1^a Prova de MAT2351 - Cálculo para Funções de Várias Variáveis I Turma 47 - Noturno

 $1^{\underline{0}}$ semestre de 2022 - $02/05/2022_A$ Prof. Wilson Cuellar

Monitor: Matheus de Souza Nunes

1. (2,0) Calcule o comprimento da curva $\gamma(t) = ((1 + \cos^2 t) \operatorname{sen} t, \operatorname{sen}^2 t \cos t) \ t \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right].$

Resolução:
$$L(\gamma(t)) = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} ||\gamma'(t)|| dt$$

$$x'(t) = -2\cos t \sin^2 t + (1 + \cos^2 t)\cos t = \cos t(-2\sin^2 t + 1 + \cos^2 t) = \cos t(-3\sin^2 t + 2)$$
$$y'(t) = 2\sin t \cos^2 t - \sin^3 t = \sin t(2\cos^2 t - \sin^2 t) = \sin t(-3\sin^2 t + 2)$$

$$y'(t) = 2\sin t \cos^2 t - \sin^3 t = \sin t (2\cos^2 t - \sin^2 t) = \sin t (-3\sin^2 t + 2)$$

$$\gamma'(t) = (\cos t(-3\sin^2 t + 2), \sin t(-3\sin^2 t + 2)) \Rightarrow \|\gamma'(t)\| = \sqrt{(-3\sin^2 t + 2)^2} = |-3\sin^2 t + 2|$$

$$\text{Logo, } \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} |-3\sin^2 t + 2| dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} -(-3\sin^2 t + 2) dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 3\sin^2 t - 2 dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} -\frac{3\cos 2t}{2} - \frac{1}{2} dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} |-3\sin^2 t + 2| dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} |-3\cos^2 t + 2| dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{$$

$$\left[-\frac{3\sin 2t}{4} - \frac{t}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = 0 - \frac{\pi}{4} + \frac{3\sin(\frac{2\pi}{3})}{4} + \frac{\pi}{6} = \frac{3}{4}\frac{\sqrt{3}}{2} - \frac{\pi}{12} = \frac{3\sqrt{3}}{8} - \frac{\pi}{12}$$

1. (2,0) Calcule o comprimento da curva $\gamma(t) = ((1 + \sin^2 t) \cos t, \cos^2 t \sin t) \ t \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right].$

Resolução:
$$L(\gamma(t)) = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} ||\gamma'(t)|| dt$$

$$x'(t) = 2\sin t \cos^2 t - \sin t (1 + \sin^2 t) = 2\sin t (1 - \sin^2 t) - \sin t - \sin^3 t = \sin t - 3\sin^3 t = \sin t (1 - 3\sin^2 t).$$

$$\sin t (1 - 3\sin^2 t).$$

$$y'(t) = -2\cos t \sin^2 t + \cos^3 t = \cos t (-2\sin^2 t + \cos^2 t) = \cos t (-2\sin^2 t + 1 - \sin^2 t) = \cos t (1 - 3\sin^2 t).$$

$$\gamma'(t) = (\sin t (1 - 3\sin^2 t), \cos t (1 - 3\sin^2 t)) \Rightarrow ||\gamma'(t)|| = \sqrt{(1 - 3\sin^2 t)^2} = |1 - 3\sin^2 t|$$

$$\text{Logo, } \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} |1 - 3\sin^2 t| dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} -(1 - 3\sin^2 t) dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (-1 + 3\sin^2 t) dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left(\frac{1}{2} - \frac{3\cos 2t}{2}\right) dt = \left[\frac{t}{2} - \frac{3\sin 2t}{4}\right]_{\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{\pi}{4} - 0 - \frac{\pi}{6} + \frac{3\sin(\frac{2\pi}{3})}{4} = -\frac{\pi}{12} + \frac{3\sqrt{3}}{4} = \frac{\pi}{12} + \frac{3\sqrt{3}}{8}.$$

Q2-(3,0) Considere a curva parametrizada $\gamma: \mathbb{R} \to \mathbb{R}^2$ definida por

$$\gamma(t) = (x(t), y(t)) = (2t^3 - 3t^2, 3t^2 + 6t)$$

- 1. Encontre as interseções da imagem de γ com os eixos.
- 2. Determine $\gamma'(t) = (x'(t), y'(t))$ para todo $t \in \mathbb{R}$. Ache os pontos da curva nos quais a tangente é horizontal ou vertical.
- 3. Estude o sinal das funções x' e y' para decidir qual a direção e sentido de γ' , conforme t varia no intervalo [-1,1].
- 4. Estude a concavidade da imagem da curva γ conforme t varia no intervalo [-1,0].

