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Abstrat

The k-shortest paths problem onsists of: given a digraph D, a pair (s; t) of verties of D and k

non-negative funtions l

1

; : : : ; l

k

on the ars of D, �nd k internally vertex-disjoint paths P

1

; : : : ; P

k

from

s to t suh that l

1

(P

1

)+ � � �+ l

k

(P

k

) is as small as possible. We desribe, for eah �xed k, a polynomial-

time algorithm for the k-shortest paths restrited to ayli digraphs. We prove two omplexity

results: unless P = NP, for eah onstant , there is no polynomial-time n



-approximation algorithm

(1) for the 2-shortest paths, where n is the number of verties of D, and (2) for the k-shortest

paths restrited to ayli digraphs. We also show a polynomial-time algorithm for a multiommodity

variation of the problem in planar graphs.
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1 Introdution

The well-known single pair shortest path problem onsists of: given a digraph D, a non-negative funtion

l on the ars of D and two verties s and t, �nd a path P from s to t that minimizes l(P ), where l(P )

denotes the sum of l(e) over all ars e in P . This problem is solvable in polynomial time. We address the

following generalization of the single pair shortest path problem, whih we all k-shortest paths:

given : { a digraph D = (V;A);

{ a pair (s; t) of verties of D;

{ non-negative funtions l

1

; : : : ; l

k

on the ars of D;

�nd : { k internally vertex-disjoint paths P

1

; : : : ; P

k

from s to t suh that

l

1

(P

1

) + � � �+ l

k

(P

k

)

is as small as possible.

For l

1

= : : : = l

k

the k-shortest paths redues to the min-ost ow problem and, therefore, an be solved

in polynomial time.

We onsider �rst the problem on ayli digraphs. Algorithms for �nding ar-disjoint paths in ayli

digraphs have appliations on sheduling problems [1℄ and airraft assignment problems [7℄. We reformulate

the k-shortest paths in ayli digraphs in terms of �nding a shortest path in a (large) ayli digraph.

This is a known reformulation due to Perl and Shiloah [6℄ for �nding two vertex-disjoint paths in an ayli

digraph. Later this was extended by Fortune, Hoproft and Wyllie [3℄ in order to derive a polynomial-time

algorithm for the k vertex-disjoint paths problem in ayli digraphs (see also Shrijver [7℄). From this

reformulation, we derive the theorem below.

Theorem 1.1 For eah �xed k, there exists a polynomial-time algorithm for the k-shortest paths re-

strited to ayli digraphs.

We also prove the following inapproximability result, whih shows that the problem beomes muh

harder on general digraphs, even if k = 2.

Theorem 1.2 For eah onstant , there is no polynomial-time n



-approximation algorithm for the 2-

shortest paths unless P = NP, where n is the number of verties of the given digraph.

With respet to the intratability and inapproximabity of the problem in ayli digraphs, we show the

following theorem.

Theorem 1.3 For eah onstant , there is no polynomial-time n



-approximation algorithm for the k-

shortest paths restrited to ayli digraphs unless P = NP, where n is the number of verties of the

given digraph.

Theorems 1.2 and 1.3 show that the result in Theorem 1.1 is tight in the sense that it does not hold,

unless P = NP, if we drop either the restrition on k being �xed or on D being ayli. Surprisingly, the

problem beomes muh harder if we drop any of these restritions.

We onsider also a variant of the problem in undireted graphs, with multiple pairs of terminals. For

this variant, we present a polynomial-time algorithm for the ase where all length funtions are the same,

the given graph is planar and the terminals lie on the boundary of the same fae in an adequate order.
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2 Disjoint paths in ayli digraphs

In order to prove Theorem 1.1, we onsider the following disjoint paths problem:

given : { a direted graph D = (V;A);

{ pairs (s

1

; t

1

); : : : ; (s

k

; t

k

) of verties of D;

{ subsets A

1

; : : : ; A

k

of A;

{ a set H of pairs fi; jg from f1; : : : ; kg;

�nd : { paths P

1

; : : : ; P

k

in D suh that:

(i) P

i

is an s

i

-t

i

-path in D[A

i

℄ (i = 1; : : : ; k);

(ii) P

i

and P

j

are vertex-disjoint for fi; jg in H.

