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Abstract

The MAXIMUM PLANAR SUBGRAPH problem|given a

graph G, �nd a largest planar subgraph of G|has applica-

tions in circuit layout, facility layout, and graph drawing. No

previous polynomial-time approximation algorithm for this

NP-Complete problem was known to achieve a performance

ratio larger than 1=3, which is achieved simply by producing

a spanning tree of G. We present the �rst approximation al-

gorithm for MAXIMUM PLANAR SUBGRAPH with higher

performance ratio (2=5 instead of 1=3). We also apply our al-

gorithm to �nd large outerplanar subgraphs. Last, we show

that both MAXIMUM PLANAR SUBGRAPH and its com-

plement, the problem of removing as few edges as possible

to leave a planar subgraph, are Max SNP-Hard.

1 Introduction

MAXIMUM PLANAR SUBGRAPH is this problem:

given a graph G, �nd a planar subgraph of G of

maximum size, where size is the number of edges.

This problem has applications in circuit layout, facility

layout, and graph drawing [F92, TDB88].

MAXIMUM PLANAR SUBGRAPH is known to

be NP-Complete [LG77]. For a graph G, let us de�ne

Opt(G) to be the maximum size of a planar subgraph of

G. Given an algorithmA that takes (representations of)

graphs G as input and outputs subgraphs of G, de�ne

A(G) to be the size of the planar graph A produces

when G is the input. Now let us de�ne A's performance

or approximation ratio r(A) to be the in�mum, over

all (representations of) graphs G, of A(G)=Opt(G) (if

Opt(G) > 0, and 1 otherwise). In the literature, authors

sometimes ensure that their performance ratio is at least

one by de�ning it to be the reciprocal of ours.

Numerous approximation algorithms for MAXI-

�

College of Computing, Georgia Institute of Technology, At-

lanta, GA 30332-0280. Research supported in part by NSF grant

CCR-9319106.

y

College of Computing, Georgia Institute of Technology, At-

lanta, GA 30332-0280. Research supported in part by the CNPq

(Brazil), under contract 200975/92-7.

z

Max-Planck-Institut f�ur Informatik, D-66123 Saarbr�ucken,

Germany. Research supported in part by the Graduiertenkolleg

E�zienz und Komplexit�at von Algorithmen und Rechenanlagen,

Universit�at Saarbr�ucken.

MUM PLANAR SUBGRAPH appear in the literature,

the simplest ones being Spanning Tree (output any

spanning tree of G, assuming G is connected) and Max-

imal Planar Subgraph (output any planar subgraph to

which the addition of any new edge would violate pla-

narity). Spanning Tree is known to have performance

ratio 1=3 (see below). Dyer, Foulds and Frieze [DFF85]

proved that Maximal Planar Subgraph has performance

ratio 1=3. Cimikowski [Cim95] proved that a path em-

bedding heuristic of Chiba, Nishioka and Shirakawa

[CNS79] and an edge embedding heuristic of Cai, Han

and Tarjan [CHT93] have performance ratios not ex-

ceeding 1=3. In the same paper, Cimikowski studied two

other polynomial-time heuristics: the \vertex-addition

heuristic" and the \cycle-packing heuristic." The per-

formance ratio of the former, to the authors' knowledge,

is not known, whereas for the cycle-packing algorithm,

it is 0. Dyer, Foulds and Frieze [DFF85] studied two

other algorithms and proved that each has performance

ratio at most 2=9. Also see [JM93].

In short, to the authors' knowledge, no previously

proposed algorithm was known to have a performance

ratio exceeding 1=3. What makes the problem more

tantalizing is that achieving a performance ratio of 1=3

is trivial. In fact, Spanning Tree has performance ratio

1=3, since every spanning tree of a connected graph on

n vertices has n� 1 edges and every planar graph on n

vertices has at most 3n� 3 = 3(n� 1) edges (and there

are planar graphs on n vertices with 3n � 6 edges, for

all n � 3). No previous algorithm could beat the bound

achieved by a trivial algorithm.

In this paper, we present two new approximation

algorithms for MAXIMUM PLANAR SUBGRAPH.

Each achieves a performance ratio exceeding 1=3. The

higher performance ratio is 2=5 = 0:4 and is achieved by

an algorithm which (surprisingly) invokes an algorithm

for the graphic matroid parity problem as a subroutine

and which runs in time O(m

3=2

n log

6

n). A greedy

variant still has performance ratio 7=18 = 0:3888:::, and

runs in linear time on graphs of bounded degree.

Next, we provide an extension of the main algo-

rithm. We provide a nontrivial approximation algo-

rithm for MAXIMUM OUTERPLANAR SUBGRAPH,

which is this problem: given G, �nd an outerplanar sub-
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graph ofG of maximumsize. (An outerplanar graph is a

graph which can be drawn in the plane without crossing

edges, with all vertices on the boundary of the exterior

face [H72].) This new algorithm has performance ratio

at least 2=3, which surpasses the bound of 1=2 which is

trivially obtained by producing a spanning tree.

Last, we show that MAXIMUM PLANAR SUB-

GRAPH is Max SNP-Hard, implying that there is a

constant � > 0 such that the existence of a polynomial-

time approximation algorithm with performance ratio

at least 1 � � would imply that P = NP [ALMSS92].

In addition, we show that the complementary prob-

lem, called NONPLANAR DELETION or NPD|given

G = (V;E), produce a smallest subset L � E such that

(V;E � L) is planar|is also Max SNP-Hard.

2 The Approximation Algorithms

In this section we present the two new algorithms

for MAXIMUM PLANAR SUBGRAPH. The higher

performance ratio is at least 2/5=0.4.

Let us give some motivation for our algorithm. As

we said, given a (connected) graph G, an algorithm

which outputs a spanning tree of G achieves a per-

formance ratio of 1/3. A graph whose cycles all have

length three, i.e., are triangles, is planar, as it cannot

contain a subdivision of K

5

or K

3;3

. Moreover, note

that a connected spanning subgraph of G whose cycles

are triangles, besides being planar, has one more edge

per triangle than a spanning tree of G.

