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Abstract

We define new classes of topological algebras of holomorphic functions on open subsets of Banach
spaces, and on open subsets of dual Banach spaces. We investigate properties and derive results concerning
polynomial approximation on such algebras. We give an explicit description of their spectra, derive results
on finitely generated ideals, and theorems of Banach–Stone type. We show that under certain conditions on
the open subset U , this new algebra coincides with Hwu(U), deriving new results on Hwu(U).
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Let E be a Banach space, let U be an open subset of E and let V be an open subset of E′.
The algebras Hwu(U) and Hw∗u(V ) have been studied by several authors in the last years [1,
2,4,6,7,9]. In this work, we define similar classes of holomorphic functions. More specifically,
let Hwuk(U) denote the set of all holomorphic functions f :U → C that are weakly uniformly
continuous on each weakly compact subset of U , and let Hw∗uk(V ) denote the set of all holomor-
phic functions g :V → C that are weak-star uniformly continuous on each weak-star compact
subset of V . In the first section of this paper, we study properties of the algebras Hwuk(U) and
Hw∗uk(V ). One of the main results concerns polynomial approximation on such algebras. We
show that if E is a Banach space with a shrinking Schauder basis and U is a weakly open sub-
set of E which is polynomially convex, then Pf (E) is dense in Hwuk(U), for the topology of
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uniform convergence on the weakly compact subsets of U . An analogous result is given for the
algebra Hw∗uk(V ). In Section 2, we give an explicit description of the spectrum of Hwuk(U),
when E is a reflexive Banach space with a Schauder basis and U is a weakly open subset of E

which is Pwk(E)-convex. Indeed, we show that in this case the spectrum of Hwk(U) is identified
with U . We also investigate whether Hwuk(U) coincides with Hwu(U). For example, if E is
reflexive and U is weakly open and convex, then Hwuk(U) = Hwu(U). We present another sit-
uation where Hwuk(U) coincides with Hwu(U). With these coincidence results we can improve
results from [11,15]. In the last section of the article we present results on finitely generated
ideals of the algebra Hwuk(U) and theorems of Banach–Stone type.

1. Polynomial approximation in Banach spaces

We refer to [8,10] for background information on infinite-dimensional complex analysis. Let
E be a complex Banach space and let U be an open subset of E. For each x ∈ U , we denote
by dU(x) the distance from x to the boundary of U . For each n ∈ N, let Un = {x ∈ U : ‖x‖ < n

and dU(x) > 2−n}. We denote by Hw(U) the set of all f ∈H(U) that are weakly continuous on
each Un, Hwu(U) is the set of all f ∈ H(U) that are weakly uniformly continuous on each Un,
and Hb(U) is the set of all f ∈ H(U) that are bounded on each Un. We have that Hwu(U) ⊂
Hb(U) [3, Lemma 2.2] for every open subset U . If V is an open subset of E′, let Hw∗(V ) denote
the set of all g ∈ H(V ) that are weak-star continuous on each Vn, and let Hw∗u(V ) denote the set
of all g ∈ H(V ) that are weak-star uniformly continuous on each Vn. Let Kw(U) = {A ⊂ U : A is
weakly compact} and let Kw∗(V ) = {B ⊂ V : B is weak-star compact}. It is clear that Kw(U)

(respectively Kw∗(V )) covers U (respectively V ). If U is weakly open and if V is weak-star
open, then the elements of Kw(U) and Kw∗(V ) have an useful property, that we present in the
next lemma. We denote by Vw(E) (respectively Vw∗(E′)) the set of all neighborhoods of zero
in E (respectively in E′) with respect to the weak topology σ(E,E′) (respectively weak-star
topology σ(E′,E)).

Lemma 1.1. Let E be a Banach space, let U be a weakly open subset of E and let V be an open
subset of E′. Then

(1) For each A ∈Kw(U) there exists W ∈ Vw(E) such that A + W ⊂ U .
(2) For each B ∈ Kw∗(V ) there exists W ∈ Vw∗(E′) such that B + W ⊂ V .

Proof. (1) Since U is weakly open, for each x ∈ A, there exist Wx, W̃x ∈ Vw(E) such that
Wx + Wx ⊂ W̃x and x + W̃x ⊂ U . Since A is weakly compact, we can find x1, . . . , xn ∈ A

and W1, . . . ,Wn ∈ Vw(E) such that A ⊂ (x1 + W1) ∪ · · · ∪ (xn + Wn) ⊂ U . If we take W =
W1 ∩ · · · ∩ Wn, then it is easy to see that A + W ⊂ U .