Resolução:

- a) γ intercepta o eixo x quando $y(t)=0 \Rightarrow 3t^2+6t=0 \Rightarrow t(3t+6)=0 \Leftrightarrow t=0$ ou t=-2. γ intercepta o eixo y quando $x(t)=0 \Rightarrow 2t^3-3t^2=0t^2(2t-3)=0 \Leftrightarrow t=0$ ou $t=\frac{3}{2}$. Logo, $\gamma(t)$ intercepta os eixos em: $\gamma(0)=(0,0), \gamma(-2)=(28,0)$ e $\gamma(\frac{3}{2})=(0,\frac{63}{4})$.
- b) $x'(t) = 6t^2 6t$ e y'(t) = 6t + 6. Logo $\gamma'(t) = (6t^2 6t, 6t + 6)$. A reta tangente é horizontal quando $x'(t) \neq 0$ e $y'(t) = 0 \Rightarrow 6t + 6 = 0 \Leftrightarrow t = -1$. A reta tangente é vertical quando $y'(t) \neq 0$ e $x'(t) = 0 \Rightarrow 6t^2 - 6t = 6t(t - 1) = 0 \Leftrightarrow t = 0$ ou t = 1

Logo, a reta tangente à curva é horizontal em $\gamma(-1) = (-5,3)$ e a reta tangente à curva é vertical em $\gamma(0) = (0,0)$ e $\gamma(1) = (-1,9)$.

- c) $x'(t) = 0 \Leftrightarrow t = 0$ ou t = 1; $y'(t) = 0 \Leftrightarrow t = -1$. - t = -1: x'(t) > 0 e $y'(t) = 0 \Longrightarrow \gamma'(t)$ apresenta o sentido \to - -1 < t < 0: x'(t) > 0 e $y'(t) > 0 \Longrightarrow \gamma'(t)$ apresenta o sentido \nearrow - t = 0: x'(t) = 0 e $y'(t) > 0 \Longrightarrow \gamma'(t)$ apresenta o sentido \uparrow - 0 < t < 1: x'(t) < 0 e $y'(t) > 0 \Longrightarrow \gamma'(t)$ apresenta o sentido \nwarrow - t = 1: x'(t) = 0 e $y'(t) > 0 \Longrightarrow \gamma'(t)$ apresenta o sentido \nwarrow
- d) Assumindo que no intervalo [-1,0] a curva γ representa y como função de x obtemos $\frac{dy/dt}{dx/dt} = \frac{6(t+1)}{6t(t-1)} = \frac{(t+1)}{t(t-1)}$. Logo, $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{t+1}{t(t-1)}\right)}{6t(t-1)} = \frac{t(t-1)-(t+1)(2t-1)}{t^2(t-1)^2(6t(t-1))} = \frac{-(t^2+2t-1)}{6t^3(t-1)^3}$.

Como as raízes do numerador são $-1-\sqrt{2}$ (que é menor que -1) e $-1+\sqrt{2}>0$, então $\frac{d^2y}{dx^2}>0$ no intervalo (-1,0). Portanto a curva apresenta concavidade para cima nesse intervalo.

3

Q2-(3,0) Considere a curva parametrizada $\gamma: \mathbb{R} \to \mathbb{R}^2$ definida por

$$\gamma(t) = (x(t), y(t)) = (3t^2 + 6t, 2t^3 - 3t^2)$$

- 1. Encontre as interseções da imagem de γ com os eixos.
- 2. Determine $\gamma'(t) = (x'(t), y'(t))$ para todo $t \in \mathbb{R}$. Ache os pontos da curva nos quais a tangente é horizontal ou vertical.
- 3. Estude o sinal das funções x' e y' para decidir qual a direção e sentido de γ' , conforme t varia no intervalo [-1,1].
- 4. Estude a concavidade da imagem da curva γ conforme t varia no intervalo [-1,0].