Our better algorithm produces a subgraph of G

whose cycles are triangles and, among these subgraphs,

has the maximum number of edges. It can be imple-

mented in timeO(m

3=2

n log

6

n), where m is the number

of edges in G and n is the number of vertices in G, using

a graphic matroid parity algorithm, as we will see later.

We �rst present a greedy version of the algorithm.

2.1 A Greedy Version of the Algorithm. Al-

gorithm A, presented below, is a greedy version of our

algorithm. It has a performance ratio of 7/18=0.3888....

After presenting the algorithm and proving its perfor-

mance ratio is 7/18, we will show it can be implemented

in linear time for graphs with bounded degree. We begin

with some de�nitions.

A triangular cactus is a graph whose cycles (if any)

are triangles and such that all edges appear in some

cycle. A triangular cactus in a graph G is a subgraph

of G which is a triangular cactus.

A triangular structure is a graph whose cycles (if

any) are triangles. A triangular structure in a graph G

is a subgraph of G which is a triangular structure. Note

that every triangular cactus is a triangular structure,

but not vice versa.

Algorithm A produces a triangular structure in the

given graph G. The algorithm consists of two phases.

First, A greedily constructs a maximal triangular cactus

S

1

in G. Second, A extends S

1

to a triangular structure

S

2

in G by adding as many edges as possible to S

1

without forming any new cycles.

Given a graph G = (V;E) and E

0

� E, we denote

by G[E

0

] the spanning subgraph of G induced by E

0

,

that is, the graph (V;E

0

).

Algorithm A

Starting with E

1

= ;, repeatedly (as long as possible)

�nd a triangle T whose vertices are in di�erent compo-

nents of G[E

1

], and add the edges of T to E

1

.

Let S

1

:= G[E

1

].

Starting with E

2

= E

1

, repeatedly (as long as possible)

�nd an edge e in G whose endpoints are in di�erent

components of G[E

2

], and add e to E

2

.

Let S

2

:= G[E

2

].

Output S

2

.

Note that S

2

is indeed a triangular structure in G.

As we mentioned before, S

2

is planar since it does not

contain cycles of length greater than three.

Theorem 2.1. The performance ratio of algorithm

A is

7

18

.

Proof. First let us show that the performance ratio

is at least 7/18. Without loss of generality, we may

assume G is connected, and has at least three vertices.

Observe that the number of edges in S

2

is the number

of edges in a spanning tree of G plus the number of

triangles in S

1

. So it su�ces to count the number of

triangles in S

1

.

Let H be a maximum planar spanning subgraph of

G. Let n � 3 be the number of vertices in G, and t � 0

be such that 3n � 6 � t is the number of edges in H.

We can think of t as the number of edges missing for an

embedding of H to be a triangulated plane graph. The

number of triangular faces in H is at least 2n� 4� 2t.

(This is a lower bound on the number of triangular faces

of a plane embedding of H since if H were triangulated,

it would have 2n� 4 triangular faces, and each missing

edge can destroy at most two of these triangular faces.)

Let k be the number of components of S

1

each

with at least one triangle, and let p

1

; p

2

; : : : ; p

k

be the

number of triangles in each of these components. Let

p =

P

k

i=1

p

i

. We will prove that p, the number of

triangles in S

1

, is at least a constant fraction of n�2�t.

Note that if a triangle cannot be added to S

1

, it is

because two of its vertices are in the same component

of S

1

. Hence, one of its edges has its two endpoints in

the same component of S

1

. This means that at the end

of the �rst phase, every triangle in G must have some
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two vertices in the same component of S

1

. In particular,

every triangular face in H must have some two vertices

in the same component of S

1

, and therefore one of its

three edges must be in the subgraph ofH induced by the

vertices in a component of S

1

. Thus we can associate

with each triangular face F in H an edge e in F whose

endpoints are in the same component of S

1

. But any

edge e in H lies in at most two triangular faces of H,

so e could have been chosen by at most two triangular

faces of H. It follows that the number of triangular

faces in H is at most twice the number of edges in H

whose endpoints are in the same component of S

1

.

Let H

0

be the subgraph of H induced by the edges

of H whose endpoints are in the same component of

S

1

. Note that p

i

� 1, for all i, and that the number

of vertices in the i

th

component of S

1

is 2p

i

+ 1 � 3.

Since H

0

is planar, H

0

has at most

P

k

i=1

(3(2p

i

+ 1) �

6) = 6p � 3k edges. By the observation at the end

of the previous paragraph, 2(6p � 3k) � 2jE(H

0

)j �

(number of triangular faces in H) � 2n� 4 � 2t. From

this, we have

p �

n� 2� t+ 3k

6

�

n� 2� t

6

:

Therefore the number of triangles in S

1

is at least

n�2�t

6

,

and the ratio between the number of edges in S

2

and

the number of edges in H is at least

n� 1 +

n�2�t

6

3n� 6� t

=

7n� 8� t

18n� 36� 6t

�

7

18

;

since t � 0. This completes the proof that the

performance ratio of algorithm A is at least 7/18.

Now, we will prove that the performance ratio is at

most 7/18. This is done by presenting, for any � > 0,

a planar graph G

�

such that algorithm A, with G

�

as

input, can produce a subgraph S

2

of G

�

such that the

number of edges in S

2

is at most

7

18

+� times the number

of edges in G

�

.

Given � > 0, let p be an integer such that p >

6�+1

12�

. Let S be any connected triangular cactus with

p triangles. S has 2p + 1 � 3 vertices. Let S

0

be any

triangulated plane supergraph of S on the same set of

vertices (S

0

can be obtained from S by adding edges to S

until it becomes triangulated). Since S

0

is triangulated,

S

0

has 2(2p+1)�4 = 4p�2 (triangular) faces. For each

face of S

0

, add a new vertex in the face and adjacent to

all vertices in the boundary of that face. Let G

�

be

the new graph. Observe that G

�

is a triangulated plane

graph and has (2p + 1) + (4p � 2) = 6p � 1 vertices.