(1)

Fortune, Hoproft and Wyllie [3℄ showed that this disjoint paths problem is NP-hard even for k = 2,

A

1

= A

2

= A and H = ff1; 2gg. Aording to Even, Itai and Shamir [2℄, problem (1) is also NP-hard for

ayli digraphs. In fat, problem (1) is NP-hard even for a �xed ayli digraph, as noted by Alexander

Shrijver. At the end of this setion, we inlude the proof of this unpublished and surprising result.

We prove in the next theorem that problem (1) is polynomially solvable for instanes satisfying the

following ondition:

There exists no direted yle C = P

j

0

� P

j

1

� � � � � P

j

t

in D suh that:

(i) P

j

i

is a path from u

i

to u

i+1

in D[A

j

i

℄, u

i

6= t

j

i

(i = 0; : : : ; t),

where u

t+1

= u

0

;

(ii) fj

0

; j

1

g; : : : ; fj

t�1

; j

t

g; fj

t

; j

0

g belong to H.

(2)

If P and Q are paths then P �Q denotes the path obtained by the onatenation of P and Q. Note that any

ayli digraph satis�es the ondition above. This theorem is a slight generalization of a result by Fortune,

Hoproft and Wyllie [3℄. They showed that, for eah �xed k, the problem of �nding k vertex-disjoint paths

in an ayli digraph is polynomially solvable.

Theorem 2.1 For eah �xed k, there exists a polynomial-time algorithm for the disjoint paths problem

(1) for instanes satisfying (2).

Proof. The proof is a minor modi�ation of Shrijver's proof [7℄ of Fortune, Hoproft and Wyllie's k

vertex-disjoint paths theorem [3, 8℄. We inlude it here for the sake of ompleteness.

Consider an instane of problem (1), that is, a digraph D, pairs (s

1

; t

1

); : : : ; (s

k

; t

k

) of verties of D,

subsets A

1

; : : : ; A

k

of ars of D and a set H of pairs fi; jg from f1; : : : ; kg. Make an auxiliary digraph

D

0

= (V

0

; A

0

) as follows. The vertex set V

0

onsists of all k-tuples (v

1

; : : : ; v

k

) of verties of D suh that

v

i

6= v

j

for all fi; jg in H. There is an ar in D

0

from (v

1

; : : : ; v

k

) to (w

1

; : : : ; w

k

) if and only if there exists

an i in f1; : : : ; kg suh that:

(i) v

j

= w

j

for all j 6= i;

(ii) (v

i

; w

i

) is an ar of A

i

;

(iii) if j 6= i, fi; jg 2 H and v

j

6= t

j

, there is no path in D[A

j

℄ from v

j

to v

i

.

(3)

Note that, as k is �xed, the size of D

0

is polynomially bounded on the size of D. Moreover, the following

holds:

D ontains paths P

1

; : : : ; P

k

suh that P

i

is an s

i

-t

i

-path in D[A

i

℄ (i = 1; : : : ; k)

and P

i

and P

j

are vertex-disjoint for fi; jg in H

if and only if

D

0

ontains a path P from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

).

(4)

Suppose that P

1

; : : : ; P

k

exist. For any i, let P

i

follow the verties v

i;0

; v

i;1

; : : : ; v

i;t

i

. So v

i;0

= s

i

and

v

i;t

i

= t

i

for eah i. Choose j

1

; : : : ; j

k

suh that 0 � j

i

� t

i

for eah i and suh that:
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(i) D

0

ontains a path from (s

1

; : : : ; s

k

) to (v

1;j

1

; : : : ; v

k;j

k

), and

(ii) j

1

+ � � �+ j

k

is as large as possible.

