Lempel, Even, and Cederbaum

Planarity Method

John M. Boyer
(PureEdge Solutions Inc.)
Cristina G. Fernandes
Alexandre Noma
José Coelho de Pina
(Universidade de São Paulo)

Planar Graphs

A graph is planar if it can be embedded into the plane without edge crossings.

planar graph

planar embedding

Planar Graphs

A graph is planar if it can be embedded into the plane without edge crossings.

nonplanar graphs
Kuratowski subgraphs

Planarity Test

Problem: Given a graph, decide whether it is planar or not.

Planarity Test

Problem: Given a graph, decide whether it is planar or not.
Method of Auslander and Parter '61 and Goldstein '63

- Hopcroft and Tarjan (HT) '74

Method of Lempel, Even and Cederbaum (LEC) '67

- Booth and Lueker (BL) '74
- Shih and Hsu (SH) '93
- Boyer and Myrvold (BM) '99

Planarity Test

Problem: Given a graph, decide whether it is planar or not.
Method of Auslander and Parter '61 and Goldstein '63

- Hopcroft and Tarjan (HT) '74

Method of Lempel, Even and Cederbaum (LEC) '67

- Booth and Lueker (BL) '74
- Shih and Hsu (SH) '93
- Boyer and Myrvold (BM) '99

This work

- Simple graph theoretical description of LEC
- Linear-time implementation of LEC (SH)
- Experimental study

Key Simple Problem

G graph on vertex set $V_{T} \cup\{x, y\}$
T : V_{T} induces a tree T
$x y$ is an edge

Key Simple Problem

G graph on vertex set $V_{T} \cup\{x, y\}$
T : V_{T} induces a tree T
$x y$ is an edge
X neighbors of x in T

Key Simple Problem

G graph on vertex set $V_{T} \cup\{x, y\}$
T : V_{T} induces a tree T
$x y$ is an edge
X neighbors of x in T
Y neighbors of y in T

$$
X Y=X \cap Y
$$

Key Simple Problem

Give an algorithm that receives $T, x y, X, Y$ and decides whether there is an embedding of $T+x$ leaving all Y vertices on the 'frame'.

$\mathrm{YES} \Leftrightarrow G$ is planar

Key Simple Problem

Give an algorithm that receives $T, x y, X, Y$ and decides whether there is an embedding of $T+x$ leaving all Y vertices on the 'frame'.

$\mathrm{YES} \Leftrightarrow G$ is planar

$X Y$-path

Want a path in T connecting 2 vertices in X and 'splitting' X and Y.

$X Y$-path

Want a path in T connecting 2 vertices in X and 'splitting' X and Y.

Reduction

Leaves not in $X \cup Y$ do not matter.

Reduction

Leaves not in $X \cup Y$ do not matter.

Reduction

Leaves not in $X \cup Y$ do not matter.

Reduction

Leaves not in $X \cup Y$ do not matter.

Reduction

Leaves not in $X \cup Y$ do not matter.

Reduction

Leaves not in $X \cup Y$ do not matter.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $Y \backslash X$ can be 'contracted'.

Reduction

Leaves in $X \backslash Y$ can be 'contracted'.

Reduction

Leaves in $X \backslash Y$ can be 'contracted'.

Reduction

Leaves in $X \backslash Y$ can be 'contracted'.

Reduction

Leaves in $X \backslash Y$ can be 'contracted'.

Reduction

Leaves in $X \backslash Y$ can be 'contracted'. All leaves are in $X Y=X \cap Y$.

Terminals

terminals := leaves of the reduced tree.

At Most 2 Terminals

Answer YES Why?

$$
e_{x}^{y}
$$

terminal

At Most 2 Terminals

Answer YES
≤ 2 terminals \Rightarrow reduced tree is a path

$$
e^{y} x
$$

At Most 2 Terminals

Answer YES
≤ 2 terminals \Rightarrow path in G

At Most 2 Terminals

Answer YES
≤ 2 terminals \Rightarrow path in G connecting vertices in X

At Most 2 Terminals

Answer YES
≤ 2 terminals $\Rightarrow X Y$-path

At Most 2 Terminals

Answer YES
≤ 2 terminals \Rightarrow frame

3 Terminals

Answer is NO Why?

terminal
terminal

3 Terminals

Answer is NO
In T we have:

3 Terminals

Answer is NO
G nonplanar $\Rightarrow \mathrm{NO}$

3 Terminals

Answer is NO
G nonplanar $\Rightarrow \mathrm{NO}$

3 Terminals

Answer is NO
G nonplanar $\Rightarrow \mathrm{NO}$

Algorithm

Each iteration begins with: T, X, Y
Each iteration consists of:
Case 1: All leaves of T are in $X \cap Y$
terminals := leaves of T
Case 1A: T has ≤ 2 terminals
Return YES and stop
Case 1B: T has 3 terminals
Return NO and stop $\triangleright G$ has $K_{3,3} \Rightarrow$ nonplanar
Case 2: T has a leaf not in $X \cap Y$
$T^{\prime}, X^{\prime}, Y^{\prime} \leftarrow \operatorname{Reduce}(T, X, Y)$
Start anew with $T^{\prime}, X^{\prime}, Y^{\prime}$ in the role of T, X, Y

Slightly More General Problem

G graph on vertex set $V_{H} \cup\{x, y\}$
H planar induced subgraph of G
F frame of H
$x y$ is an edge

Slightly More General Problem

G graph on vertex set $V_{H} \cup\{x, y\}$
H planar induced subgraph of G
F frame of H
$x y$ is an edge
X neighbors of x in F

Slightly More General Problem

G graph on vertex set $V_{H} \cup\{x, y\}$
H planar induced subgraph of G
F frame of H
$x y$ is an edge
X neighbors of x in F
Y neighbors of y in F

$$
X Y=X \cap Y
$$

Slightly More General Problem

Give an algorithm that receives $F, x y, X, Y$ and decides whether there is an embedding of $F+x$ leaving all Y vertices on the new frame.