This means that G

�

has 3(6p� 1) � 6 = 18p� 9 edges.

With G

�

as input for algorithm A, in the �rst phase it

can produce S

1

= S, and S

2

can be S plus one edge for

each of the new vertices (the vertices in G

�

not in S).

The number of edges in S is 3p. Hence, S

2

can have

3p+(4p�2) = 7p�2 edges, while G

�

has 18p�9 edges.

Thus, the ratio between the number of edges in S

2

and

the number of edges in G

�

is

7p� 2

18p� 9

<

7

18

+ �;

because p >

6�+1

12�

.

2.1.1 Linear Time for Bounded-DegreeGraphs.

In the case G has bounded degree d, we can implement

algorithm A in linear time. We will only describe the

implementation of the �rst phase, as the second one can

clearly be implemented in linear time.

At any time, the vertices of the graph are parti-

tioned in three sets: new, active and used. At the be-

ginning, all the vertices are new. If there are no active

vertices, choose a new vertex and make it active. Choose

an active vertex x and \use" it; that is, include in the

cactus S

1

, one after the other, triangles formed by x and

two new vertices, making these vertices active. Mark x

\used" at the end of this process.

Using one vertex takes constant time as all degrees

are bounded by d. We maintain the invariant that

all triangles which contain a used vertex have been

processed and all vertices which are active at a given

time are in the same connected component of G[E

1

] at

that time.

It is not hard to see that at the end, E

1

is maximal,

in that no triangles can be added to it.

2.2 A Better Algorithm. The new algorithm, al-

gorithm B below, �nds a maximum triangular structure

(one with the maximum number of edges) in a given

graph G. Algorithm B has performance ratio at least

0:4, and can be implemented in time O(m

3=2

n log

6

n).

Now, let us present the algorithm and the lower bound

of 0:4 on its performance ratio.

Algorithm B also has two phases. In the �rst one,

B constructs a maximum triangular cactus S

1

in G. We

will show later how to use a matroid parity algorithm

to construct S

1

. In the second phase, B extends S

1

to

a triangular structure S

2

in G, as before, by adding to

S

1

as many edges as possible which do not form new

cycles.

Algorithm B

Let S

1

be a maximum triangular cactus in G.

Starting with E

2

= E(S

1

), repeatedly (as long as

possible) �nd an edge e in G whose endpoints are in

di�erent components of G[E

2

], and add e to E

2

.

Let S

2

:= G[E

2

].

Output S

2

.
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Observe that S

2

is a triangular structure in G, and

therefore is planar. To analyze the algorithm, we need

a de�nition. In any graph H, let mts(H) denote the

number of edges in a maximum triangular structure in

H. De�ne �(H) = mts(H)=jE(H)j if E(H) 6= ;, and

�(H) = 1 if E(H) = ;.

We will prove that �(H) � 0:4 provided that H is

planar. (And later we will prove that �(H) � 2=3 if H

is outerplanar.) The key to understanding the analysis

of algorithm B is the following. If G is any graph,

let H be a maximum planar subgraph of G. Clearly

mts(G) � mts(H). Now Opt(G) = jE(H)j implies that

B(G)=Opt(G) = mts(G)=jE(H)j � mts(H)=jE(H)j =

�(H). If we prove that �(H) � 0:4 for any planar H,

we can infer that the performance ratio of B is at least

0:4.

Theorem 2.2. If H is a planar graph, then

�(H) � 0:4.

Proof. The theorem is easily veri�ed if H has fewer

than three vertices, so let us assume that H has n �

3 vertices. We may furthermore assume that H is

connected. Embed H in the plane. Choose t � 0 so

that jE(H)j = 3n� 6� t.

Now let J be any triangular cactus obtained by

choosing triangular faces of H until no more can be

added; say the �nal J has k components. Let p be the

number of triangles in J . As in the proof of Theorem

2.1, if we count twice every edge in H whose endpoints

are in the same component of J , we will \cover" every

triangular face of H; and, in fact, each triangular face

of J will be covered three times, by the three edges

bounding the face. Let s be the number of edges in

H whose endpoints are in the same component of J .

Let l be the number of triangular faces in H. Since

the p triangles in J are covered three times, we have

(l � p) + 3p = l + 2p � 2s. As in Theorem 2.1, we have

s � 6p� 3k and l � 2n� 4� 2t.

It follows that 2n � 4 � 2t + 2p � l + 2p � 2s �

2(6p� 3k); so that

p �

2n� 4� 2t+ 6k

10

=

n� 2� t+ 3k

5

�

n� 2� t

5

:

Since �(H) =

mts(H)

jE(H)j

, using mts(H) � (n � 1) + p, we

have

�(H) �

n� 1 +

n�2�t

5

3n� 6� t

=

6n� 7� t

15n� 30� 5t

�

2

5

;

for any t � 0.

Corollary 2.1. The performance ratio of algo-

rithm B is at least 0:4.

The next theorem gives an upper bound on the

performance ratio of algorithm B.

Theorem 2.3. The performance ratio of algorithm

B is at most

4

9

.

Proof. We will prove this by presenting, for any

� > 0, a planar graph G

�

such that algorithm B, with

G

�

as input, can produce a subgraph S

2

of G

�

whose

number of edges is at most

4

9

+ � times the number of

edges of G

�

.

Given � > 0, let n

0

be an integer such that n

0

>

6�+1

3�

and n

0

� 3. Let G

0

�

be any triangulated plane graph on

n

0

vertices. Call V

0

the vertex set of G

0

�

. Since G

0

�

is

triangulated, G

0

�

has 2n

0

�4 (triangular) faces. For each

face of G

0

�

, add a new vertex in the face and adjacent

to all three vertices on the boundary of that face. Let

G

�

be the new graph, and let V be the vertex set of

G

�

. Observe that G

�

is a triangulated plane graph, and

has n

0

+ (2n

0

� 4) = 3n

0

� 4 vertices. Therefore, G

�

has

3(3n

0

� 4)� 6 = 9n

0

� 18 edges. Let S be a maximum

triangular structure in G

�

.

