : ¬ϕ). And if we compute the (unconditional) lower probability of 
output we will face a mirror problem when case2 holds. What we need is to compute the lower probability in a computation 
path that reaches Case 3 while computing the upper probability in a computation path that reaches Case 2.

So, we introduce a predicate through the rules:

target :− case1. target :− case2.

and ask the PASP program to decide whether P (output) > γ where P is the probability measure that attains P (target|output). 
The probability P (output) for this particular probability measure P is equal to

P (case1) + P (case2,phi) + P (case3,¬phi)

given the properties of infinitely monotone Choquet capacities. And this latter expression is exactly the probability that the 
original Turing machine returns YES. So the behavior of the machine is captured, as desired. �
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6. Computing upper probabilities

Obviously, a powerful programming language is only useful if its programs can be run in reasonable time. Given the 
expressivity of PASP, we cannot expect every PASP program to run quickly. But we must at least discuss how to exploit 
problem descriptions to speed up the calculation of lower/upper probabilities.

A stratified nondisjunctive program specifies a single probability distribution and any query is answered by a sharp 
probability value. As the computation of probabilities for stratified programs has been explored through a variety of counting 
techniques [4,31,89], we do not discuss stratified programs in any detail.

We focus on lower/upper probabilities that arise in connection with general (non-stratified, disjunctive) programs. The 
techniques we develop resort to algorithms that turn propositional logic programs into classical formulas (it should be noted 
that such algorithms have been refined in particular for nondisjunctive programs).

The first observation we make is that conditional lower/upper probabilities can be easily calculated from unconditional 
lower/upper probabilities, due to properties of the credal semantics discussed after Theorem 1. In the remainder of this 
section we focus on the computation of the upper probability P (T1, . . . , Tt), where each Ti is a literal. The computation of 
lower probabilities follows similar lines.

As input we have a PASP program and literals {Ti}. Our strategy is:

1. First ground the program.
2. Then the resulting propositional PASP program is turned into a (possibly long) propositional formula, using a conversion 

algorithm (there are relatively efficient ones for non-disjunctive programs [47] and more complex ones for disjunctive 
programs [61]).

3. We assume the propositional formula obtained in the previous step is turned to Conjunctive Normal Form. All literals 
that appear in probabilistic facts must be left in the formula; at the end the propositions that are associated with 
those facts must be marked with the corresponding probabilities. Even small programs can produce large propositional 
classical formulas through this step and the previous one.

4. Finally run an adapted solution counting algorithm that computes the desired probabilities. Note that we must count 
solutions with respect to some propositions while others are used to determine satisfiability; this is a prototypical 
problem in NPNP .10

To illustrate these steps, consider here a simplified example. Suppose we have the program in Expression (4) together 
with probabilistic facts in Fig. 3. Take one of the constraints:

:− edge(X, Y ), red(X), red(Y )..

By grounding this constraint, we obtain propositional constraints

:− edge(1,2), red(1), red(2).,
:− edge(1,3), red(1), red(3).,

and so on. Each one of these constraints can be translated to a clause; for instance, the first propositional constraint imposes

¬ (edge(1,2) ∧ red(1) ∧ red(2))

and therefore the clause

(¬edge(1,2) ∨ ¬red(1) ∨ ¬red(2)) .

Now consider the rule

red(X) ∨ green(X) ∨ blue(X) :− node(X)..

Consider its grounding

red(1) ∨ green(1) ∨ blue(1) :− node(1).;
this is partially translated to clause

(red(1) ∨ green(1) ∨ blue(1) ∨ ¬node(1)) ;
this clause does not capture the complete meaning of the disjunctive rule as minimality must be imposed through additional 
clauses.

10 Of course we are not reducing the general PASP inference to a problem in NPNP , because the propositional formula generated in the third step may be 
exponentially large in the worst case. A guarantee of polynomial size for the formula would imply a collapse of the counting hierarchy, an unlikely event.
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φ = (¬A ∨ ¬B ∨ X) ∧ (¬C ∨ ¬Y ∨ Z) ∧ (¬A ∨ C ∨ ¬Z)∧
(¬A ∨ C ∨ Y ∨ Z) ∧ (¬A ∨ C ∨ ¬Y ∨ Z) ∧ (A ∨ B)

φ1 = ¬B ∨ X

φ2 = (¬C ∨ ¬Y ∨ Z)∧
(C ∨ ¬Z)∧

(C ∨ Y ∨ Z)∧
(C ∨ ¬Y ∨ Z)

φ3 = B

φ4 = (¬C ∨ ¬Y ∨ Z)

φ5 = X 1

1

φ7 = (¬Y ∨ Z)

1

φ8 = (¬Z) ∧ (Y ∨ Z) ∧ (¬Y ∨ Z)

0

01

φ9 = (¬Y ∨ Z) 1

1

A ¬A

B ¬B

C ¬C

B ¬B

C ¬C

Fig. 5. The counting example from Aziz et al. [3].