Resolução

- a) γ intercepta o eixo y quando $x(t) = 0 \Rightarrow 3t^2 + 6t = 0 \Rightarrow t(3t+6) = 0 \Leftrightarrow t = 0$ ou t = -2. γ intercepta o eixo x quando $y(t) = 0 \Rightarrow 2t^3 3t^2 = 0 \Rightarrow t^2(2t-3) = 0 \Leftrightarrow t = 0$ ou $t = \frac{3}{2}$. Logo, $\gamma(t)$ intercepta os eixos em: $\gamma(0) = (0,0), \gamma(-2) = (0,-28)$ e $\gamma(\frac{3}{2}) = (\frac{63}{4},0)$.
- b) $y'(t) = 6t^2 6t \text{ e } x'(t) = 6t + 6$. Logo $\gamma'(t) = (6t + 6, 6t^2 6t)$. A reta tangente é vertical quando $y'(t) \neq 0$ e $x'(t) = 0 \Rightarrow 6t + 6 = 0 \Leftrightarrow t = -1$.

A reta tangente é horizontal quando $x'(t) \neq 0$ e $y'(t) = 0 \Rightarrow 6t^2 - 6t = 6t(t-1) = 0 \Leftrightarrow t = 0$ ou t = 1

Logo, a reta tangente à curva é vertical em $\gamma(-1) = (-3, -5)$ e a reta tangente à curva é horizontal em $\gamma(0) = (0, 0)$ e em $\gamma(1) = (9, -1)$.

- c) $x'(t) = 0 \Leftrightarrow t = -1$; $y'(t) = 0 \Leftrightarrow t = 1$ ou t = 0. - t = -1: y'(t) > 0 e $x'(t) = 0 \Longrightarrow \gamma'(t)$ appresenta o sentido \uparrow
- $-1 < t < 0 : y'(t) > 0 e x'(t) > 0 \Longrightarrow \gamma'(t)$ apresenta o sentido
- t=0:y'(t)=0e $x'(t)>0 \Longrightarrow \gamma'(t)$ apresenta o sentido \to
- 0 < t < 1 : y'(t) < 0 e x'(t) > 0 $\Longrightarrow \gamma'(t)$ apresenta o sentido
- t = 1: y'(t) = 0 e $x'(t) > 0 \Longrightarrow \gamma'(t)$ apresenta o sentido \to
- **d)** Assumindo que no intervalo [-1,0] a curva γ representa y como função de x obtemos $\frac{dy/dt}{dx/dt} = \frac{6t(t-1)}{6(t+1)} = \frac{t(t-1)}{(t+1)}.$ Logo,

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{t(t-1)}{t+1}\right)}{6(t+1)} = \frac{(2t-1)(t+1) - t(t-1)}{(t+1)^2(6(t+1))} = \frac{t^2 + 2t - 1}{6(t+1)^3}.$$

Como as raízes do numerador são $-1-\sqrt{2}$ (que é menor que -1) e $-1+\sqrt{2}>0$, então $\frac{d^2y}{dx^2}<0$ no intervalo (-1,0). Portanto a curva apresenta concavidade para baixo nesse intervalo.

4

Q3-(2,0) Considere as seguintes curvas dadas em coordenadas polares

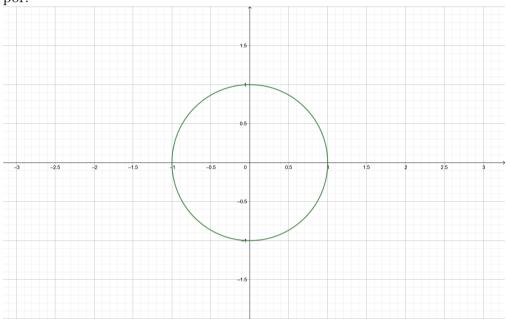
$$\mathcal{C}_1: r=1$$

$$\mathcal{C}_2: r = 2(1 + \operatorname{sen}\theta)$$

- 1. Determine se as curvas são simétricas em relação ao eixo pólar ou ao eixo y. Faça um esboço de \mathcal{C}_1 e \mathcal{C}_2 .
- 2. Encontre a área da região obtida pela interseção dos interiores das curvas C_1 e C_2 .

