3ª Prova de MAT2351 - Cálculo para Funções de Várias Variáveis I

Turma 47 - Noturno

$1^{\underline{0}}$ semestre de 2022 - $13/07/2022_A$

Prof. Wilson Cuellar

Monitor: Matheus de Souza Nunes

- 1. (2,5) Seja $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciável tal que 2x + 3y + z = 1 é o plano tangente ao gráfico de f no ponto (-1, 2, f(-1, 2)). Determine
 - (a) A reta tangente ao gráfico de $g: \mathbb{R} \to \mathbb{R}$ dada por $g(t) = f(te^t \cos t, 2e^t + t)$ no ponto (0, g(0)).
 - (b) O plano tangente ao gráfico de $h(u,v)=uf(uv,u^2+v^2)$ no ponto (1,-1,h(1,-1)).

Resolução:

a) Seja o plano tangente a $f(-1,2): z-f(-1,2) = \frac{\partial f}{\partial x}(-1,2)(x+1) + \frac{\partial f}{\partial y}(-1,2)(y-2),$ temos que $\nabla f(-1,2) = (-2,-3)$ e $f(-1,2) - 2 + 6 = 1 \Rightarrow f(-1,2) = -3$

A reta tangente ao gráfico de g em (0, g(0)) é: y - g(0) = g'(0)(x - 0). Seja $\gamma(t) = (x(t), y(t)) = (te^t - \cos t, 2e^t + t)$. Então $\gamma(0) = (-1, 2)$

$$\begin{split} g'(t) &= (\frac{\partial f}{\partial x}(\gamma(t)), \frac{\partial f}{\partial y}(\gamma(t))) \cdot (x'(t), y'(t)) = \\ &= \frac{\partial f}{\partial x}(\gamma(t))(e^t + te^t + \operatorname{sen} t) + \frac{\partial f}{\partial y}(\gamma(t))(2e^t + 1)). \text{ Portanto,} \end{split}$$

$$g'(0) = \frac{\partial f}{\partial x}(-1,2)x(0) + \frac{\partial f}{\partial y}(-1,2)y'(0) = -2(e^0 + 0e^0 + \sin 0) - 3(2e^0 + 1) = -11.$$

Assim, a reta tangente ao gráfico de g em (0, g(0)) é $\mathbf{y} = -11\mathbf{x} - 3$.

b) A equação do plano tangente ao gráfico de h no ponto $(u_0, v_0, h(u_0, v_0))$ é $z - h(u_0, v_0) = \frac{\partial h}{\partial u}(u_0, v_0)(x - u_0) + \frac{\partial h}{\partial v}(u_0, v_0)(y - v_0)$

$$\nabla h(u_0, v_0) = (\frac{\partial h}{\partial u}(u_0, v_0), \frac{\partial h}{\partial v}(u_0, v_0))$$

$$\frac{\partial h}{\partial u} = f(uv, u^2 + v^2) + u(\frac{\partial f}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial y}) = f(uv, u^2 + v^2) + u(v \frac{\partial f}{\partial x} + 2u \frac{\partial f}{\partial y})$$

$$\frac{\partial h}{\partial v} = u(\frac{\partial f}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial f}{\partial u}\frac{\partial y}{\partial v}) = u(u\frac{\partial f}{\partial x} + 2v\frac{\partial f}{\partial u})$$

$$\nabla h(1,-1) = (f(-1,2) + 1(-1\frac{\partial f}{\partial x}(-1,2) + 2\frac{\partial f}{\partial y}(-1,2), 1(1\frac{\partial f}{\partial x}(-1,2) - 2\frac{\partial f}{\partial y}(-1,2))) = (-7,4).$$

$$h(1,-1) = f(-1,2) = -3$$

Logo, o plano tangente ao gráfico de
$$h$$
 no ponto $(1,-1,h(1,-1)$ é: $z-h(1,-1)=\frac{\partial h}{\partial u}(1,-1)(x-1)+\frac{\partial h}{\partial v}(1,-1)(y+1) \Rightarrow z+3=-7(x-1)+4(y+1) \Rightarrow \mathbf{7x-4y+z-8}=\mathbf{0}$

2. (2,5) Considere as seguintes superfícies no \mathbb{R}^3

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : 7x^2 + 2y^2 - 3z^2 = 20\},\$$

 $S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}.$

- (a) Encontre a equação do plano tangente à superfície S_1 no ponto (3, -4, 5).
- (b) Seja $\gamma(t)$ uma curva diferenciável com imagem contida na interseção de S_1 e S_2 tal que $\gamma(t_0) = (3, -4, 5)$ e $\gamma'(t_0) \neq (0, 0, 0)$. Encontre a equação da reta tangente a γ no ponto (3, -4, 5).