Now consider the fourth step of the method, where counting is in fact run. The counting problem for NPNP problems has 
received relatively little attention in the literature, but some clever algorithms have been proposed [3,4]. Our contribution 
in this paper is to adapt one particular algorithm; in the remainder of this section we do so.

We thus have a CNF formula where some propositions are associated with probabilities; we call these the priority propo-
sitions. The remaining propositions are referred to as non-priority ones. We must count the satisfying assignments for 
priority propositions (non-priority propositions are set as needed). Such a counting problem is solved by the dSharpP algo-
rithm by Aziz et al. [3].

The dSharpP algorithm modifies the celebrated DPLL algorithm. The latter algorithm is, in essence, rather simple: sup-
pose we wish to check the satisfiability of formula φ; then select a proposition C ; simplify φ as if C were true, and recurse 
until it is possible to prove that the new formula is satisfiable or not; and simplify φ as if C were false, and recurse until 
it is possible to prove that the new formula is satisfiable or not. The DPLL algorithm implicitly builds a tree that branches 
on the selected propositions; there are many techniques to select propositions, to detect as early as possible when to stop 
recursing, to store useful information, and to exploit problem decompositions [7]. Algorithms that count satisfying assign-
ments of CNF formulas are often based on the same sort of computing tree, but instead of exploring the tree only until a 
satisfying assignment is found, the algorithms must go through the whole tree, explicitly or implicitly.

The basic idea in the dSharpP algorithm is to build an implicit tree as the DPLL algorithm, but to select non-priority 
propositions only when there are no priority ones in the formula at hand. The counts associated with two distinct assign-
ments of the same priority proposition are added, and at the end the number of satisfying assignments (for the priority 
propositions) are obtained. Two techniques are used to speed up the whole process. First, the algorithm must detect as early 
as possible when the formula can be satisfied; when this happens and some priority propositions remain unassigned, the 
algorithm computes in closed-form the number of assignments for those propositions (a simple calculation: 2K assignments 
if there are K unassigned propositions). Second, it may be the case that a formula in CNF may be divided into several 
sub-formulas, each one of them a conjunction of clauses, such that propositions in one sub-formula do not appear in other 
sub-formulas. In this case the number of satisfying assignments for the original formula is the product of the number of 
satisfying assignments for each one of the sub-formulas.

To illustrate this process, we use a simple example inspired by a discussion in Ref. [3]. Consider the formula φ in Fig. 5, 
and suppose the goal is to count the number of assignments of A, B and C (the remaining propositions are non-priority 
ones). Only branching on these priority propositions is shown; when a formula contains only non-priority propositions, the 
branching required to determine satisfiability is not shown. The counts obtained by branching are the numbers shown in 
the leaves. Note that when A is applied to formula φ, the result is a formula with two “disjoint” sub-formulas φ1 and φ2; 
the conjunction of these sub-formulas is represented by the left dot. And when ¬A is applied to φ, “disjoint” sub-formulas 
φ3 and φ4 are obtained; their conjunction is represented by the right dot. Thus φ5 “gets” 1, and φ1 gets 2; similarly, φ7 gets 
1 and φ8 gets 0 (at φ8 is not satisfiable), so φ2 gets 1. The left dot gets 2 and 1, and multiplies them, “sending” 2 to φ. By 
the same procedure, the right dot sends 2 to φ; at φ we obtain 2 + 2 = 4 satisfying assignments for priority propositions.

To adapt this algorithm to our setting, note that in PASP probabilities are directly associated with atoms. Thus we do 
not have to pursue a sophisticated encoding of probability values (as needed for instance when running Bayesian networks 
inference through counting methods [9,19]). Instead we just have to take into account that each priority proposition is 
associated with a probability, and all of them are stochastically independent. What happens then is that any leaf node 
sends a 1 or a 0 up (from the satisfiability of a corresponding sub-formula). These numbers are then sent up across the 
edges. When a number is sent from a sub-formula to another one through an edge labeled with a literal, the number is 
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multiplied by the probability of that literal. Also, the numbers must be added at non-leaf nodes containing sub-formulas, 
and they must be multiplied at dots that represent separation into components. It should be noted that in our setting we 
do not need to multiply these numbers by any factor when there are unassigned priority propositions: any such proposition 
would lead to branches containing a number and 1 minus that number; as the numbers in these branches are to be added, 
the effect of the unassigned proposition is just a factor 1.

To understand the algorithm, consider again Fig. 5. Suppose that the priority propositions are actually generated from 
three probabilistic facts in a PASP program:

α :: A., β :: B., γ :: C ..

Node φ1 gets β and 1 − β; it adds both and sends 1 to the left dot. Node φ2 gets γ from its left child and 0 from its right 
child; thus it sends γ to the left dot. Similarly, the right dot gets β from φ3 and 1 from φ4. Consequently φ gets αγ from 
the left dot and (1 − α)β from the right dot; it adds both numbers thus producing the correct upper probability that φ is 
satisfied: αγ + (1 − α)β .