$\mathrm{YES} \Leftrightarrow G$ is planar

Slightly More General Problem

$\mathrm{YES} \Leftrightarrow G$ is planar

Block Tree

Block Tree

P-node := vertex of F
C-node := block of F

Apply Previous Algorithm

Apply the previous algorithm to the block tree T of F

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$

Apply Previous Algorithm

YES \Rightarrow PERHAPS

Apply Previous Algorithm

YES \Rightarrow PERHAPS

G nonplanar $\Rightarrow \mathrm{NO}$

Apply Previous Algorithm

YES \Rightarrow PERHAPS
G nonplanar $\Rightarrow \mathrm{NO}$

Apply Previous Algorithm

YES \Rightarrow PERHAPS
G planar \Rightarrow YES

Apply Previous Algorithm

YES \Rightarrow PERHAPS
G planar \Rightarrow YES

LEC-numbering

Property: For each $i, G[1 \ldots i-1]$ and $G[i \ldots n]$ are connected.

LEC Method

Receives a biconnected graph G and returns YES if G is planar, and NO otherwise.

Number the vertices of G according to an LEC-numbering
Each iteration begins with:

- H planar induced subgraph of G
- F frame of H

At beginning of the 1st iteration:

$$
H=\emptyset \quad F=\emptyset
$$

LEC Method

Each iteration consists of:
Case 1: $H=G$
Return YES and stop
Case 2: $H \neq G$
$x \leftarrow$ smallest numbered vertex in $G-V_{H}$
$X \leftarrow$ neighbors of x in F
$Y \leftarrow$ neighbors of $V_{G}-\left(V_{H}+x\right)$ in $F \quad \triangleright y$
Case 2A: There is no $X Y$-path in F Return NO and stop
Case 2B: There is an $X Y$-path in F
$H^{\prime}, F^{\prime} \leftarrow \operatorname{CentraL}(F, X, Y)$
Start anew with H^{\prime} and F^{\prime} in the role of H and F

Shih and Hsu implementation

LEC-numbering

block tree of frame
search for $X Y$-path \Longleftrightarrow finding terminals fast
updating the frame \Longleftrightarrow updating the PC-tree

DFS-numbering

Number the vertices according to a postorder traversal of a DFS-tree of G.

Property: For each $i, G[i . . n]$ is connected.

PC-tree

PC-tree

PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

Terminals

$b(v)$ - largest i such that a descendant of v in T is a neighbor of i in G.

Terminals

$b(v)$ - largest i such that a descendant of v in T is a neighbor of i in G.

Terminals

$b(v)$ - largest i such that a descendant of v in T is a neighbor of i in G.

Terminals

$b(v)$ - largest i such that a descendant of v in T is a neighbor of i in G.

Terminals

$b(v)$ - largest i such that a descendant of v in T is a neighbor of i in G.

Terminals

$b(v)$ - largest i such that a descendant of v in T is a neighbor of i in G.

Terminals

x - current vertex

T - current PC-tree

Terminals

x - current vertex
T - current PC-tree
Node t in T is a terminal if

1. $b(t)>x$

Terminals

x - current vertex
T - current PC-tree
Node t in T is a terminal if

1. $b(t)>x$
2. t has a descendant in T that is a neighbor of x in G

Terminals

x - current vertex
T - current PC-tree
Node t in T is a terminal if

1. $b(t)>x$
2. t has a descendant in T that is a neighbor of x in G
3. no proper descendant of t satisfies (1) and (2)

Finding terminals

C-node test

C-node test

- $b(v)=x$
- $b(v)>x$ and...

Updating the PC-tree

- creation of new C-node;
- updating some b labels;
- unmarking marked vertices.

Linear running-time

Each iteration takes time proporcional to the number of vertices traversed.

A traversed vertex either (corresponds to one that) "desappears", or enters for the first time in a C-node, or changes to a new C-node.

At most two traversed vertices per C-node move to another C-node, and the number of C -nodes is bounded by the number of edges.

Experimental results

Experimental results

Experimental results

Experimental results

(G5) TEST+OBSTRUCTION

END

Apply Previous Algorithm

Apply the previous algorithm to the block tree T of F

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$
G nonplanar $\Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$
G nonplanar $\Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$
G nonplanar $\Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$
G nonplanar $\Rightarrow \mathrm{NO}$

Apply Previous Algorithm

$\mathrm{NO} \Rightarrow \mathrm{NO}$
G nonplanar $\Rightarrow \mathrm{NO}$

$X Y$-path

- $b(v)=x$
- $b(v)>x$ and...
$X Y$-path

path traversed

END