Resolução:

a) Seja $f(x, y, z) = 7x^2 + 2y^2 - 3z^2 - 20$ a superfície S_1 é a superfície de nível 0 de f.

$$\nabla f(x,y,z) = (14x,4y,-6z)$$
. Logo, f é de Classe C^1 e $\nabla f(3,-4,5) = 2(21,-8,-15)$

O plano tangente a
$$S_1$$
 no ponto $(3,-4,5)$ será: $\nabla f(3,-4,5) \bullet (x-3,y+4,z-5) = 0 \Rightarrow 2(21,-8,-15) \bullet (x-3,y+4,z-5) = 0 \Rightarrow \mathbf{21x} - \mathbf{8y} - \mathbf{15z} - \mathbf{20} = \mathbf{0}$

b) Seja $g(x,y,z) = x^2 + y^2 - z^2$, então S_2 é a superfície de nível 0 de g. Sendo $\gamma(t)$ a interseção de S_1 com S_2 , temos que a reta tangente a $\gamma(t)$ é perpendicular a ∇f e a ∇g no ponto (3,-4,5).

$$\nabla f(x, y, z) = (14x, 4y, -6z) \in \nabla g(x, y, z) = (2x, 2y, -2z)$$

Logo, $\gamma'(t_0)$ é paralelo a $\nabla f(3, -4, 5) \times \nabla g(3, -4, 5) \parallel (21, -8, -15) \times (3, -4, -5) = 20(-1, 3, -3).$

Portanto, a reta tangente será: $X = (3, -4, 5) + \lambda(-1, 3, -3), \lambda \in \mathbb{R}$.

3. (2,5) Determine os valores de a tais que a função

$$f(x,y) = 2a^2x^4 + ay^2 - 4x^2 - 2ay$$

tenha exatamente um ponto de sela e dois pontos de mínimo local.

Resolução: f é classe \mathcal{C}^2 para todo $a \in \mathbb{R}$. Se a = 0, então $f(x,y) = -4x^2$ e todo ponto $\{(0,y),y\in\mathbb{R}\}$ é ponto de máximo de f. Suponhamos $a\neq 0$, encontremos os pontos críticos de f:

$$\frac{\partial f}{\partial y}(x,y) = 2ay - 2a = 2a(y-1) = 0 \Leftrightarrow y = 1$$

$$\frac{\partial f}{\partial x}(x,y) = 8a^2x^3 - 8x = 8x(a^2x^2 - 1) = 0 \Leftrightarrow x = 0 \text{ ou } x = +\frac{1}{a}$$

Logo, os pontos críticos são: $(0,1), (\frac{1}{a},1), (-\frac{1}{a},1)$

$$\frac{\partial^2 f}{\partial y^2} = 2a$$
, $\frac{\partial^2 f}{\partial x^2} = 24a^2x^2 - 8 \text{ e } \frac{\partial^2 f}{\partial x \partial y} = 0$

$$H(x,y) = 2a(24a^2x^2 - 8)$$

Para o ponto (0,1):

$$H(0,1) = -16a$$

$$f_{xx}(0,1) = -8$$

Para o ponto $(\frac{1}{a}, 1)$:

$$H(\frac{1}{a},1) = 32a$$

$$H(\frac{1}{a}, 1) = 32a$$

 $f_{xx}(\frac{1}{a}, 1) = 16$

Para o ponto $\left(-\frac{1}{a},1\right)$:

$$H(-\frac{1}{3},1) = 32a$$

$$H(-\frac{1}{a}, 1) = 32a$$
$$f_{xx}(-\frac{1}{a}, 1) = 16$$

Portanto, para ter 2 pontos de mínimo local e 1 ponto de sela: a > 0.

4. (2,5) Sejam f(x,y,z) = x + y - z e S o elipsoide definido por

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{6} = 1 \right\}$$

Determine o valor máximo e mínimo de f em S.

Resolução: Sendo S fechado e limitado, então S é compacto. Como f é contínua, pelo teorema de Weierstrass f admite máximo e mínimo absolutos em S. Seja $g(x,y,z)=\frac{x^2}{2}+\frac{y^2}{4}+\frac{z^2}{6}-1$. Então o elipsóide é a superfície de nível 0 de g. $\nabla g(x,y,z)=(x,\frac{y}{2},\frac{z}{3})$ e $\nabla f(x,y,z)=(1,1,-1)$.

Observamos $\nabla g(x,y,z) \neq (0,0,0)$ para todo $(x,y,z) \in S$. Pelo teorema de multiplicadores de Lagrange, os candidatos de máximo e mínimo de f em S satisfazem $\{\nabla f(x,y,z), \nabla g(x,y,z)\}$ são l.d. e g(x,y,z) = 0.

$$\nabla g(x,y,z) \times \nabla f(x,y,z) = (x,\frac{y}{2},\frac{z}{3}) \times (1,1,-1) = (-\frac{y}{2} - \frac{z}{3},x + \frac{z}{3},x - \frac{y}{2}) = (0,0,0)$$

$$\begin{cases} -\frac{y}{2} - \frac{z}{3} = 0\\ x + \frac{z}{3} = 0 \Rightarrow z = -3x\\ x - \frac{y}{2} = 0 \Rightarrow y = 2x\\ \frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{6} = 1 \Rightarrow \frac{x^2}{2} + \frac{4x^2}{4} + \frac{9x^2}{6} = 1 \Rightarrow 3x^2 = 1 \Rightarrow x = \frac{1}{\sqrt{3}} \text{ ou } x = -\frac{1}{\sqrt{3}} \end{cases}$$

Portanto, $f(\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{-3}{\sqrt{3}}) = \frac{6}{\sqrt{3}} = 2\sqrt{3}$ é o valor de máximo de f em S e

$$f(\frac{-1}{\sqrt{3}}, \frac{-2}{\sqrt{3}}, \frac{3}{\sqrt{3}}) = -\frac{6}{\sqrt{3}} = -2\sqrt{3}$$
 é o valor de mínimo de f em S .