Any edge in G

�

has at least one endpoint in V

0

.

Moreover, jV

0

j = n

0

. Therefore, a maximum matching

in G

�

has at most n

0

edges (each with at least one

distinct endpoint in V

0

). The following lemma is

observed in [LP86, p. 440].

Lemma 2.1. If S is a triangular structure with t

triangles in a given graph G, then there is a matching

in G of size t.

Using the lemma above, we conclude that S has

at most n

0

triangles. Recall that S, being a triangular

structure, is a spanning tree of G

�

plus one edge per

triangle in S, which implies that S has at most (3n

0

�

5) + n

0

= 4n

0

� 5 edges. Furthermore, G

�

has 9n

0

� 18

edges. Therefore the ratio between the number of edges

in S and the number of edges in G

�

is

4n

0

� 5

9n

0

� 18

<

4

9

+ �;

because n

0

>

6�+1

3�

.

How can one �nd a maximum triangular cactus

quickly? A graphic matroid parity algorithm can be

used to construct a maximum triangular cactus in a

given graph [LP86]. The problem solved by a graphic

matroid parity algorithm is GRAPHIC MATROID

PARITY (GMP): given a multigraph H = (V

H

; E

H

)

and a partition of the edge set E

H

into pairs of distinct

edges ff; f

0

g, �nd a (simple) forest F with the maxi-

mum number of edges, such that f 2 F if and only if

f

0

2 F , for all f 2 E

H

.

Let us show how to reduce the problem of �nding a

maximumtriangular cactus in a given graph G = (V;E)

to GMP. This is done by describing a multigraph G

0

=

(V

0

; E

0

) and a partition P of E

0

into pairs of distinct

edges of E

0

, such that, from a solution to GMP for G

0
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and P, we can construct a maximum triangular cactus

in G.

First let V

0

= V . Now, let us describe E

0

and the

partition P. Initially, E

0

= ; and P = ;. For each

triangle in G with edge set T , let fe; e

0

g be any pair of

distinct edges in T . Add two new edges f and f

0

to E

0

,

f with the same endpoints as e, and f

0

with the same

endpoints as e

0

. We say that T corresponds to ff; f

0

g.

Insert f and f

0

into P .

We say a forest F inG

0

is valid if f 2 F if and only if

f

0

2 F , for all f in E

0

. Observe that any valid forest has

an even number of edges. The following lemma states a

relation between valid forests in G

0

and triangular cacti

in G. Let m and n be the number of edges and vertices,

respectively, in G.

Lemma 2.2. There is a valid forest F in G

0

with

2p edges if and only if there is a triangular cactus S in

G with p triangles. Moreover, S can be obtained from

F (and vice versa) in time O(n).

For lack of space, we omit the proof of this lemma,

which is used implicitly in [LP86].

As described by Chiba and Nishizeki [CN85], we

can explicitly list all the triangles in a graph G with m

edges in time O(m

3=2

). So jE

0

j is O(m

3=2

).

Gabow and Stallmann [GS85] describe an algorithm

for GMP, which runs in time O(m

0

n

0

log

6

n

0

), where m

0

and n

0

are the number of edges and vertices, respec-

tively, in the input graph. In our case, n

0

= n and

m

0

= jE

0

j, which is O(m

3=2

). This gives a time bound

of O(m

3=2

n log

6

n) for this phase.

From the output of the Gabow-Stallmann algo-

rithm, it is easy to �nd a maximum triangular cactus

in time O(n) (Lemma 2.2). Therefore the total time is

O(m

3=2

n log

6

n).

3 Outerplanar Subgraphs

Serendipitously, Algorithm B produces outerplanar

graphs, so it is an approximation algorithm for MAX-

IMUM OUTERPLANAR SUBGRAPH, which is NP-

Complete [GJ79, p. 197]. In fact, any algorithm which

produces a spanning tree has performance ratio at least

1=2, because any outerplanar graph on n � 2 vertices

has at most 2n�3 edges (see below). A careful analysis

shows that the performance ratio of B when used for

MAXIMUM OUTERPLANAR SUBGRAPH is at least

2=3. This is an easy consequence of Theorem 3.1, in

order to prove which we need some preliminaries.

An outerplanar graph G is a maximal outerplanar

graph if no edge can be added without losing outerpla-

narity. As mentioned in [H72, p. 106], every maximal

outerplanar graph G with at least three vertices is a

triangulation of a polygon (i.e., the boundary of the ex-

terior face is a Hamiltonian cycle and each interior face

is triangular). By [H72, Cor. 11.9], G must have a

vertex of degree two and 2jV (G)j � 3 edges (this last

statement is also true for jV (G)j = 2).

Lemma 3.1. Let H be a maximal outerplanar

graph. If H has an odd number n = 2p+ 1 of vertices,

then there is a triangular cactus in H with p triangles.

If H has an even number n = 2p of vertices and xy is

an edge on the boundary of the exterior face, then there

is a triangular cactus S in H with p � 1 triangles such

that x and y are not connected in S.

Notice that we obtain the maximum number of

triangles possible. In the former case all vertices are in

the same component of the cactus, while in the latter,

the cactus has two components.

Proof. We use a plane embedding of H.

The proof is by induction on n, the number of

vertices of H. The case n = 1 is trivial. If n = 2 (in

this case there is only one edge and p = 1), the theorem

is true.

We inductively construct a triangular cactus of the

given size.

Let n = 2p + 1. Let v be a vertex of degree

two. Let x and y be its neighbors. They are adjacent,

since interior faces are triangles. The graph H � fvg

is maximal outerplanar (since it has (2n � 3) � 2 =

2(n� 1)� 3 edges) and has an even number of vertices.

It is easy to check that if a triangular cactus S

0

in this

smaller graph has the property that x and y are not

connected in S

0

, we can add the triangle xyv to get a

triangular cactus in H. The size of this cactus is p� 1,

by induction, plus one, for a total of p.