Resolução:

a) Curva C_1 : Como $r_1(\theta) = r_1(-\theta) = 1$ e $r_1(\theta) = r_1(\pi - \theta) = 1$ temos que C_1 é simétrica tanto em relação ao eixo polar quanto em relação ao eixo vertical (eixo y). Seu esboço é dado por:



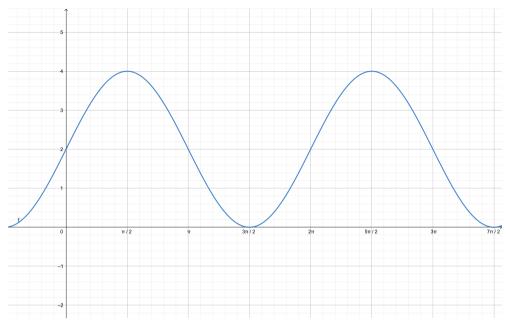
Curva $C_2: r_2(\theta) = 2 + 2\sin\theta$

I: $r_2(\theta) \stackrel{?}{=} r_2(-\theta)$. Tomando $\theta = \frac{\pi}{4}$, temos que $r_2(\frac{\pi}{4}) = 2 + \sqrt{2}$ enquanto $(2 + \sqrt{2}, -\frac{\pi}{4})$ não pertence à curva \mathcal{C}_2 .

II: $r_2(\theta) \stackrel{?}{=} r_2(\pi - \theta) \Rightarrow 2 + 2\sin\theta = 2 + 2\sin(\pi - \theta)$, pois $\sin(\pi - \theta) = \sin(\pi)\cos(\theta) - \sin(\theta)\cos(\pi) = \sin\theta$. Logo, $r_2(\theta) = r_2(\pi - \theta)$

De I concluímos que C_2 não é simétrica em relação ao eixo polar. De II concluímos que C_2 é simétrica em relação ao eixo vertical (eixo y).

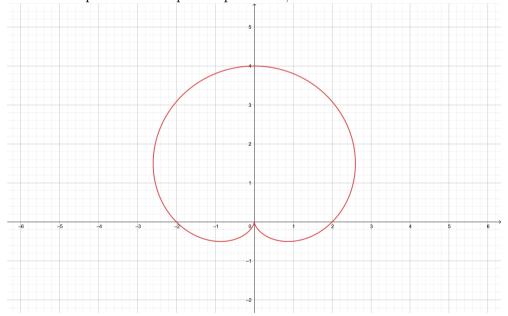
Conforme o gráfico do raio da curva C_2 ,



Percebe-se que o raio parte do $\theta=0$, atinge seu máximo com o valor de 4 em $\theta=\frac{\pi}{2}$ e zera quando $\theta=\frac{3\pi}{2}$. Sendo

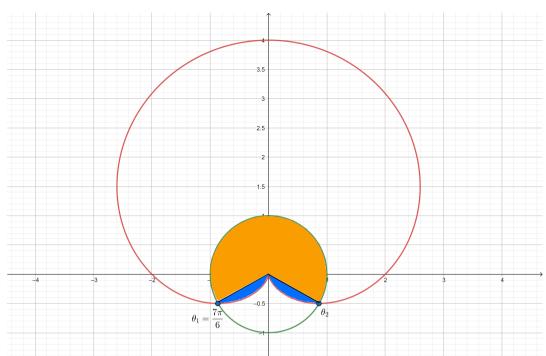
$$\left\{ \begin{array}{l} x(\theta) = r\cos\theta \\ y(\theta) = r\sin\theta \end{array} \right\}.$$
(1)

temos que a curva parte do $C_2(0)=(2,0)$ e chega em $C_2(\frac{\pi}{2})=(0,4)$. Por questão da simetria com o eixo y, essa trecho desenhado no primeiro quadrante se espelha no segundo quadrante, com θ variando de 0 até π . Quando θ varia de π até $\frac{3\pi}{2}$, o raio vai de 1 até 0, fazendo com que se crie um trajeto contínuo do ponto (-2,0) até (0,0), localizado no terceiro quadrante. Novamente, por questão de simetria em relação ao eixo vertical, podemos espelhar esse trajeto do terceiro quadrante no quarto quadrante, ficando:



b)
$$A = \int \frac{1}{2} r^2(\theta) d\theta$$

 $r_1 = r_2 \Rightarrow 1 = 2 + 2\sin\theta \Rightarrow \sin\theta = -\frac{1}{2} \Rightarrow \theta = \frac{7\pi}{6}$