(2) The proof of (1) applies. �
We denote Pf (E) = ⊕

m∈N
Pf (mE), Pw(E) = P(E) ∩ Hw(E) and Pwu(E) = P(E) ∩

Hwu(E). Actually, the two last sets coincide, i.e., Pw(E) = Pwu(E) [2, Theorem 2.9]. Let
U be an open subset of E and let Hwuk(U) = {f ∈ H(U): f is weakly uniformly con-
tinuous on each A ∈ Kw(U)}. Note that if U is weakly open, then each weakly compact
subset of U is contained in some Un, and hence Hwu(U) ⊂ Hwuk(U). It is also clear that
Pf (E) ⊂ Pwu(E) ⊂ Hwuk(U). Following [1], we say that a polynomial P ∈ Pf ∗(E′) if and
only if P is a finite linear combination of products of weak-star continuous linear functionals
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on E′. Note that each weak-star continuous linear functional of E′ is an evaluation at some point
in E. We also denote Pw∗(E′) = P(E′) ∩ Hw∗(E′) and Pw∗u(E′) = P(E′) ∩ Hw∗u(E′), but it
is clear that the last two sets coincide, i.e., Pw∗(E′) = Pw∗u(E′). Let V be an open subset of
E′ and let Hw∗uk(V ) = {g ∈ H(V ): g is weak-star uniformly continuous on each B ∈Kw∗(V )}.
Note that Hw∗uk(E

′) = Hw∗u(E′), and Pf ∗(E′) ⊂ Pw∗u(E′) ⊂ Hw∗uk(V ). If V is weak-star
open, then Hw∗u(V ) ⊂ Hw∗uk(V ). If E is reflexive, then Hw∗uk(V ) = Hwuk(V ). We endow
Hwuk(U) (respectively Hw∗uk(V )) with the topology of uniform convergence on the elements of
Kw(U) (respectively Kw∗(V )), and we denote this topology by τk (respectively τk∗ ). It is clear
that (Hwuk(U), τk) (respectively (Hw∗uk(V ), τk∗)) is a locally m-convex algebra. In the next
example we present a coincidence result concerning the algebras Hwuk(U) and Hwu(U).

Example 1.2. Let E be a reflexive Banach space and let U be a convex weakly open subset of E.
Then Hwuk(U) = Hwu(U).

Proof. First we observe that since U is convex, then Un is convex for every n ∈ N, and hence
Un

w = Un ⊂ U . Since E is reflexive, we have that Un
w is w-compact, and consequently Un

w ∈
Kw(U). Then it follows that Hwuk(U) ⊂ Hwu(U). �

Let E be a Banach space with a Schauder basis (en)n∈N and let (ϕn)n∈N be the correspond-
ing linear functionals. For each n ∈ N, Tn denotes the canonical projection Tn :E → E, where
Tn(x) = Tn(

∑∞
j=1 ϕj (x)ej ) = ∑n

j=1 ϕj (x)ej . We say that a Schauder basis is shrinking if the
corresponding linear functionals (ϕn)n∈N form a Schauder basis in E′. In this case, Sn denotes the
canonical projection Sn :E′ → E′, where Sn(ϕ) = ∑n

j=1 ϕ(ej )ϕj , for each ϕ ∈ E′. It is known
that the sequence (Tn)n∈N converges to the identity operator, uniformly on the compact subsets
of E. The same result cannot hold if we replace compact by bounded subsets of E, when E is
infinite-dimensional. Indeed, if it was true, then the identity operator would be a compact opera-
tor, which is a contradiction. But in the next proposition we show a weaker result of this kind.

Proposition 1.3. Let E be a Banach space with a shrinking Schauder basis. Then

(1) Tn converges to the identity operator, weakly uniformly on the bounded subsets of E.
(2) Sn converges to the identity operator, weak-star uniformly on the bounded subsets of E′.

Proof. (1) We must show that for each bounded subset B of E, ϕ ∈ E′ and ε > 0, there is
an integer n0 ∈ N such that (∗) supx∈B |ϕ(Tn(x) − x)| < ε, for all n � n0. It is clear that
ϕ(x − Tn(x)) = ∑∞

j=n+1 ϕj (x)ϕ(ej ), for each x ∈ E, ϕ ∈ E′ and n ∈ N. Since (ϕj )j∈N is a
Schauder basis for E′, given ε > 0 there exists n0 ∈ N such that ‖∑∞

j=n+1 ϕ(ej )ϕj‖ < ε, for
n � n0, or in other words, supx∈BE

|∑∞
j=n+1 ϕ(ej )ϕj (x)| < ε, for n � n0, which is precisely

(∗) for B = BE . Now let B be a bounded subset of E and r > 0 be such that B ⊂ rBE . Then
supx∈B |∑∞

j=n+1 ϕ(ej )ϕj (x)| � supx∈BE
|∑∞

j=n+1 ϕ(ej )ϕj (rx)| < rε, for all n � n0.
(2) Let B ⊂ E′ be a bounded subset, x ∈ E and ε > 0. Let r > 0 be such that B ⊂ BE′(0, r).