Let n = 2p and let the edge xy be on the boundary

of the exterior face. This edge is on the boundary of

a triangular face xyv on the inside. Walking along

the Hamiltonian cycle which is the boundary of the

exterior face, starting at v and in the direction that

visits x just before y, let D

1

be the set of vertices

visited between v and x, and let n

1

= jD

1

j. Walking

along the Hamiltonian cycle in the opposite direction

again starting at v, let D

2

be the set of vertices visited

between v and y, and let n

2

= jD

2

j; D

1

\D

2

= fvg and

D

1

[D

2

= V (H). The only edge inH between D

1

�fvg

and D

2

� fvg is the edge xy.

Let H

1

be the subgraph of H induced by vertex set

D

1

, with, say, e

1

edges, and let H

2

be the subgraph of

H induced by vertex set D

2

, with, say, e

2

edges.

We have n

1

+ n

2

is odd, since v is counted twice.

Let us say without loss of generality that n

1

= 2p

1

+ 1

is odd and n

2

= 2p

2

is even. Then n = 2(p

1

+ p

2

). We

have e

1

+e

2

= (2n�3)�1, as fromH only the edge xy is

not an edge of either H

1

or H

2

. Since e

1

� 2n

1

� 3 and

e

2

� 2n

2

� 3, we infer that e

1

+ e

2

� 2(n

1

+ n

2

)� 6 =

2(n+1)�6 = 2n�4. Since, in fact, e

1

+e

2

= 2n�4, we
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infer that e

1

= 2n

1

�3 and e

2

= 2n

2

�3. Thus both H

1

and H

2

have to be maximal outerplanar, as they have

the maximum number of edges.

Then by the inductive hypothesis we can construct

in H

1

a cactus S

1

with p

1

triangles. If we apply the

inductive hypothesis to H

2

with vy being the edge on

the exterior face, we obtain a triangular cactus S

2

with

p

2

� 1 triangles in which y and v are not connected.

Then putting together the edges of S

1

and S

2

we get S,

a cactus in H. In the new cactus S, any possible x� y-

path must visit v, since neither S

1

nor S

2

has edge xy.

But in S

2

, y and v are not connected. It follows that x

and y are not connected in S, so S is the desired cactus.

S has p

1

+(p

2

�1) triangles, which is exactly the number

we wanted.

In conclusion, for a maximal outerplanar graph with

n vertices, we can �nd a triangular structure with b

n�1

2

c

triangles.

Now we prove a lower bound on �(H).

Theorem 3.1. If H is outerplanar, then �(H) �

2=3.

Proof. Let H be any 2-connected outerplanar

graph. We add t edges to obtain a maximal outerplanar

plane graph H

0

. Note that H

0

has 2n � 3 edges and a

triangular structure S with at least b

n�1

2

c triangles.

However, the t missing edges can destroy at most t

of these triangles in S, because S is a cactus. If t �

n

2

,

we infer that

�(H) �

n� 1

2n� 3� n=2

�

2

3

:

Assume to the contrary that t � b

n�1

2

c. Then the

number of edges in the triangular structure is at least

n� 1 + (b

n�1

2

c � t). Then

�(H) �

n� 1 + b

n�1

2

c � t

2n� 3� t

:

The worst case is achieved when t = b

n�1

2

c and is

2

3

.

If H is not 2-connected, we can do the above

analysis for each of the 2-connected components (an

edge appears in exactly one 2-connected component)

and infer that a maximum triangular structure has

2

3

of the edges in H.

The theorem above is tight, in the sense that there

are outerplanar graphs H for which �(H) is arbitrarily

close to 2=3. In fact, there are outerplanar graphs H

i

with 2i vertices and 3i� 2 edges which do not have any

triangle.

Corollary 3.1. Algorithm B has performance

ratio 2=3 for MAXIMUM OUTERPLANAR SUB-

GRAPH.

4 The Complexity of the Problems

Papadimitriou and Yannakakis [PY91] de�ned a natural

variant of NP for optimization problems: the complex-

ity class Max SNP. This class, as they have shown, con-

tains several well-known optimization problems, such

as MAX 3-SAT and MAXIMUM CUT. In this sec-

tion, we prove that MAXIMUM PLANAR SUBGRAPH

(MPS) is Max SNP-hard, as is its complementary ver-

sion: given a graph, �nd a smallest subset of its edges

whose removal results in a planar graph. This means, by

results of Arora et al. [ALMSS92], that there is a con-

stant � > 0 such that the existence of a polynomial-time

approximation algorithm for MPS with performance ra-

tio at least 1�� implies that P = NP , and that an anal-

ogous statement can be made about the complementary

problem.

As in [PY91], we use the concept of L-reduction,

which is a special kind of reduction that preserves

approximability. Let A and B be two optimization

problems. We say A L-reduces to B if there are

two polynomial-time algorithms f and g, and positive

constants � and �, such that for each instance I of A,

1. Algorithm f produces an instance I

0

= f(I) of

B, such that the optima of I and I

0

, of costs

denoted Opt

A

(I) and Opt

B

(I

0

) respectively, satisfy

Opt

B

(I

0

) � � �Opt

A

(I), and

2. Given any feasible solution of I

0

with cost c

0

,

algorithm g produces a solution of I with cost c

such that jc�Opt

A

(I)j � � � jc

0

�Opt

B

(I

0

)j.

The main result of this section is

Theorem 4.1. MAXIMUM PLANAR SUB-

GRAPH is Max SNP-hard.

Proof. Denote by TSP

4

(1; 2) the following variant

of the traveling salesman problem: given a complete

graph, a pair of distinct vertices x; y, and costs one

or two for each edge, such that the graph induced by

the edges of cost one has maximum degree at most

four, �nd a Hamiltonian path from x to y of minimum

cost. Papadimitriou and Yannakakis [PY93] showed

that TSP

4

(1; 2) is Max SNP-hard.