O ângulo θ_2 se obtém da seguinte forma: $\theta_2 = 2\pi - (\theta_1 - \pi) \Rightarrow \theta_2 = 2\pi - (\frac{7\pi}{6} - \pi) = \frac{11\pi}{6}$. A área hachurada é $A_1 + A_2$, onde A_1 é a área do setor circular (em amarelo) de ângulo $2\pi - \frac{4\pi}{6} = \frac{4\pi}{3}$, e A_2 é a área do setor azul. Por simetria, $A_2 = 2A$, onde

$$\begin{split} A &= \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} \frac{1}{2} (r_2^2(\theta)) d\theta = \frac{1}{2} \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} 4(1+\sin\theta)^2 d\theta = 2 \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} (1+2\sin\theta+\sin^2\theta) d\theta \\ &= 2 \int_{\frac{7\pi}{6}}^{\frac{3\pi}{2}} \left(\frac{3}{2} + 2\sin\theta - \frac{\cos 2\theta}{2} \right) d\theta = 2 [\frac{3\theta}{2} - 2\cos\theta - \frac{\sin 2\theta}{4}] |_{\frac{7\pi}{6}}^{\frac{3\pi}{4}} = 2 \left(\frac{9\pi}{4} - \left(\frac{7\pi}{4} + \sqrt{3} - \frac{\sqrt{3}}{8} \right) \right) = \pi - \frac{7\sqrt{3}}{4}. \end{split}$$

Logo, área total é $A_1 + 2A = \frac{2\pi}{3} + 2\pi - \frac{7\sqrt{3}}{2} = \frac{8\pi}{3} - \frac{7\sqrt{3}}{2}$.

Q3- (2,0) Considere as seguintes curvas dadas em coordenadas polares

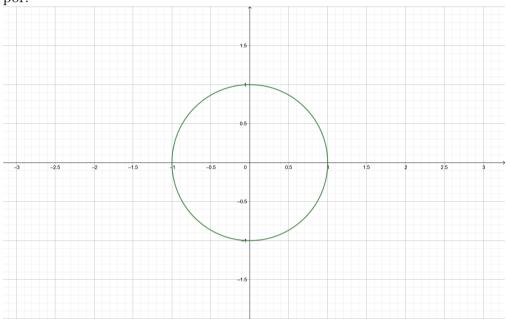
$$\mathcal{C}_1: r=1$$

$$C_2: r = 2(1 - \sin\theta)$$

- 1. Determine se as curvas são simétricas em relação ao eixo pólar ou ao eixo y. Faça um esboço de \mathcal{C}_1 e \mathcal{C}_2 .
- 2. Encontre a área da região obtida pela interseção dos interiores das curvas C_1 e C_2 .

Resolução:

a) Curva C_1 : Como $r_1(\theta) = r_1(-\theta) = 1$ e $r_1(\theta) = r_1(\pi - \theta) = 1$ temos que C_1 é simétrica tanto em relação ao eixo polar quanto em relação ao eixo vertical (eixo y). Seu esboço é dado por:



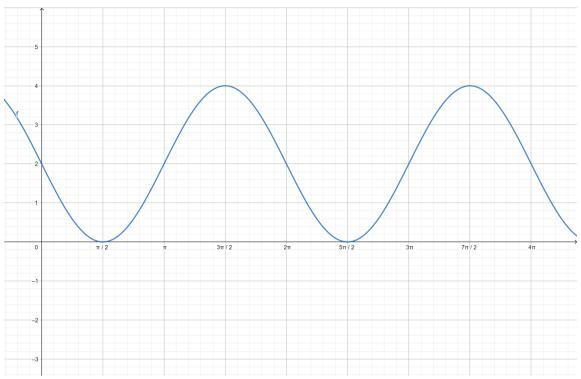
Curva $C_2: r_2(\theta) = 2 - 2\sin\theta$

I: $r_2(\theta) \stackrel{?}{=} r_2(-\theta)$. Tomando $\theta = \frac{\pi}{4}$, temos que $r_2(\frac{\pi}{2}) = 2 - \sqrt{2}$ enquanto $(2 - \sqrt{2}, -\frac{\pi}{4})$ não pertence à curva C_2 .

