Lempel, Even, and Cederbaum Planarity Method

John M. Boyer

(PureEdge Solutions Inc.)

Cristina G. Fernandes

Alexandre Noma

José Coelho de Pina

(Universidade de São Paulo)

Planar Graphs

A graph is planar if it can be embedded into the plane without edge crossings.

planar graph

planar embedding

Planar Graphs

A graph is planar if it can be embedded into the plane without edge crossings.

nonplanar graphs

Kuratowski subgraphs

Planarity Test

Problem: Given a graph, decide whether it is planar or not.

Planarity Test

Problem: Given a graph, decide whether it is planar or not.

Method of Auslander and Parter '61 and Goldstein '63

Hopcroft and Tarjan (HT) '74

Method of Lempel, Even and Cederbaum (LEC) '67

- Booth and Lueker (BL) '74
- Shih and Hsu (SH) '93
- Boyer and Myrvold (BM) '99

Planarity Test

Problem: Given a graph, decide whether it is planar or not.

Method of Auslander and Parter '61 and Goldstein '63

Hopcroft and Tarjan (HT) '74

Method of Lempel, Even and Cederbaum (LEC) '67

- Booth and Lueker (BL) '74
- Shih and Hsu (SH) '93
- Boyer and Myrvold (BM) '99

This work

- Simple graph theoretical description of LEC
- Linear-time implementation of LEC (SH)
- Experimental study

G graph on vertex set $V_T \cup \{x, y\}$ *T*: V_T induces a tree *T xy* is an edge

G graph on vertex set $V_T \cup \{x, y\}$ *T*: V_T induces a tree *T xy* is an edge *X* neighbors of *x* in *T*

 $G \text{ graph on vertex set } V_T \cup \{x, y\}$ $T: V_T \text{ induces a tree } T$ xy is an edge X neighbors of x in T Y neighbors of y in T y x

 $XY = X \cap Y$

X

Give an algorithm that receives T, xy, X, Y and decides whether there is an embedding of T + x leaving all Yvertices on the 'frame'.

Give an algorithm that receives T, xy, X, Y and decides whether there is an embedding of T + x leaving all Y vertices on the 'frame'.

YES \Leftrightarrow *G* is planar

XY-path

Want a path in T connecting 2 vertices in X and 'splitting' X and Y.

XY-path

Want a path in T connecting 2 vertices in X and 'splitting' X and Y.

Leaves in $X \setminus Y$ can be 'contracted'. All leaves are in $XY = X \cap Y$.

Terminals

terminals := leaves of the reduced tree.

Answer YES Why?

Answer YES ≤ 2 terminals \Rightarrow reduced tree is a path

Answer YES ≤ 2 terminals \Rightarrow path in G

Answer YES ≤ 2 terminals \Rightarrow path in G connecting vertices in X

At Most 2 Terminals

Answer YES ≤ 2 terminals $\Rightarrow XY$ -path

At Most 2 Terminals

Answer YES ≤ 2 terminals \Rightarrow frame

Answer is NO Why?

Answer is NO In *T* we have:

Answer is NO G nonplanar \Rightarrow NO

Answer is NO G nonplanar \Rightarrow NO

Answer is NO G nonplanar \Rightarrow NO

Algorithm

Each iteration begins with: T, X, YEach iteration consists of:

Case 1: All leaves of T are in $X \cap Y$ terminals := leaves of T

> **Case 1A:** T has ≤ 2 terminals Return **YES** and stop

Case 1B: T has 3 terminals Return NO and stop $\triangleright G$ has $K_{3,3} \Rightarrow$ nonplanar

Case 2: T has a leaf not in $X \cap Y$ $T', X', Y' \leftarrow \mathsf{REDUCE}(T, X, Y)$ Start anew with T', X', Y' in the role of T, X, Y

 $\boldsymbol{\mathcal{T}}$

G graph on vertex set $V_H \cup \{x, y\}$ *H* planar induced subgraph of *G F* frame of *H xy* is an edge

Give an algorithm that receives F, xy, X, Y and decides whether there is an embedding of F + x leaving all Y vertices on the new frame.