We shall prove TSP

4

(1; 2) L-reduces to MPS. The

basic idea of the reduction comes from Liu and Geld-

macher [LG77], where the decision version of MPS is

proved to be NP-complete.

The �rst part of the L-reduction is the polynomial-

time algorithm f and the constant �. Given any

instance I of TSP

4

(1; 2), f produces an instance G

of MPS such that the cost of the optimum of G in

MPS, denoted Opt

MPS

(G), is at most � times the

cost of the optimum of I in TSP

4

(1; 2), denoted by

Opt

TSP

4

(1;2)

(I), i.e., Opt

MPS

(G) � � �Opt

TSP

4

(1;2)

(I).
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Figure 1: Graph H

0

constructed from H.

Consider an instance I of TSP

4

(1; 2). I is a

complete graph K = (V;E), a pair of distinct vertices

x; y of V and a subset E

1

of E consisting of the

edges of cost one. Let H = (V;E

1

) and H

0

= (V [

T;E

1

[ F

1

[ F

2

), where T = ft

0

; t

1

; t

2

; t

3

g, T \ V =

;, F

1

= ft

0

t

1

; t

0

t

3

; t

1

t

2

; t

1

t

3

; t

1

x; t

2

t

3

; t

3

yg and F

2

=

[

z2V

ft

0

z; t

2

zg (see �gure 1).

Denoting by n the number of vertices of H, let G

be the graph obtained from H

0

by (1) replacing each

edge e in F

1

by 2n parallel internally-disjoint paths

of length two (having new internal vertices) between

the endpoints of e and (2) replacing each edge e in F

2

by eight parallel internally-disjoint paths of length two

(having new internal vertices) between the endpoints of

e.

Clearly G can be obtained from I in time polyno-

mial in the size of I.

Lemma 4.1. Opt

MPS

(G) � 124 �Opt

TSP

4

(1;2)

(I).

Proof. Observe that Opt

TSP

4

(1;2)

(I) � n � 1. A

clear upper bound for Opt

MPS

(G) is the number of

edges of G. To compute this, note �rst that H has

maximum degree at most four by the de�nition of

TSP

4

(1; 2), and so H has at most 2n edges. Let us

call the edges in F

1

2n-edges and the edges in F

2

8-

edges. There are seven 2n-edges: F

1

contains seven

edges, each of them corresponding to 4n edges in G.

There are 2n 8-edges: F

2

contains 2n edges, each of

them corresponding to 16 edges inG. Hence the number

of edges in G outside of H is 7 � 4n + 16 � 2n = 60n.

The total number of edges in G is therefore at most

2n+60n = 62n � 124(n�1). Therefore, Opt

MPS

(G) �

124(n� 1) � 124 �Opt

TSP

4

(1;2)

(I).

This �nishes the �rst part of the L-reduction, since

we can take � = 124.

The second and hard part of the L-reduction is

the constant � and the algorithm g. Given a planar

subgraph of G with m edges, g produces in polynomial

time a Hamiltonian path from x to y of cost t in K

such that jt� Opt

TSP

4

(1;2)

(I)j � �jm � Opt

MPS

(G)j.

We shall see that � = 1 su�ces.

First, given a planar subgraph P of G, let us

describe another planar subgraph P

0

of G with at least

as many edges as P . Moreover, P

0

shall contain all edges

of G not in H.

Let e be a 2n-edge or an 8-edge of H

0

. We say e

appears in P if P contains both edges of all the paths of

length two corresponding to e. In this case, we also say

that the endpoints of e are adjacent in P by the 2n-edge

or 8-edge e. We say e is missing in P if P contains both

edges of none of the paths (of length two) corresponding

to e. (In this case, if e is an 8-edge, then P is missing

at least eight of its 16 edges in G corresponding to e.)

It is possible that a 2n-edge or an 8-edge of H

0

neither

appears in P nor is missing in P .

Let us modify P so that any 2n-edge or 8-edge of

H

0

either appears in P or is missing in P . This is done

as follows. If a 2n-edge or an 8-edge e of H

0

neither

appears nor is missing in P , then we insert in P all

edges of G in the paths (of length two) corresponding

to e. Note that P remains planar. Clearly, the number

of edges in P cannot decrease by this operation. The

new graph is also called P .

Now we can describe P

0

. We have three cases: (1) if

some 2n-edge e does not appear in P , then de�ne P

0

to

be the graph induced by all edges of G not in H; (2) if

all the 2n-edges and the 8-edges ofH

0

appear in P , then

let P

0

be the same as P ; and (3) if all the 2n-edges ofH

0

appear in P , but not all the 8-edges, then we modify P

to obtain P

0

, as described in the next two paragraphs.

The idea is to remove from P some edges of H and

add to P edges of H

0

not in H so that all the 8-edges of

H

0

appear in the modi�ed graph, and it remains planar

and has at least as many edges as the original P .

Let U be the set of vertices v ofH such that at least

one of the two 8-edges incident to v in H

0

is missing

in P . Observe that jU j � 1, as case (2) considered

jU j = 0. For each vertex v in U , remove from P all

edges of H incident to v in P (at most four edges are

removed per vertex) and add to P all the edges outside

of H so that the two 8-edges incident to v appear in

P (at least eight edges are added, corresponding to the

8-edges incident to v missing in P ). To guarantee that

the graph obtained this way is planar, we must make

room to embed the modi�ed 8-edges. This is done by

also removing from P all edges of H incident to y (if

they were not already removed). Let P

0

be the graph
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Figure 2: Cycle C, regions R

1

and R

2

= R

0

2

[R

00

2

.

obtained after all these modi�cations.

Lemma 4.2. P

0

is planar and has at least as many

edges as P .

Proof. In case (1), we include in P

0

at least 2n edges

that do not appear in P (at least one in each of the 2n

paths corresponding to e), and we remove at most 2n

edges, the maximum number of edges in H. So P

0

has

at least as many edges as P . Moreover P

0

is planar.

There is nothing to be proved in case (2).

Case (3) is the complicated one. First note that P

0

has at least as many edges as G, since, for each vertex in

U , we remove at most four edges and add at least eight.