Let I := fi j j

i

< t

i

g. Let us prove by ontradition that I = ;. Suppose I 6= ;. By the de�nition of

D

0

and the maximality of j

1

+ � � � + j

k

, for eah i in I, there exists an i

0

6= i suh that there is a path in

D[A

i

0

℄ from v

i

0

;j

i

0

to v

i;j

i

, with v

i

0

;j

i

0

6= t

i

0

and fi

0

; ig in H. So, for i in I, eah vertex v

i;j

i

is an endpoint of

a path in D[A

i

0

℄ starting at another vertex v

i

0

;j

i

0

6= t

j

i

0

, with i

0

in I and fi; i

0

g in H. This ontradits (2),

so I = ;, that is, j

i

= t

i

for all i, in whih ase we are done.

Conversely, let P be a path from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

) inD

0

. Let P follow the verties (v

1;j

; : : : ; v

k;j

)

for j = 0; : : : ; t: So v

i;0

= s

i

for i = 1; : : : ; k: For eah i = 1; : : : ; k, let P

i

be the path in D following v

i;j

for j = 0; : : : ; t, taking repeated verties only one. So P

i

is an s

i

-t

i

-path in D[A

i

℄. Moreover, P

i

and P

j

are vertex-disjoint for eah fi; jg in H. Indeed, suppose P

1

and P

2

(say) have a vertex in ommon, where

f1; 2g belongs to H, that is, v

1;j

= v

2;j

0

for some j 6= j

0

. Without loss of generality, j < j

0

and v

1;j

6= v

1;j+1

.

By the de�nition of D

0

, there is no path in D[A

2

℄ from v

2;j

to v

1;j

. This however ontradits the fat that

v

1;j

= v

2;j

0

and that there exists a path in D[A

2

℄ from v

2;j

to v

2;j

0

.

Therefore, to solve problem (1), it is enough to �nd a path in D

0

from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

), whih

an be done in polynomial time.

The ar-disjoint version of the disjoint paths problem (1) onsists of replaing (ii) in (1) by:

P

i

and P

j

are ar-disjoint for fi; jg in H. (5)

This ar-disjoint paths problem an be reformulated in terms of the disjoint paths problem (1). Indeed,

let an instane of the ar-disjoint paths problem be given, that is, a digraph D = (V;A), pairs of verties

(s

1

; t

1

); : : : ; (s

k

; t

k

), ar sets A

1

; : : : ; A

k

and a set H of pairs fi; jg from f1; : : : ; kg. We may assume that

eah s

i

is the tail of a unique ar a

i

of D and that t

i

is the head of a unique ar b

i

of D (i = 1; : : : ; k).

We make a digraph D

0

= (V

0

; A

0

) as follows. The vertex set of D

0

is the ar set A of D (i.e. V

0

:= A).

There is an ar in D

0

from a to b if the head of a and the tail of b oinide. For i = 1; : : : ; k, we de�ne

A

0

i

:= f(a; b) 2 A

0

j a; b 2 A

i

g. Finally we take H

0

:= H.

Finding paths P

1

; : : : ; P

k

in D satisfying (5) suh that P

i

is an s

i

-t

i

-path in D[A

i

℄ (i = 1; : : : ; k) is

equivalent to the problem of �nding paths P

0

1

; : : : ; P

0

k

in D

0

satisfying (ii) of (1) suh that P

0

i

is an a

i

-b

i

-

path in D

0

[A

0

i

℄ (i = 1; : : : ; k). Hene, the ar-disjoint version of problem (1) is polynomially solvable for

instanes satisfying a ondition similar to ondition (2).