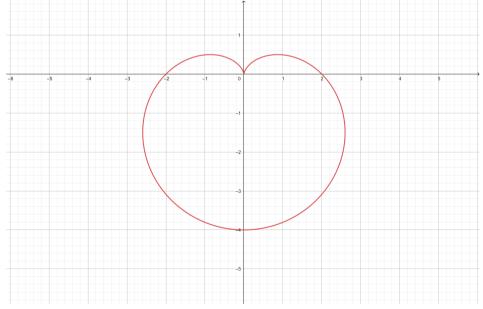
II: $r_2(\theta) \stackrel{?}{=} r_2(\pi - \theta) \Rightarrow 2 - 2\sin\theta = 2 - 2\sin(\pi - \theta)$, pois $\sin(\pi - \theta) = \sin(\pi)\cos(\theta) - \sin(\theta)\cos(\pi) = \sin\theta$. Logo, $r_2(\theta) = r_2(\pi - \theta)$

De I concluímos que C_2 não é simétrica em relação ao eixo polar. De II concluímos que C_2 é simétrica em relação ao eixo vertical (eixo y).

Conforme o gráfico do raio da curva C_2 ,

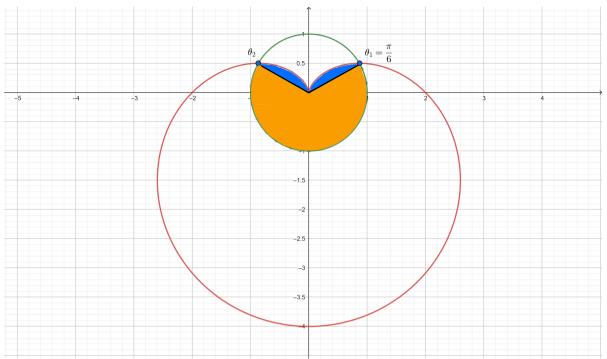


Percebe-se que o raio parte do $\theta=0$, atinge seu mínimo em $\theta=\frac{\pi}{2}$ e máximo, igual a 4, quando $\theta=\frac{3\pi}{2}$. Sendo $\begin{cases} x=r\cos\theta\\ y=r\sin\theta \end{cases}$ temos que a curva parte do $C_2(0)=(2,0)$ e chega em $C_2(\frac{\pi}{2})=(0,0)$. Por questão da simetria com o eixo y, essa trecho desenhado no primeiro quadrante se espelha no segundo quadrante, com θ variando de 0 até π . Quando θ varia de π até $\frac{3\pi}{2}$, o raio vai de 2 até 4, fazendo com que se crie um trajeto contínuo do ponto (-2,0) até (0,4), localizado no terceiro quadrante. Novamente, por questão de simetria em relação ao eixo vertical, podemos espelhar esse trajeto do terceiro quadrante no quarto quadrante, ficando:



b)
$$A = \int \frac{1}{2} r^2(\theta) d\theta$$

 $r_1 = r_2 \Rightarrow 1 = 2 - 2\sin\theta \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$



O ângulo θ_2 se obtém da seguinte forma: $\theta_2 = \pi - \theta_1 \Rightarrow \theta_2 = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$. A área hachurada é $A_1 + A_2$, onde A_1 é a área do setor circular (em amarelo) de ângulo $2\pi-\frac{4\pi}{6}=\frac{4\pi}{3},$ e A_2 é a área do setor azul. Por simetria, $A_2=2A,$ onde

$$A = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{1}{2} (r_2^2(\theta)) d\theta = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 4(1 - \sin \theta)^2 d\theta = 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1 - 2\sin \theta + \sin^2 \theta) d\theta$$

$$= 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \left(\frac{3}{2} - 2\sin \theta - \frac{\cos 2\theta}{2} \right) d\theta = 2 \left[\frac{3\theta}{2} + 2\cos \theta - \frac{\sin 2\theta}{4} \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = 2 \left(\frac{3\pi}{4} - \left(\frac{\pi}{4} + \sqrt{3} - \frac{\sqrt{3}}{8} \right) \right) = \pi - \frac{7\sqrt{3}}{4}.$$

Logo, área total é $A_1 + 2A = \frac{2\pi}{3} + 2\pi - \frac{7\sqrt{3}}{2} = \frac{8\pi}{3} - \frac{7\sqrt{3}}{2}$.

Q4- (3,0) Considere a função de duas variáveis $f(x,y) = \frac{2(x-1)^2 + 5y^2}{x^2 + y^2}$.

- 1. Encontre uma parametrização para a curva de nível c = 1 de f. Determine a equação da reta tangente à curva no ponto (3, 1/2).
- 2. Encontre uma parametrização para a curva de nível c=3 de f. Determine a equação da reta tangente à curva no ponto $(\sqrt{6}-2,0)$.