Since (en)n∈N is a Schauder basis for E, there exists n0 ∈ N such that ‖∑∞
j=n+1 ϕj (x)ej‖ < ε

r
,

for all n � n0. If we write ϕ = ∑∞
j=1 ϕ(ej )ϕj , then

sup
ϕ∈B

∣∣Sn(ϕ)(x) − ϕ(x)
∣∣ = sup

ϕ∈B

∣∣∣∣∣
∞∑

j=n+1

ϕ(ej )ϕj (x)

∣∣∣∣∣ = sup
ϕ∈B

∣∣∣∣∣ϕ
( ∞∑

j=n+1

ϕj (x)ej

)∣∣∣∣∣
� sup

ϕ∈B

‖ϕ‖
∥∥∥∥∥

∞∑
ϕj (x)ej

∥∥∥∥∥ < r · ε

r
= ε, for n � n0. �
j=n+1
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From now on, if the proof for the weak-star case in E′ is not given, then it is because it
follows the same arguments of the proof given for the weak case in E. As a consequence of
Proposition 1.3, we have the following corollaries.

Corollary 1.4. Let E be a Banach space with a shrinking Schauder basis. Then Pf (E) is norm-
dense in Pw(E) and Pf ∗(E′) is norm-dense in Pw∗(E′).

Proof. Let c > 1 be such that ‖Tn‖ � c, for all n ∈ N. Let B = B(0, r), C = B(0, cr) and
P ∈ Pw(E) = Pwu(E). Given ε > 0, there exists W ∈ Vw(E) such that if x, y ∈ C and x−y ∈ W

then |P(x) − P(y)| < ε. By Proposition 1.3, there exists n0 ∈ N such that Tn(x) − x ∈ W , for
all x ∈ B and n � n0. Consequently |P ◦ Tn(x) − P(x)| < ε, for all x ∈ B and n � n0. Observe
now that P ◦ Tn ∈Pf (E), for all n ∈ N. �

Let A be a subset of a Banach space E, and F ⊂ P(E). Then the F -hull of A is the set
ÂF = {x ∈ E: |f (x)| � supA |f |, for all f ∈ F}.

Corollary 1.5. Let E be a Banach space with a shrinking Schauder basis, let A be a bounded
subset of E and let B a bounded subset of E′. Then ÂPf (E) = ÂPw(E), and B̂Pf ∗ (E′) = B̂Pw∗ (E′).

Proof. The proof of [15, Lemma 2] applies, using Corollary 1.4. �
Corollary 1.6. Let E be a Banach space with a shrinking Schauder basis, let U be a weakly open
subset of E and let V be a weak-star open subset of E′.

(1) For each A ∈Kw(U) there exists W ∈ Vw(E) and n0 ∈ N such that A+W ⊂ U and Tn(A)+
W ⊂ U , for all n � n0. In particular, Tn(A) ∈ Kw(U), for each n � n0.

(2) For each B ∈ Kw∗(V ) there exists W ∈ Vw∗(E′) and n0 ∈ N such that B + W ⊂ V and
Sn(B) + W ⊂ V , for all n � n0. In particular, Sn(B) ∈Kw∗(V ), for each n � n0.

(3) The set C = A ∪ {Tn(A): n � n0} belongs to Kw(U).
(4) The set D = B ∪ {Sn(B): n � n0} belongs to Kw∗(V ).

Proof. (1) Let A ∈ Kw(U). By Lemma 1.1, we can find W,W̃ ∈ Vw(E) such that W + W ⊂ W̃

and A + W̃ ⊂ U . By Proposition 1.3, there exists n0 ∈ N such that Tn(x) − x ∈ W , for all x ∈ A

and n � n0. This implies that Tn(A) ⊂ A + W ⊂ U , for all n � n0, and hence Tn(A) + W ⊂ U ,
for all n � n0.

(3) By (1), we have in particular that C ⊂ U . To show that C is weakly compact, let (Wα)α∈Λ

be a weakly open cover for C, i.e., C ⊂ ⋃
α∈Λ Wα . Since A ⊂ C is weakly compact, there exist

α1, . . . , αk ∈ Λ such that A ⊂ ⋃k
i=1 Wαi

. By Lemma 1.1, let W ∈ Vw(E) be such that A + W ⊂⋃k
i=1 Wαi

. By Proposition 1.3, there exists n1 � n0 such that Tn(x) − x ∈ W , for all x ∈ A and
n � n1, which implies that Tn(x) ∈ ⋃k

i=1 Wαi
, for all x ∈ A and n � n1. Now it is clear that

Tn(A), n = n0, . . . , n1 is contained in a finite subfamily of (Wα)α∈Λ. �
Proposition 1.7. Let E be a Banach space with a shrinking Schauder basis, let U be a weakly
open subset of E, and let V be a weak-star open subset of E′. Let f ∈ Hwuk(U) and let g ∈
Hw∗uk(V ). Then
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(1) For each A ∈ Kw(U) and ε > 0 there exists n0 ∈ N such that

sup
x∈A

∣∣f (
Tn(x)

) − f (x)
∣∣ < ε, for all n � n0.