Now, suppose that, for an instane of problem (1), one is given also non-negative funtions l

1

; : : : ; l

k

on

the ars of D. Then it is possible to �nd in polynomial time a solution P

1

; : : : ; P

k

of problem (1) suh that

P

k

i=1

l

i

(P

i

) is as small as possible. Just de�ne a length funtion on the ars of D

0

(the digraph from the

proof of Theorem 2.1) as follows. The length of an ar of D

0

from (v

1

; : : : ; v

k

) to (w

1

; : : : ; w

k

) satisfying

(3) is l

i

(v

i

; w

i

). Now, a shortest path from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

) in D

0

with this length funtion on its

ars gives the desired paths. As the shortest path problem in an ayli digraph with arbitrary length on

its ars an be solved in linear time, we have Theorem 1.1.

Theorem 1.1 For eah �xed k, there exists a polynomial-time algorithm for the k-shortest paths re-

strited to ayli digraphs.

We onlude this setion with the proof of Shrijver's result on the omplexity of problem (1).

Theorem 2.2 (A. Shrijver) The disjoint paths problem (1) restrited to instanes having the digraph

in Figure 1 as input is NP-hard.

Proof. Consider the following transformation of planar 3-olorability to problem (1) restrited to

instanes having the ayli digraph displayed in Figure 1 as input. A k-oloring of a graph G = (V;E)

is a funtion f from V to f1; : : : ; kg suh that f(u) 6= f(v) whenever fu; vg belongs to E. Graph G is
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k-olorable if G has a k-oloring. The planar 3-olorability problem onsists of: given: a planar

graph G = (V;E); question: is G 3-olorable? planar 3-olorability was shown to be NP-omplete by

Stokmeyer [9℄.

u u u u

w1

1

w

1c c c2 3

4w w

2

2

3

3

4

Figure 1: Problem (1) is NP-hard for instanes having this ayli digraph as input.

Let us be given a planar graph G = (V;E) with V = fv

1

; : : : ; v

k

g and let f

0

be a 4-oloring of G. This

funtion f

0

an be omputed in polynomial time (see, for instane, Nishizeki and Chiba [5℄). We onstrut

an instane of problem (1) depending on G and f

0

as follows. Let H := ffi; jg j fv

i

; v

j

g 2 Eg and, for

i = 1; : : : ; k, let s

i

:= u

f

0

(v

i

)

, t

i

:= w

f

0

(v

i

)

and A

i

be the set of all ars of the digraph in Figure 1. We

laim that G is 3-olorable if and only if the onstruted instane of problem (1) is feasible. Suppose G is

3-olorable and let f be a 3-oloring of G. For i = 1; : : : ; k, let P

i

be the path from s

i

to t

i

that traverses



f(v

i

)

. One an hek that P

1

; : : : ; P

k

is a solution to the problem (1). Conversely, let P

1

; : : : ; P

k

be a

solution to the disjoint paths problem (1) and de�ne f from V to f1; 2; 3g suh that, for i = 1; : : : ; k, the

path P

i

from s

i

to t

i

traverses the vertex 

f(v

i

)

. One an verify that f is a 3-oloring of G.

3 Inapproximability for the 2-shortest paths

In this setion we analyze the omplexity of the 2-shortest paths problem. Spei�ally, we prove

Theorem 1.2.

Theorem 1.2 For eah onstant , there is no polynomial-time n



-approximation algorithm for the 2-

shortest paths unless P = NP, where n is the number of verties of the given digraph.

Proof. We may assume  � 1. Suppose that there is a polynomial-time n



-approximation algorithm A

for the 2-shortest paths, where n is the number of verties of the given digraph. Let us show that, if

this is the ase, we an solve 3-sat in polynomial time, whih implies that P = NP. For this, onsider the

following polynomial-time redution from 3-sat to 2-shortest paths.

Let � be an instane of 3-sat, that is, a set fC

1

; : : : ; C

m

g of 3-lauses on variables x

1

; : : : ; x

h

. Let us

desribe a digraph D, two length funtions l

1

and l

2

on the ars of D and two verties s and t.