7. Conclusion

Hopefully the reader is convinced that PASP offers an elegant way to code probabilistic questions. Most of the existing 
literature on PASP focuses on acyclic or definite or stratified programs that are already quite powerful as they can capture 
Bayesian networks and their relational variants, and even introduce recursive behavior. General probabilistic logic programs, 
with disjunctive heads and non-stratified behavior, have been left aside, often viewed as pathological entities devoid of 
semantics. The point of this paper is that, once a proper credal semantics is given, cyclic programs provide concise encodings 
for probabilistic combinatorial problems. The semantics is actually straightforward and mathematically simple as it is based 
on the well-known theory of two-monotone Choquet capacities. Many applications can be considered; just as an example, 
one may be interested in the robustness of planning policies to uncertainty in initial conditions, with planning problems 
encoded through ASP [3].

A more detailed study of expressivity should be pursued in future work. We have considered a particular notion of 
“capture” in our analysis of the expressivity of PASP, but additional analysis may be able to find other interesting results.

The real challenge ahead is to build PASP solvers that can take on practical problems. The scheme we have outlined in 
this paper is certainly a first step, aimed at demonstrating the basic operations that must still be refined in future work. 
Our scheme has three steps: grounding, conversion to satisfiability, and (adapted) counting techniques. Each one of these 
steps deserves further analysis:

1. Many ASP solvers selectively ground rules and facts [48]. In ASP, not all grounded rules and facts are needed in a 
particular calculation; finding exactly the needed ones is the goal of a grounder. Future work should consider techniques 
that selectively ground PASP programs.

2. There are several ASP solvers that are based on conversion to propositional satisfiability, but usually they work by 
constructing formulas gradually, introducing clauses only as needed — this is important because the size of the whole 
propositional formula may be exponential on the input program [62]. Similar techniques should be examined for PASP 
in future work.

3. The adapted counting algorithm we have presented should be refined in future work. There are many techniques used 
in DPLL that should be tested in the context of PASP. And there are entirely different counting techniques that could be 
appropriate in various scenarios [3] and that deserve attention.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

The first author has been partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), grant 312180/2018-7 (Pq). The second author has been partially supported by CNPq, grant 304012/2019-0 (Pq). The 
work was also supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grants 2016/18841-0 and 
2019/07665-4, and also by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - finance code 001.

Appendix A. A bit of computational complexity theory

The reader can find a more detailed discussion about computational complexity theory in Ref. [80].
A complexity class is a set of languages; a language is a set of strings; a string is a sequence of 0s and 1s.
A (nondeterministic) Turing machine is a tuple (Q , �, q0, qa, qr, δ) associated with a device containing a tape with sym-

bols and a head that can move over the tape and read/write symbols, where Q is a set of states, with q0/qa/qr respectively 
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the initial/accepting/rejecting states; � is the alphabet that includes 0, 1, and blank, with blank never present in the input; 
and δ is the transition function that takes a pair in Q × � consisting of the current state and the current symbol in the 
tape, are returns a subset of Q ×� ×{−1, 0, 1}, where each element of this subset indicates the next state, the next symbol 
to be written in the tape, and the movement of the head (−1 means left, 1 means right, 0 means no motion). If the ma-
chine reaches qa , the input is accepted; if the machine reaches qr , the input is rejected. A language is decided by a Turing 
machine if the machine accepts all strings in the language and rejects all strings not in the language. If acceptance/rejection 
happens within a number of steps that is polynomial in the size of the input, the machine is said to be polynomial-time. 
The well-known complexity class NP consists of those languages that can be decided by polynomial-time (nondeterministic) 
Turing machines. Now if the transition function δ is modified such that there is a uniform probability distribution over the 
set of triples produced for each pair state/symbol, then we obtain a probabilistic Turing machine. The complexity class PP
is the set of languages that are decided by a probabilistic Turing machine in a number of steps polynomial in the size of 
the input, with an error probability strictly less than half for all input strings. Equivalently, PP is the class of languages 
satisfying the following property: there is a polynomial-time Turing machine such that a string is in the language if and 
only if more than half of the computation paths of the machine end up in the accepting state (all other paths end up in the 
rejecting state).

If a Turing machine has a second pair tape/head, such that it can write a string to the secondary tape and then, in a 
single step, it can read whether the string is in a language L or not, then the machine is said to have an oracle for L. 
The class of languages that can be decided by machines defining complexity class C , with each machine allowed to use 
an additional oracle for L, is denoted by CL . If D is another complexity class, then C D is defined to be 

⋃
L∈D CL . The 

polynomial hierarchy contains classes �p
k+1 = NP�

p
k for k > 1, with �p

1 = NP. Wagner’s counting hierarchy contains classes 

PP and PP�
p
k for k > 0 [104].

A polynomial-time many-one reduction from language L to language L′ is an algorithm that, in a number of steps that 
is polynomial in the size of the input, transforms a string 
 ∈ L into a string 
′ ∈L′ such that 
 ∈ L if and only if 
′ ∈L′ . If 
there is such a reduction from any language in a complexity class C to a language L, then L is C-hard. If L is in C and is 
C-hard, then L is C-complete.
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