(2) For each B ∈ Kw∗(V ) and ε > 0 there exists n0 ∈ N such that

sup
y′∈B

∣∣g(
Sn(y

′)
) − g(y′)

∣∣ < ε, for all n � n0.

Proof. Let A ∈ Kw(U). By Corollary 1.6, there is an integer n1 ∈ N such that A ∪ {Tn(A):
n � n1} = C ∈ Kw(U). Since f ∈ Hwuk(U), there exists W ∈ Vw(E) such that if x, y ∈ C and
x − y ∈ W then |f (x) − f (y)| < ε. For this W there is n2 ∈ N such that Tn(x) − x ∈ W , for all
x ∈ C and n � n2. Let n0 = max{n1, n2}, x ∈ A and n � n0. Then x, Tn(x) ∈ C, Tn(x) − x ∈ W

and consequently |f (Tn(x)) − f (x)| < ε. �
Proposition 1.7 roughly means that f ◦ Tn converges to f uniformly on the elements of

Kw(U). But this would be an abuse of language, since not all compositions f ◦ Tn are well
defined, for every n ∈ N. Next theorem is our first important result concerning the algebras
Hwuk(U) and Hw∗uk(V ).

Theorem 1.8. Let E be a Banach space with a shrinking Schauder basis, let U be a polynomially
convex weakly open subset of E and let V be a polynomially convex weak-star open subset of E′.
Then Pf (E) is τk-dense in Hwuk(U), and Pf ∗(E′) is τk∗ -dense in Hw∗uk(V ).

Proof. Let A ∈Kw(U), f ∈ Hwuk(U) and ε > 0 be given. By Corollary 1.6 and Proposition 1.7
we can find an integer n0 ∈ N such that

Tn0(A) ∈Kw(U) and
∣∣f ◦ Tn0(x) − f (x)

∣∣ <
ε

2
, for all x ∈ A. (1)

Since U is polynomially convex, we have that U ∩ Tn0(E) is polynomially convex in Tn0(E)

[10, Examples 25.2(d)]. On the other hand, it is clear that Tn0(A) is a compact subset of U ∩
Tn0(E). Then it follows by [10, Theorem 25.4] that there exists P ∈ P(Tn0(E)) such that |P(y)−
f (y)| < ε/2, uniformly on y ∈ Tn0(A), or in other words

sup
x∈A

∣∣P ◦ Tn0(x) − f ◦ Tn0(x)
∣∣ <

ε

2
. (2)

Now the conclusion follows by (1) and (2). �
The first assertion in Corollary 1.4 is known when E′ has the approximation property (see [3,

Proposition 2.7]). The second assertion in Theorem 1.8 is known when V = E′ and E has the
approximation property (see [1, Theorem 5.2]). But the proof given here when E has a shrinking
Schauder basis, is much simpler.

2. Characterization of the spectrum

In this section we present several applications of the results of the previous section. The re-
sults concern new classes of open subsets of Banach spaces. Definitions 2.1 are inspired by [15,
Definitions 1].
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Definitions 2.1. Let E be a Banach space, let U be an open subset of E and let V be an open
subset of E′. We say that:

(1) U is Pwk(E)-convex if ÂPw(E) ∩ U ∈ Kw(U), for all A ∈ Kw(U).
(2) V is Pw∗k(E′)-convex if B̂Pw∗ (E′) ∩ V ∈Kw∗(V ), for all B ∈ Kw∗(V ).

(3) U is strongly Pwk(E)-convex if ÂPw(E) ⊂ U and ÂPw(E) ∈Kw(U), for all A ∈Kw(U).

(4) V is strongly Pw∗k(E′)-convex if B̂Pw∗ (E′) ⊂ V and B̂Pw∗ (E′) ∈ Kw∗(V ), for all B ∈
Kw∗(V ).

In the next lemma we show that the last conditions of Definitions 2.1(3) and (4) are actually
unnecessary.

Lemma 2.1. Let E be a Banach space, let U be an open subset of E and let V be an open
subset of E′. Let A ∈ Kw(U) and B ∈ Kw∗(V ). If ÂPw(E) ⊂ U , then ÂPw(E) ∈ Kw(U); and if
B̂Pw∗ (E′) ⊂ V , then B̂Pw∗ (E′) ∈Kw∗(V ).

