MAT0334 - MAT5721: Introdução à Análise Funcional - 2019 Lista 5 - Espaços de Hilbert

Wilson Cuellar

1. **Definição.** Dada uma família $(x_i)_{i\in\Gamma}$ de um espaço normado X, dizemos que esta família é somável e tem soma $x\in X$, se dado $\epsilon>0$ existe um subconjunto finito $F_\epsilon\subseteq\Gamma$ tal que para todo subconjunto finito $F\subseteq\Gamma$ com $F\supseteq F_\epsilon$ temos

$$\left\| x - \sum_{i \in F} x_i \right\| < \epsilon.$$

Dizemos que $(x_i)_{i\in\Gamma}$ satisfaz a condição de Cauchy se dado $\epsilon>0$ existe um subconjunto finito $F_\epsilon\subseteq\Gamma$ tal que para todo subconjunto finito $F'\subseteq\Gamma$ disjunto de F_ϵ temos

$$\left\| \sum_{i \in F'} x_i \right\| < \epsilon.$$

- (a) Mostre que toda família somável $(x_i)_{i\in\Gamma}$ satisfaz a condição de Cauchy.
- (b) Se a família $(x_i)_{i\in\Gamma}$ satisfaz a condição de Cauchy, então o subconjunto $\Gamma'=\{i\in\Gamma: x_i\neq 0\}$ é enumerável.
- (c) Se X for completo então toda família que satisfaz a condição de Cauchy é somável.
- 2. Seja Γ um conjunto não vazio. Definimos $\ell_2(\Gamma)$ como o espaço das famílias $(x_i)_{i\in\Gamma}$ de escalares em $\mathbb{K} (=\mathbb{R},\mathbb{C})$ tais que $(|x_i|^2)_{i\in\Gamma}$ é somável.
 - (a) Moste que $\ell_2(\Gamma)$ é prehilbertiano se definirmos $\langle (x_i)_{i\in\Gamma}, (y_i)_{i\in\Gamma} \rangle = \sum_{i\in\Gamma} x_i \overline{y_i}$.
 - (b) Mostrar que $\ell_2(\Gamma)$ é de Hilbert.
 - (c) Mostre que se Γ for enumerável infinito, então $\ell_2(\Gamma)$ é linearmente isométrico a ℓ_2 .
 - (d) Mostre que se Γ for não enumerável, então $\ell_2(\Gamma)$ é não separável.
- 3. Seja H um espaço prehilbertiano. Mostre a identidade generalizada do paralelogramo: Se $x_1,...,x_n\in H$, então

$$\sum_{\varepsilon_i = \pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|^2 = 2^n \sum_{i=1}^n ||x_i||^2.$$

- 4. Seja H um espaço prehilbertiano e $(x_n)_n$ uma sequência em H. Mostre que se $||x_n|| \to ||x||$ e $\langle x_n, x \rangle \to \langle x, x \rangle$ então $x_n \to x$.
- 5. Mostre que em um espaço prehilbertiano, $x \perp y$ se e somente se $||x + \alpha y|| \geq ||x||$ para todo escalar α .
- 6. Seja H prehilbertiano e F subespaço completo de H. Mostre que H/F é prehilbertiano.
- 7. Seja H prehilbertiano sobre \mathbb{C} e $T \in \mathcal{L}(H, H)$ tal que $\langle Th, h \rangle = 0$ para todo $h \in H$. Prove que T = 0. Mostre que o resultado não é válido no caso real.