YES \Leftrightarrow *G* is planar

YES \Leftrightarrow *G* is planar

Block Tree

Block Tree

P-node := vertex of FC-node := block of F

Apply the previous algorithm to the block tree T of F

 $NO \Rightarrow NO$

$YES \Rightarrow PERHAPS$

 $\begin{array}{l} \textbf{YES} \Rightarrow \textbf{PERHAPS} \\ \textit{G nonplanar} \Rightarrow \textbf{NO} \end{array}$

 $\begin{array}{l} \textbf{YES} \Rightarrow \textbf{PERHAPS} \\ \textit{G nonplanar} \Rightarrow \textbf{NO} \end{array}$

 $\begin{array}{l} \textbf{YES} \Rightarrow \textbf{PERHAPS} \\ \textit{G planar} \Rightarrow \textbf{YES} \end{array}$

 $\begin{array}{l} \textbf{YES} \Rightarrow \textbf{PERHAPS} \\ \textit{G planar} \Rightarrow \textbf{YES} \end{array}$

LEC-numbering

Property: For each *i*, $G[1 \dots i - 1]$ and $G[i \dots n]$ are connected.

LEC Method

Receives a biconnected graph G and returns YES if G is planar, and NO otherwise.

Number the vertices of *G* according to an LEC-numbering Each iteration begins with:

- H planar induced subgraph of G
- F frame of H

At beginning of the 1st iteration:

$$H = \emptyset \qquad F = \emptyset$$

LEC Method

Each iteration consists of:

Case 1: H = G

Return YES and stop

Case 2: $H \neq G$

 $\begin{array}{l} x \leftarrow \text{smallest numbered vertex in } G - V_H \\ X \leftarrow \text{neighbors of } x \text{ in } F \\ Y \leftarrow \text{neighbors of } V_G - (V_H + x) \text{ in } F \quad \triangleright y \\ \end{array}$ Case 2A: There is no XY-path in F Return NO and stop
Case 2B: There is an XY-path in F $H', F' \leftarrow \text{CENTRAL}(F, X, Y)$ Start anew with H' and F' in the role of H and F

Shih and Hsu implementation

LEC-numbering \iff DFS-numbering

block tree of frame \iff PC-tree

search for XY-path \iff finding terminals fast

updating the frame \iff updating the PC-tree

DFS-numbering

Number the vertices according to a postorder traversal of a DFS-tree of *G*.

Property: For each *i*, $G[i \dots n]$ is connected.

PC-tree

PC-tree

PC-tree

Traversal of the PC-tree

Traversal of the PC-tree

o 1

- \boldsymbol{x} current vertex
- T current PC-tree

- \boldsymbol{x} current vertex
- T current PC-tree

Node t in T is a *terminal* if

1. b(t) > x

- \boldsymbol{x} current vertex
- *T* current PC-tree

Node t in T is a *terminal* if

- **1.** b(t) > x
- 2. t has a descendant in T that is a neighbor of x in G

- \boldsymbol{x} current vertex
- *T* current PC-tree
- Node t in T is a *terminal* if
 - **1.** b(t) > x
 - 2. t has a descendant in T that is a neighbor of x in G
 - 3. no proper descendant of t satisfies (1) and (2)

C-node test

C-node test

Updating the PC-tree

- creation of new C-node;
- updating some b labels;
- unmarking marked vertices.

Linear running-time

Each iteration takes time proporcional to the number of vertices traversed.

A traversed vertex either (corresponds to one that) "desappears", or enters for the first time in a C-node, or changes to a new C-node.

At most two traversed vertices per C-node move to another C-node, and the number of C-nodes is bounded by the number of edges.

END

Apply the previous algorithm to the block tree T of F

 $NO \Rightarrow NO$

 $NO \Rightarrow NO$ G nonplanar $\Rightarrow NO$

 $NO \Rightarrow NO$

 $\begin{array}{l} \mathsf{NO} \Rightarrow \mathsf{NO} \\ G \text{ nonplanar} \Rightarrow \mathsf{NO} \end{array}$

 $\begin{array}{l} \mathsf{NO} \Rightarrow \mathsf{NO} \\ G \text{ nonplanar} \Rightarrow \mathsf{NO} \end{array}$

 $NO \Rightarrow NO$

 $\begin{array}{l} \mathsf{NO} \Rightarrow \mathsf{NO} \\ G \text{ nonplanar} \Rightarrow \mathsf{NO} \end{array}$

 $\begin{array}{l} \mathsf{NO} \Rightarrow \mathsf{NO} \\ G \text{ nonplanar} \Rightarrow \mathsf{NO} \end{array}$

XY-path

 \leftarrow

END