Proof. Since C⊕E′ ⊂ Pw(E), we have that ÂPw(E) ⊂ ÂC⊕E′ = cow(A), where the last equality
follows by [10, Proposition 11.1]. Since cow(A) is weakly compact and ÂPw(E) is weakly closed,
it follows that ÂPw(E) ⊂ U is weakly compact and then ÂPw(E) ∈Kw(U). The second assertion
is trivial, since B̂Pw∗ (E′) is weak-star closed and bounded, and hence weak-star compact. �
Lemma 2.2. Let E be a Banach space, and let A be a bounded subset of E′. Then ÂC⊕E =
cow∗

(A), where C ⊕ E denotes the set {a + δx : a ∈ C, x ∈ E} ⊂ E′′.

Proof. We follow the proof of [10, Proposition 11.1(b)], applying the Hahn–Banach theorem to
the locally convex space (E′, σ (E′,E)). �
Example 2.3. Let E be a Banach space, P ∈Pf (E) and Q ∈Pf ∗(E′). Then:

(1) Every convex weakly open subset of E is strongly Pwk(E)-convex.
(2) Every convex weak-star open subset of E′ is strongly Pw∗k(E′)-convex.
(3) U = {x ∈ E: |P(x)| < 1} is a strongly Pwk(E)-convex weakly open set.
(4) V = {x ∈ E′: |Q(x)| < 1} is a strongly Pw∗k(E′)-convex weak-star open set.

Proof. (1) Let A ∈ Kw(U). We will first show that cow(A) ∈ Kw(U). By Lemma 1.1, let
W̃ ∈ Vw(E) be such that A + W̃ ⊂ U . Since U is convex, it is easy to see that co(A) + W̃ ⊂
co(A + W̃ ) ⊂ U . Since cow(A) = ⋂

W∈Vw(E)(co(A) + W), it follows that cow(A) ⊂ co(A) +
W̃ ⊂ U and hence cow(A) ∈Kw(U). Now ÂPw(E) ⊂ ÂC⊕E′ = cow(A) ∈Kw(U), where the last
equality follows by [10, Proposition 11.1]. Then it follows that U is strongly Pwk(E)-convex.

(2) We follow the same arguments of (1), using Lemma 2.2 instead of [10, Proposition 11.1].
(3) It is clear that U is weakly open. Given A ∈ Kw(U), we will show that supA |P | < 1.

Suppose that supA |P | = 1. Then there exists a sequence (xn) in A such that |P(xn)| → 1.

Since A is w-compact, there exists (xnk
) a subsequence of (xn) such that xnk

w−→ x ∈ A ⊂ U .
Hence |P(xnk

)| → |P(x)| = 1, that is, x /∈ U , which is a contradiction. Now let y ∈ ÂPw(E).
Then |P(y)| � supA |P | < 1, proving that ÂPw(E) ⊂ U . Now U is strongly Pwk(E)-convex by
Lemma 2.1. �
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If U is weakly open and Pwk(E)-convex then U is polynomially convex. Indeed, if K is a
compact subset of U , then K ∈ Kw(U). Now, since Pw(E) ⊂ P(E), we have that K̂P(E) ⊂
K̂Pw(E), and then K̂P(E) ∩ U ⊂ K̂Pw(E) ∩ U ∈ Kw(U) ⊂ B(U), where B(U) denotes the set of
all U -bounded subsets of U . We recall [15, Definitions 1] that an open subset U of a Banach
space E is Pb(E)-convex if ÂP(E) ∩ U ∈ B(U) for all A ∈ B(U); and we say that U is strongly
Pb(E)-convex if ÂP(E) ⊂ U and ÂP(E) ∈ B(U) for all A ∈ B(U). However, in [15, Lemma 3],
we show that the last condition ÂP(E) ∈ B(U) is superfluous. If U is balanced, then both notions
coincide [15, Proposition 6]. In the case of Pwk(E)-convex sets, we have a similar result, that
will be proved in Theorem 2.5. To show this theorem, we need the following result.

Theorem 2.4. Let E be a Banach space.

(1) Let A ⊂ E be a weakly compact subset of E and let U be a weakly open subset of E such
that ÂPf (E) ⊂ U . Then there exists a weakly open set Ũ which is strongly Pwk(E)-convex,

such that ÂPf (E) ⊂ Ũ ⊂ U .
(2) Let B ⊂ E′ be a weak-star compact subset of E′ and let V be a weak-star open subset

of E′ such that B̂Pf ∗ (E′) ⊂ V . Then there exists a weak-star open set Ṽ which is strongly

Pw∗k(E′)-convex, such that B̂Pf ∗ (E′) ⊂ Ṽ ⊂ V .