Furthermore, we remove at most four edges incident to

y. Hence, we gain at least (8� 4)jU j� 4 = 4jU j� 4 � 0

edges, since jU j � 1.

Now, let us show that P

0

is planar. We can think of

the 2n-edges and 8-edges as single edges, as they are in

H

0

(since if we can embed a single edge, we can embed

a 2n-edge or an 8-edge as well). We will modify a given

embedding of P into an embedding for P

0

.

Let C be the cycle (using four 2n-edges)

t

0

; t

1

; t

2

; t

3

; t

0

. Observe that the 2n-edges in C appear

in P , since we are in case (3). Given an embedding

for P , cycle C divides the plane into two regions, R

1

,

containing the 2n-edge t

1

t

3

, and R

2

(see �gure 2). The

2n-edge t

1

t

3

separates t

0

from t

2

in R

1

. Moreover, each

vertex in V �U (the vertices of H not in U ) is adjacent

in P by 8-edges to t

0

and t

2

. Because t

0

and t

2

are sep-

arated in R

1

, none of these vertices can be embedded in

R

1

, which implies they must be embedded in R

2

. Keep

these vertices (t

0

; t

1

; t

2

; t

3

and the vertices in V � U )

embedded as they are.

Now, observe that y is adjacent in P

0

only to t

0

; t

2

(by 8-edges) and t

3

(by a 2n-edge). Furthermore, y

is the only vertex in H which is adjacent to t

3

. This

means, before we embed y, the vertices t

0

; t

2

and t

3

are

not separated in R

2

. Therefore, y can be embedded

in R

2

with the 2n-edge t

3

y and the 8-edges t

0

y and

yt

2

\next to" the 2n-edges t

0

t

3

and t

3

t

2

. The edges

t

0

y and yt

2

together split region R

2

into two regions

R

0

2

containing edge t

3

y, and R

00

2

containing vertex t

1

.

Observe that t

0

and t

2

are not separated in R

00

2

, since t

3

is the only vertex, besides t

0

and t

2

, which is adjacent

to y (by a 2n-edge).

All the vertices in U � fxg are adjacent in P

0

only

to t

0

and t

2

(by 8-edges), and therefore they all can

be embedded in R

00

2

with their two 8-edges \next to"

the 8-edges t

0

y and yt

2

. If x 2 U then observe that

x is the only vertex in H which is adjacent in P

0

to

t

1

(by a 2n-edge). This means, before we embed x, the

vertices t

0

; t

1

and t

2

are not separated in R

00

2

. Therefore,

x can be embedded in R

00

2

with the 2n-edge xt

1

, and the

8-edges t

0

x and xt

2

\next to" the 2n-edges t

0

t

1

and

t

1

t

2

. If x 62 U then it does not need to be moved in

the embedding. The embedding obtained this way is a

plane embedding of P

0

, completing the proof that P

0

is

planar.

Observe that P

0

contains all the edges of G not in

H. Let F be the set of edges of H appearing in P

0

.

Lemma 4.3. The graph G

F

= (V; F ) is a collection

of vertex-disjoint paths which can be extended in K (the

complete graph on V ) to a Hamiltonian path from x to

y, in polynomial time.

Proof. Let us prove that G

F

satis�es the following

four conditions: (1) There is no vertex of degree greater

than two in G

F

. (2) Vertices x and y have degree at

most one in G

F

. (3) There is no cycle in G

F

. (4) If

x and y are in the same component of G

F

, then this

component spans all vertices in V . We will prove each

of these conditions holds by contradiction.

Suppose (1) does not hold. Let z

0

be a vertex in V

of degree at least 3 in G

F

. Let z

1

; z

2

; z

3

be three of its

neighbors in G

F

. (Notice that z

0

; z

1

; z

2

; z

3

are distinct

vertices of H, so they are distinct of t

0

; t

2

.) Then each

one of t

0

; t

2

; z

0

is adjacent in P

0

to each one of z

1

; z

2

; z

3

(some of them are adjacent in P

0

by 8-edges). Therefore,

t

0

; t

2

; z

0

; z

1

; z

2

; z

3

de�ne a subdivision of K

3;3

in P

0

, a

contradiction, because P

0

is planar. Thus, (1) holds.

Suppose (2) does not hold. If x has degree more

than one in G

F

, let z

1

and z

2

be two of its neighbors in

G

F

. (Notice that z

1

and z

2

are distinct vertices of H,

distinct of x, so they are distinct of t

0

; t

2

.) Then each

one of t

0

; t

2

; x is adjacent in P

0

to each one of t

1

; z

1

; z

2

(some of them are adjacent in P

0

by 2n-edges or 8-

edges). Therefore, t

0

; t

2

; x; t

1

; z

1

; z

2

de�ne a subdivision

of K

3;3

in P

0

, a contradiction, because P

0

is planar.

Analogously, we have a contradiction if y has degree

more than one in G

F

. Thus, (2) holds.

Suppose (3) does not hold. Let z

1

; z

2

; z

3

be three

vertices in a cycle of G

F

. (Since z

1

; z

2

; z

3

must have
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degree at least two, they are not x or y by condition (2),

and they are not t

0

or t

2

since they are vertices of H.)

Then z

1

; z

2

; z

3

; t

0

; t

2

are pairwise linked by internally

vertex-disjoint paths (the path between t

0

and t

2

uses

the two 8-edges incident to x, while the others use one

2n-edge or 8-edge). Therefore, t

0

; t

2

; z

1

; z

2

; z

3

de�ne a

subdivision of K

5

in P

0

, a contradiction, because P

0

is

planar. Hence, (3) holds.

Suppose (4) does not hold. Let z

0

be a vertex in V

which is not in the component having x and y in G

F

. In

this case, t

0

; t

1

; t

2

; x; y are pairwise linked by internally

vertex-disjoint paths (the path between t

0

and t

2

uses

z

0

, the path between t

1

and y uses t

3

, the path between

x and y is in G

F

, and the others use one 2n-edge or

8-edge). Therefore, t

0

; t

1

; t

2

; x; y de�ne a subdivision of

K

5

in P

0

, a contradiction, because P

0

is planar. Hence,

(4) holds.