Resolução:

a)
$$f(x,y) = 1 \Rightarrow \frac{2(x-1)^2 + 5y^2}{x^2 + y^2} = 1 \Rightarrow 2x^2 - 4x + 2 + 5y^2 = x^2 + y^2 \Rightarrow x^2 - 4x + 2 + 4y^2 = 0 \Rightarrow x^2 - 4x + 4 + 4y^2 = 2 \Rightarrow (x-2)^2 + 4y^2 = 2 \Rightarrow \frac{(x-2)^2}{2} + 2y^2 = 1 \Rightarrow \left(\frac{x-2}{\sqrt{2}}\right)^2 + (\sqrt{2}y)^2 = 1.$$
 Logo,

$$x(t) = \sqrt{2}\cos t + 2$$
$$y(t) = \frac{\sin t}{\sqrt{2}}$$

E, portanto, $\gamma(t)=\left(\sqrt{2}\cos t+2,\frac{\sqrt{2}\sin t}{2}\right),\ t\in[0,2\pi]$ é uma parametrização da curva de nível 1 de f.

$$\gamma'(t) = \left(-\sqrt{2}\sin t, \frac{\sqrt{2}\cos t}{2}\right).$$

$$\left(\sqrt{2}\cos t + 2, \frac{\sqrt{2}\sin t}{2}\right) = \left(3, \frac{1}{2}\right) \Rightarrow \left\{\begin{array}{c} \sqrt{2}\cos t + 2 = 3 \Rightarrow \cos t = \frac{1}{\sqrt{2}}\\ \frac{\sqrt{2}\sin t}{2} = \frac{1}{2} \Rightarrow \sin t = \frac{\sqrt{2}}{2} \end{array}\right\}. \Rightarrow t = \frac{\pi}{4}.$$

$$\gamma'\left(\frac{\pi}{4}\right) = \left(-1, \frac{1}{2}\right).$$

Logo, a reta tangente a $\gamma(t)$ no ponto $(3,\frac{1}{2})$ é: $X=(3,\frac{1}{2})+\lambda(-1,\frac{1}{2}),$ com $\lambda\in\mathbb{R}.$

b)
$$f(x,y) = 3 \Rightarrow \frac{2(x-1)^2 + 5y^2}{x^2 + y^2} = 3 \Rightarrow 2x^2 - 4x + 2 + 5y^2 = 3x^2 + 3y^2 \Rightarrow x^2 + 4x - 2y^2 = 2 \Rightarrow x^2 + 4x + 4 - 2y^2 = 6 \Rightarrow (x+2)^2 - 2y^2 = 6 \Rightarrow \frac{(x+2)^2}{6} - \frac{y^2}{3} = 1 \Rightarrow \left(\frac{x+2}{\sqrt{6}}\right)^2 - \left(\frac{y}{\sqrt{3}}\right)^2 = 1.$$
 Logo,
$$\begin{cases} x(t) = \sqrt{6}\sec t - 2\\ y(t) = \sqrt{3}\tan t \end{cases}$$

E, portanto, $\gamma(t) = (\sqrt{6} \sec t - 2, \sqrt{3} \tan t), t \in (-\pi/2, \pi/2) \cup (\pi/2, 3\pi/2)$ é uma parametrização da curva de nível 3 de f.

$$\gamma'(t) = (\sqrt{6} \tan t \sec t, \sqrt{3} \sec^2 t)$$

$$(\sqrt{6}\sec t - 2, \sqrt{3}\tan t) = (\sqrt{6} - 2, 0) \Rightarrow \begin{cases} \sqrt{6}\sec t - 2 = \sqrt{6} - 2 \Rightarrow \sec t = 1\\ \sqrt{3}\tan t = 0 \Rightarrow \tan t = 0 \end{cases} \Rightarrow t = 0.$$

$$\gamma'(0) = (0, \sqrt{3}).$$

Logo, a reta tangente a $\gamma(t)$ no ponto $(\sqrt{6}-2,0)$ é: $X=(\sqrt{6}-2,0)+\lambda(0,\sqrt{3}),$ com $\lambda\in\mathbb{R}.$

Q4-(3,0) Considere a função de duas variáveis $f(x,y) = \frac{5x^2 + 2(y-1)^2}{x^2 + y^2}$.