Proof. (1) We are inspired by ideas of [10, Lemma 24.7 and Theorem 28.2]. Since A is weakly
compact, it follows that C = cow(A) is weakly compact. If C ⊂ U , then we take Ũ = C + W ,
where W ∈ Vw(E) is convex and such that C + W ⊂ U (Lemma 1.1). Since C ⊕ E′ ⊂ Pf (E),
we have that ÂPf (E) ⊂ ÂC⊕E′ = C, where the last equality follows by [10, Proposition 11.1].
Now Ũ is strongly Pwk(E)-convex by Example 2.3, and hence Ũ is the desired set. If C is not
contained in U , then for each y ∈ C \ U there is P ∈ Pf (E) such that supA |P | < 1 < |P(y)|.
Since C \U is weakly compact, we can find polynomials P1, . . . ,Pk ∈ Pf (E) such that C \U ⊂⋃k

j=1{x ∈ E: |Pj (x)| > 1}. Hence

C ∩ {
x ∈ E:

∣∣Pj (x)
∣∣ � 1, for j = 1, . . . , k

} ⊂ U. (3)

We claim that there exists W ∈ Vw(E) such that (C + W) ∩ {x ∈ E: |Pj (x)| < 1, for j =
1, . . . , k} ⊂ U . If this is not the case, then for each W ∈ Vw(E) there exists zW = xW + yW , with
xW ∈ C, yW ∈ W , and |Pj (zW )| < 1, for j = 1, . . . , k; such that zW /∈ U . Since C is weakly com-

pact, without loss of generality, there exists x ∈ C such that xW
w−→ x, and hence zW

w−→ x ∈ C.
Since Pj (zW ) → Pj (x), for j = 1, . . . , k, it follows that |Pj (x)| � 1, j = 1, . . . , k, which means
that x ∈ U , by (3). Let W̃ ∈ Vw(E) be such that x +W̃ ⊂ U . For this W̃ , there exists W0 ∈ Vw(E)

such that zW0 ∈ x + W̃ ⊂ U , which is a contradiction. Now Ũ = (C +W)∩{x ∈ E: |Pj (x)| < 1,
for j = 1, . . . , k} is strongly Pwk(E)-convex, because it is a finite intersection of strongly
Pwk(E)-convex sets (see Example 2.3). Finally, it is clear that ÂPf (E) ⊂ Ũ ⊂ U .

(2) We follow the same approach of (1), using Lemma 2.2 instead of [10, Proposi-
tion 11.1]. �
Theorem 2.5. Let E be a Banach space with a shrinking Schauder basis, let U be a weakly open
subset of E and let V be a weak-star open subset of E′. Then

(1) U is Pwk(E)-convex if and only if U is strongly Pwk(E)-convex.
(2) V is Pw∗k(E′)-convex if and only if V is strongly Pw∗k(E′)-convex.
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Proof. To show the nontrivial implication, let A ∈ Kw(U). By Lemma 2.1, it suffices to show
that ÂPw(E) ⊂ U . Let us write ÂPw(E) = (ÂPw(E) ∩ U) ∪ (ÂPw(E) \ U). Since U is Pwk(E)-
convex, we have that ÂPw(E) ∩ U ∈ Kw(U) and then by Lemma 1.1 there exists W̃ ∈ Vw(E)

such that ÂPw(E) ∩U + W̃ ⊂ U , which implies that (ÂPw(E) ∩U + W̃ )∩ (ÂPw(E) \U) = ∅. Let
W ∈ Vw(E) such that W +W ⊂ W̃ . It follows by [15, Lemma 5] that (A0 +W)∩ (A1 +W) = ∅,
where A0 = (ÂPw(E)) ∩ U and A1 = ÂPw(E) \ U . If we denote U ′ = (A0 + W) ∪ (A1 + W),
then it is easy to see that U ′ = ÂPw(E) + W = ÂPf (E) + W , where the last equality follows
by Corollary 1.5. Let us define f ∈ Hwuk(U

′) by f = 0 in A0 + V and f = 1 in A1 + V .
Now U ′ is a weakly open subset of E that contains ÂPf (E). By Theorem 2.4, there exists
a weakly open set Ũ which is strongly Pwk(E)-convex, such that ÂPf (E) ⊂ Ũ ⊂ U ′. Since

ÂPf (E) is weakly compact, we have that ÂPf (E) ∈ Kw(Ũ). Since Ũ is strongly Pwk(E)-
convex and f |Ũ ∈ Hwuk(Ũ), we can apply Theorem 1.8 and find a polynomial P ∈ Pf (E)

such that supÂPf (E)
|f |Ũ − P | < 1/2. Since A ⊂ A0, we have that supA |P | < 1/2 and hence

supÂPf (E)
|P | < 1/2. Now let y ∈ A1 ⊂ Ũ . Then 1/2 > |P(y) − f |Ũ (y)| = |P(y) − 1| =

|1 − P(y)| � 1 − |P(y)|. Hence it follows that |P(y)| > 1/2, which is a contradiction. �
Next we will study the spectrum of Hwuk(U) when E is reflexive. Since in this case the

algebras Hwuk(U) and Hw∗uk(V ) are of the same type, it suffices to deal with Hwuk(U). Let E

be a Banach space and U be an open subset of E. The spectrum of Hwuk(U) is the set of all
continuous complex homomorphisms T :Hwuk(U) → C, and is denoted by Swuk(U). Let z ∈ U .
Then δz :Hwuk(U) → C defined by δz(f ) = f (z), for all f ∈ Hwuk(U) is called evaluation at z.
It is easy to see that δz ∈ Swuk(U), for every z ∈ U , and in this sense we say that U is contained
in Swuk(U). In the next theorem we show that under certain conditions on E and U all the
elements of Swuk(U) are evaluations at some point of U , and in this sense we say that Swuk(U)

is identified with U .