- 8. Sejam H prehilbertiano sobre \mathbb{C} e $T_1, T_2 \in \mathcal{L}(H, H)$ tais que $\langle T_1 x, x \rangle = \langle T_2 x, x \rangle$ para todo $x \in H$. Mostre que $T_1 = T_2$.
- 9. (a) Sejam $X = \mathbb{R}^2$ com a norma $\|\cdot\|_{\infty}$, $A = B_X$, e x = (2,0). Determine o conjunto $\{a \in A : d(x,A) = d(x,a)\}.$
 - (b) Seja $X = c_0$, o espaço das sequências convergentes a zero, com a norma $\|\cdot\|_{\infty}$. Sejam $A = \{(x_n)_n \in c_0 : x_n \geq 0 \,\forall n \in \sum_{n=1}^{\infty} \frac{x_n}{2^n} = 1\}$ e x = (0, 0, 0, ...). Mostre que d(x, A) = 1 e que não existe $a \in A$ tal que d(x, a) = 1.
- 10. Encontre um espaço de Hilbert H e um subespaço F de H tal que $H \neq F + F^{\perp}$.
- 11. Seja $(x^k)_k$ uma sequência ortonormal em ℓ_2 , onde $x^k = (x_i^k)_i$. Mostre que $\lim_{k \to \infty} (x_i^k) = 0$ para todo $i \in \mathbb{N}$.
- 12. Seja H um espaço de Hilbert separável. Um operador linear e contínuo $T: H \to H$ é dito operador de Hilbert-Schmidt se existe uma base ortonormal $(e_i)_i$ de H tal que:

$$||T||_{HS} := \sqrt{\sum ||Te_i||^2} < \infty.$$

- (a) Mostre que o valor $||T||_{HS}$ é independente da escolha da base.
- (b) Mostre que $||T||_{HS} \ge ||T||$. O numero $||T||_{HS}$ é chamado de norma Hilbert-Schmidt do operador T.
- 13. (Teorema de Hellinger-Toplitz). Seja H um espaço de Hilbert e $T: H \to H$ uma aplicação linear tal que $\langle Tx, y \rangle = \langle x, Ty \rangle$ para todo $x, y \in H$. Mostre que T é contínuo.
- 14. Seja H um espaço de Hilbert separável. Um operador linear e contínuo $T: H \to H$ que é um isomorfismo auto-adjunto. Mostre que se T é positivo (ou seja $\langle Tx, x \rangle \geq 0$ para todo $x \in H$), então $[x, y] := \langle Tx, y \rangle$ define um novo produto interno sobre H e $|||x||| = [x, x]^{\frac{1}{2}}$ é uma norma equivalente sobre H.
- 15. Sejam H_1 e H_2 espaços de Hilbert e $T: H_1 \to H_2$ um operador linear contínuo. Se $M_1 \subset H_1$ e $M_2 \subset H_2$ satisfazem que $T(M_1) \subset M_2$, mostre que $M_1^{\perp} \supset T^*(M_2^{\perp})$.
- 16. Seja $(e_n)_n$ uma base ortonormal de um espaço de Hilbert separável H e defina $T: H \to H$ como $Te_n = e_{n+1}, n \in \mathbb{N}$. Encontre imagem, núcleo, norma e o Hilbert-adjunto de T.
- 17. Sejam H um espaço de Hilbert e $T \in \mathcal{L}(H,H)$ uma imersão isométrica. Mostre que $T^*T = Id$, onde Id é o operador identidade em H.

Sugestões

- 1b.) Considere os conjuntos $\Gamma_n = \{i \in \Gamma : ||x_i|| \ge 1/n\}$.
- 1c.) Considere Γ_n da questão anterior e a sequência $(y_n)_n$, onde $y_n = \sum_{i \in \Gamma_n} x_i$.
- 3.) Use princípio de indução.
- 7.) Considere os vetores x + y e x + iy. Considere sobre \mathbb{R}^2 o operador de 90 graus de rotação.
- 9.) Observe que em a) Não há unicidade; e em b) Não tem existência, porém A é convexo fechado.
 - 10.) Considere o subespaço das sequências de suporte finito de l_2 .
 - 11.) Use a desigualdade de Bessel.
 - 12 a) Se $(f_j)_j$ for outra base ortonormal, mostre que $\sum_i ||Te_i||^2 = \sum_j ||T^*f_j||^2$.
- 13.) Seja $x_n \to 0$ em H, mostre que $g(T(x_n)) \to 0$ para todo $g \in H^*$. Deduzir que $T(x_n)$ é limitado e depois que T é contínuo.