Therefore, the conditions hold. From (1) and (2),

we conclude that G

F

is a collection of paths. From

(2) and (3), these paths can be extended in K (the

complete graph on V ) to a Hamiltonian path from

x to y. Furthermore, note that this can be done in

polynomial time.

Let HP be a Hamiltonian path from x to y contain-

ing all edges in F and some edges (in K) of cost two.

HP exists by Lemma 4.3. Denote by m

0

the number of

edges of P

0

and by t the cost of HP .

Now the following Lemma states that � exists, and

speci�cally, � = 1. This will complete the proof of the

theorem.

Lemma 4.4.

t �Opt

TSP

4

(1;2)

(I) = Opt

MPS

(G)�m

0

;

and hence

jt� Opt

TSP

4

(1;2)

(I)j = jm

0

�Opt

MPS

(G)j:

Proof. As in the proof of Lemma 4.1, the number

of edges in G outside of H is 60n. All these edges are

in P

0

. Therefore, the number of edges in F is m

0

� 60n.

And the cost of HP is

t = 2(n� 1)� (m

0

� 60n):(4.1)

Let Q be an optimal solution of MPS for G. Using

the same argument for Q that we used for P , Lemma

4.3 and the argument above imply the existence of a

Hamiltonian path of cost 2(n�1)�(Opt

MPS

(G)�60n).

Therefore

Opt

TSP

4

(1;2)

(I) � 2(n�1)�(Opt

MPS

(G)�60n):(4.2)

Given an optimum solution HP

�

of TSP

4

(1; 2) for

I, we can construct a solution of MPS for G by selecting

all the edges outside of H plus the edges of cost one

in HP

�

. Observe that these edges really determine a

planar subgraph of G. Let z be the number of these

edges. Since we have 60n edges in G outside of H, HP

�

has z � 60n edges of cost one and the remaining ones

(of its n� 1 edges) have cost two. This means that

Opt

TSP

4

(1;2)

(I) = 2(n� 1) � (z � 60n)

� 2(n� 1) � (Opt

MPS

(G) � 60n);

since Opt

MPS

(G) � z.

Therefore, from (4.2) and (4.3), we have

Opt

TSP

4

(1;2)

(I) = 2(n� 1)� (Opt

MPS

(G)� 60n):

And this together with (4.1) means

t� Opt

TSP

4

(1;2)

(I) = Opt

MPS

(G)�m

0

:

Hence jt�Opt

TSP

4

(1;2)

(I)j = jm

0

� Opt

MPS

(G)j.

From m � m

0

, it follows that

t� Opt

TSP

4

(1;2)

(I) � Opt

MPS

(G) �m

and

jt� Opt

TSP

4

(1;2)

(I)j � 1 � jm� Opt

MPS

(G)j:

This completes the proof of Theorem 4.1.

Let us denote the complementary version of MPS

by NPD: given a graph G, �nd a smallest set of edges

of G whose removal results in a planar graph.

A slight modi�cation of the L-reduction presented

above proves the following.

Theorem 4.2. NPD is Max SNP-hard.

Proof. The �rst part of the L-reduction is almost

the same. From an instance I of TSP

4

(1; 2), we

construct G in exactly the same way. As before,

Opt

TSP

4

(1;2)

(I) � n � 1. As in the proof of Lemma

4.1, the maximum number of edges of G is 62n. Thus,

the optimumofG in NPD, denoted as Opt

NPD

(G), is at

most 62n. And then Opt

NPD

(G) � 62n � 124(n�1) �

124 �Opt

TSP

4

(1;2)

(I). We can take � = 124, as before.

In the second part, given an instance I of

TSP

4

(1; 2), let G be constructed from I as in the pre-

vious reduction. Let D be a subset of the edges of G

whose removal results in a planar subgraph of G. We

shall �nd in polynomial time a Hamiltonian path HP

such that t�Opt

TSP

4

(1;2)

(I) � d�Opt

NPD

(G), where

t is the number of edges in HP and d = jDj. Just as

we took a planar subgraph P of G and found a planar

subgraph P

0

which contains all edges of G not in H,

and is at least as large as P , from D we can �nd a set

D

0

of edges of G containing none of the edges of G not
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in H, which is at least as small as D. Applying Lemma

4.3, we can obtain a Hamiltonian path HP , as before,

in polynomial time.

Now, let us prove that � exists. Let m

0

be the

number of edges in P

0

. Note that d

0

+ m

0

= jE(G)j.

Moreover, Opt

MPS

(G)+Opt

NPD

(G) = jE(G)j. There-

fore, d

0

� Opt

NPD

(G) = Opt

MPS

(G) � m

0

. Applying

Lemma 4.4, we conclude that t � Opt

TSP

4

(1;2)

(I) =

d

0

� Opt

NPD

(G), which, together with d

0

� d, implies

that we can take � = 1.

5 Open Problems

Many open problems are suggested by this research.

How large a performance ratio can one achieve is an

obvious one. Is there a linear-time approximation al-

gorithm for MAXIMUM PLANAR SUBGRAPH with

performance ratio 1=3 + �? (A maximal planar sub-

graph can be found in linear time [H95, D95].) Is there

any approximation algorithm with a constant perfor-

mance ratio for NPD? Can one achieve a performance

ratio of 1=3 + � for MAXIMUM WEIGHT PLANAR

SUBGRAPH, which is this problem: given a weighted

graph, �nd a planar subgraph of maximumweight. For

this problem, any maximum weight spanning tree can

be shown to have weight at least one third of the opti-

mum. What performance ratios are achievable for �nd-

ing heavy outerplanar subgraphs? What performance

ratio can be achieved for THICKNESS (given G, par-

tition the edges of G into as few planar subgraphs as

possible)? A factor of 3 here is trivial, via arboricity.
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