Theorem 2.6. Let E be a reflexive Banach space with a Schauder basis and let U be a Pwk(E)-
convex and weakly open subset of E. Then the spectrum of Hwuk(U) is identified with U .

Proof. We follow ideas of [11, Theorem 1.1]. Let T ∈ Swuk(U). Since T is continuous, there
exists A ∈ Kw(U) and C > 0 such that |T (f )| � C supA |f |, for all f ∈ Hwuk(U). Since T

is multiplicative, by a classical argument, we may assume that C = 1. Let r > 0 be such that
A ⊂ B(0, r). In particular, we have that |T (f )| � supA |f | � supB(0,r) |f |, for all f ∈ E′. Hence
we have that T ∈ E′′ = E, so there exists a unique a ∈ E such that T (f ) = f (a), for all f ∈ E′,
and hence T (P ) = P(a), for all P ∈ Pf (E). Then it follows that |P(a)| = |T (P )| � supA |P |,
for all P ∈ Pf (E), which implies that a ∈ ÂPf (E) = ÂPw(E), where the last equality follows
by Corollary 1.5. Now by Theorem 2.5, we have that U is strongly Pwk(E)-convex, and hence
a ∈ U . Then we apply Theorem 1.8 and get that T (f ) = f (a), for all f ∈Hwuk(U). �
Example 2.7. Let E be a reflexive Banach space and let U be a convex and weakly open subset
of E. By Example 1.2 we have that Hwuk(U) = Hwu(U). Since U is convex, it follows by
Example 2.3 that U is strongly Pwk(E)-convex. If we assume that E has a Schauder basis, we
have by Theorem 1.8 that Pf (E) is dense in Hwu(U). Also, it follows by Theorem 2.6 that
Swu(U) = U . In [6,7], it is shown that if E is a Banach space such that E′ has the approximation
property, and U ⊂ E is a convex and balanced open set, then Swu(U) = int(Uw∗

), where the
interior is taken in the norm of E′′. In particular, if E is reflexive with a Schauder basis, then



992 D.M. Vieira / J. Math. Anal. Appl. 328 (2007) 984–994
Swu(U) = U . So, for the reflexive case, we are able to omit the hypothesis of U being balanced,
but we have to assume that U is weakly open.

Example 2.8. Let E be a reflexive Banach space such that P(E) = Pw(E). Let U be a weakly
open subset of E, which is strongly Pb(E)-convex (and hence strongly Pwk(E)-convex). We
have that Un

w ⊂ (̂Un)Pw(E) = (̂Un)P(E) ⊂ U . Since E is reflexive, we have that Un
w is weakly

compact, and hence Un
w ∈ Kw(U). Consequently Hwuk(U) = Hwu(U). If, in addition, we as-

sume that E has a Schauder basis, then by Example 2.7 we have that Pf (E) is dense in Hwu(U)

and Swu(U) = U . An example of a Banach space with all the required properties is Tsirelson’s
space [13]. In [15, Theorem 11 and Proposition 6] it is shown that if E is a reflexive Banach
space such that P(E) = Pw(E), and U ⊂ E is balanced and Pb(E)-convex, then Swu(U) = U .
As observed before, every balanced Pb(E)-convex open set is strongly Pb(E)-convex. So for the
particular case when E is Tsirelson’s space, we also improve results from [15].

3. Banach–Stone theorems

Next theorem is a consequence of Theorem 2.6. It says that, under the same hypotheses of
Theorem 2.6, every proper finitely generated ideal of Hwuk(U) has a common zero. The proof
will be omitted since it follows the same spirit of [11, Theorem 1.5].

Theorem 3.1. Let E be a reflexive Banach space with a Schauder basis and let U be a Pwk(E)-
convex and weakly open subset of E. Then given f1, . . . , fn ∈ Hwuk(U) without common zeros,
there exists g1, . . . , gn ∈ Hwuk(U) such that

∑n
i=1 figi = 1.

In the spirit of Example 2.7 we have the following corollary for the algebra Hwu(U).

Corollary 3.2. Let E be a reflexive Banach space with a Schauder basis and let U be a convex
and weakly open subset of E. Then given f1, . . . , fn ∈ Hwu(U) without common zeros, there
exists g1, . . . , gn ∈Hwu(U) such that

∑n
i=1 figi = 1.