- 1. Encontre uma parametrização para a curva de nível c = 1 de f. Determine a equação da reta tangente à curva no ponto (1/2, 3).
- 2. Encontre uma parametrização para a curva de nível c=3 de f. Determine a equação da reta tangente à curva no ponto $(0, \sqrt{6}-2)$.

Resolução:

a)
$$f(x,y) = 1 \Rightarrow \frac{2(y-1)^2 + 5x^2}{y^2 + x^2} = 1 \Rightarrow 2y^2 - 4y + 2 + 5x^2 = x^2 + y^2 \Rightarrow y^2 - 4y + 2 + 4x^2 = 0 \Rightarrow y^2 - 4y + 4 + 4x^2 = 2 \Rightarrow (y-2)^2 + 4x^2 = 2 \Rightarrow \frac{(y-2)^2}{2} + 2x^2 = 1 \Rightarrow (\sqrt{2}x)^2 + \left(\frac{y-2}{\sqrt{2}}\right)^2 = 1.$$
Logo,
$$\begin{cases} x(t) = \frac{\cos t}{\sqrt{2}} \\ y(t) = \sqrt{2}\sin t + 2 \end{cases}$$

E, portanto, $\gamma(t) = \left(\frac{\cos t}{\sqrt{2}}, \sqrt{2}\sin t + 2\right)$, $t \in [0, 2\pi]$ é uma parametrização da curva de nível 1 de f.

$$\gamma'(t) = \left(\frac{-\sin t}{\sqrt{2}}, \sqrt{2}\cos t\right).$$

$$\left(\frac{\cos t}{\sqrt{2}}, \sqrt{2}\sin t + 2\right) = \left(\frac{1}{2}, 3\right) \Rightarrow \begin{cases} \sqrt{2}\sin t + 2 = 3 \Rightarrow \sin t = \frac{1}{\sqrt{2}} \\ \frac{\cos t}{\sqrt{2}} = \frac{1}{2} \Rightarrow \cos t = \frac{\sqrt{2}}{2} \end{cases} \Rightarrow t = \frac{\pi}{4}.$$

$$\gamma'(\frac{\pi}{4}) = \left(\frac{-1}{2}, 1\right).$$

Logo, a reta tangente a $\gamma(t)$ no ponto $(\frac{1}{2},3)$ é: $X=(\frac{1}{2},3)+\lambda(\frac{-1}{2},1)$, com $\lambda\in\mathbb{R}$.

b)
$$f(x,y) = 3 \Rightarrow \frac{2(y-1)^2 + 5x^2}{y^2 + x^2} = 3 \Rightarrow 2y^2 - 4y + 2 + 5x^2 = 3x^2 + 3y^2 \Rightarrow y^2 + 4y - 2x^2 = 2 \Rightarrow y^2 + 4y + 4 - 2x^2 = 6 \Rightarrow (y+2)^2 - 2x^2 = 6 \Rightarrow \frac{(y+2)^2}{6} - \frac{x^2}{3} = 1 \Rightarrow \left(\frac{y+2}{\sqrt{6}}\right)^2 - \left(\frac{x}{\sqrt{3}}\right)^2 = 1.$$
Logo,
$$\begin{cases} y(t) = \sqrt{6}\sec t - 2\\ x(t) = \sqrt{3}\tan t \end{cases}$$

E, portanto, $\gamma(t)=(\sqrt{3}\tan t,\sqrt{6}\sec t-2),\ t\in(-\pi/2,\pi/2)\cup(\pi/2,3\pi/2)$ é uma parametrização da curva de nível 3 de f.

$$\gamma'(t) = (\sqrt{3}\sec^2 t, \sqrt{6}\tan t \sec t)$$

$$(\sqrt{3}\tan t, \sqrt{6}\sec t - 2) = (0, \sqrt{6} - 2) \Rightarrow \begin{cases} \sqrt{6}\sec t - 2 = \sqrt{6} - 2 \Rightarrow \sec t = 1\\ \sqrt{3}\tan t = 0 \Rightarrow \tan t = 0 \end{cases} \Rightarrow t = 0.$$

$$\gamma'(0) = (\sqrt{3}, 0).$$

Logo, a reta tangente a $\gamma(t)$ no ponto $(0, \sqrt{6} - 2)$ é: $X = (0, \sqrt{6} - 2) + \lambda(\sqrt{3}, 0)$, com $\lambda \in \mathbb{R}$.