Let E and F be Banach spaces, and let U ⊂ E and V ⊂ F be open subsets. We denote
by Hwuk(V,U) the set of all holomorphic mappings ϕ :V → U such that ϕ : (V ,σ (F,F ′)) →
(U,σ (E,E′)) is uniformly continuous when restricted to each B ∈ Kw(V ). Let ϕ ∈ Hwuk(V,U).
Then it is easy to see that Cϕ :Hwuk(U) → Hwuk(V ) defined by Cϕ(f ) = f ◦ ϕ, for all
f ∈ Hwuk(U), is a continuous algebra-homomorphism. An homomorphism of such type is
called composition operator. In the next theorem, we show that under the same conditions of
Theorem 2.6, every continuous algebra-homomorphism from Hwuk(U) into Hwuk(V ) is a com-
position operator.

Theorem 3.3. Let E and F be Banach spaces, with E reflexive with a Schauder basis. Let U ⊂ E

be Pwk(E)-convex and weakly open, and let V ⊂ F be an open subset. Then every continuous
algebra-homomorphism T :Hwuk(U) → Hwuk(V ) is a composition operator.

Proof. We follow ideas of [14, Theorems 2 and 10]. We must find a mapping ϕ ∈ Hwuk(V,U)

such that T = Cϕ . Let w ∈ V and note that δw ◦ T ∈ Swuk(U). By Theorem 2.6, there exists a
unique z ∈ U such that δw ◦ T = δz. If we define ϕ(w) = z, then it follows that T (f ) = f ◦ ϕ,
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for all f ∈Hwuk(U). In particular, f ◦ϕ is holomorphic, for all f ∈ E′, and hence by [10, Theo-
rem 8.12] we have that ϕ is a holomorphic mapping. It remains to show that ϕ : (V ,σ (F,F ′)) →
(U,σ (E,E′)) is uniformly continuous when restricted to each B ∈ Kw(V ). So let B ∈ Kw(V ),
f ∈ E′ and ε > 0. Since f ◦ ϕ ∈ Hwuk(V ), there exists W ∈ Vw(F ) such that if x, y ∈ B , and
x − y ∈ W then |f ◦ ϕ(x) − f ◦ ϕ(y)| < ε. This shows that ϕ ∈ Hwuk(V,U). �
Corollary 3.4. Let E and F be Banach spaces, with E reflexive with a Schauder basis. Let
U ⊂ E be convex and weakly open, and let V ⊂ F be an open subset. Then every continuous
algebra-homomorphism T :Hwu(U) →Hwu(V ) is a composition operator.

Similar results as Corollary 3.4 appear in [7, Theorem 15 and Corollary 16], for absolutely
convex open subsets of Banach spaces whose dual has the approximation property.

In [5], S. Banach proved that two compact metric spaces X and Y are homeomorphic if
and only if the Banach algebras C(X) and C(Y ) are isometrically isomorphic. M.H. Stone,
in [12], generalized this result to arbitrary compact Hausdorff topological spaces, the well-
known Banach–Stone theorem. In the next theorem we establish a similar result for the algebras
Hwuk(U) and Hwuk(V ).

Theorem 3.5. Let E and F be reflexive Banach spaces, both with Schauder bases. Let U ⊂ E

and V ⊂ F be weakly open sets, such that U is Pwk(E)-convex and V is Pwk(F )-convex. Then
the following conditions are equivalent.

(1) There exists a bijective mapping ϕ :V → U such that ϕ ∈ Hwuk(V,U) and ϕ−1 ∈
Hwuk(U,V ).

(2) The algebras Hwuk(U) and Hwuk(V ) are topologically isomorphic.

Proof. We follow ideas of [14, Theorem 12].
(1) ⇒ (2) Let us consider the composition operator Cϕ :Hwuk(U) → Hwuk(V ). Then it is

easy to see that Cϕ is bijective and that (Cϕ)−1 = Cϕ−1 .
(2) ⇒ (1) Let T :Hwuk(U) → Hwuk(V ) be a topological isomorphism. By Theorem 3.3,

there exists ϕ ∈Hwuk(V,U) such that T = Cϕ and ψ ∈Hwuk(U,V ) such that T −1 = Cψ . Then
it is not difficult to see that ψ = ϕ−1, and this completes the proof. �
Corollary 3.6. Let E and F be reflexive Banach spaces, both with Schauder bases. Let U ⊂ E

and V ⊂ F be convex and weakly open sets. Then the following conditions are equivalent.

(1) There exists a bijective mapping ϕ :V → U such that ϕ ∈ Hwu(V,U) and ϕ−1 ∈
Hwu(U,V ).

(2) The algebras Hwu(U) and Hwu(V ) are topologically isomorphic.

Corollary 3.4 improves [11, Theorem 1.6] and Corollary 3.6 improves [14, Corollary 14].
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