For eah variable x

i

, denote by d

i

the largest between the number of times x

i

appears in � and the

number of times that x

i

appears in �. There is a gadget as in Figure 2(a) for eah x

i

. The number of

undireted four-yles in the gadget is d

i

+ 1. The soure vertex in the gadget is alled v

i

and the sink

vertex, w

i

. The verties of in-degree one in the gadget are partitioned into two sets: L

i

and R

i

, as in

Figure 2(a).

For eah lause C

j

, there is a gadget as in Figure 2(b). The sink and soure verties are alled u

j

and

l

j

respetively. Eah of the other verties has as label one of the literals in lause C

j

.

The digraph of the instane of 2-shortest paths is obtained as follows. First, we onnet the gadgets of

all variables and lauses in series, identifyingw

i

and v

i+1

(i = 1; : : : ; n�1) and u

j

and l

j+1

(j = 1; : : : ;m�1).

Then, we add an ar from s to v

1

, one from w

h

to l

1

and one from u

m

to t. The ars we have up to now

5



(a) (c)

(b)

s
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x

1

x

1

x

1

x

1

x

3

x

3

x

3

x

3

x

2

x

2

x

2

x

2

l

j

u

j

C

1

C

2

v

i

w

i

L

i

R

i

Figure 2: (a) The gadget for variable x

i

. One, between x

i

or x

i

, appears three times in �, while the other

appears at most three times. (b) The gadget for lause C

j

= fx

1

; x

2

; x

3

g. () Ars of type 1 of the digraph

built from � = (x

1

_ x

2

_ x

3

)(x

1

_ x

2

_ x

3

).

are said to be of type 1. See Figure 2(). Seond, we add three ars from s: one to t, one to the �rst vertex

in L

1

and another to the �rst vertex in R

1

. Similarly, we add two ars to t: one from the last vertex in

L

h

and one from the last vertex in R

h

. For eah two onseutive verties in L

i

, we add a path from the

upper one to the lower one, of length one or two. When the path has length two, the middle vertex is one

of the verties labeled x

i

in the lause gadgets. The same holds for R

i

with x

i

in the plae of x

i

. This is

done in suh a way that any labeled vertex is in exatly one of these two-length paths. Finally, there are

also ars from the last vertex in L

i

and from the last vertex in R

i

to both, the �rst vertex in L

i+1

and the

�rst vertex in R

i+1

(i = 1; : : : ; n� 1). The ars added in this seond phase are said to be of type 2. This

�nishes the desription of the digraph D and verties s and t. See Figure 3(a) for a omplete example.

Note that the number of verties in this digraph is at most 4 + 3d + 3h + 4m, where d :=

P

h

i=1

d

i

� 3m.

Also, there are two internally disjoint paths from s to t in D.

To omplete the desription of the instane of 2-shortest paths, it is missing only to desribe the

two length funtions l

1

and l

2

on the ars of D. In l

1

, ars of type 1 have length one, while ars of type 2

have length M := (4+3d+3h+4m)

+1

+1. In l

2

, all ars have length one, but ar st, whose length is M .

Note that the onstrution of D, s, t, l

1

and l

2

takes polynomial time on the size of �.

Claim 3.1 � is satis�able if and only if there are two internally disjoint paths P

1

and P

2

from s to t in

D suh that l

1

(P

1

) + l

2

(P

2

) � 4 + 3d+ 3h+ 4m.

Proof. Assume � is satis�able and onsider an assignment whih satis�es �. Let us desribe two internally

disjoint paths P

1

and P

2

in D from s to t suh that l

1

(P

1

) + l

2

(P

2

) � 4 + 3d+ 3h+ 4m.

Path P

1

starts with ar sv

1

, goes from v

1

to w

h

using only ars in the variable gadgets, then uses ar

w

h

l

1

and goes from l

1

to u

m

using only ars in the lause gadgets. It ends with ar u

m

t. Inside the variable

gadget for x

i

, path P

1

goes through all verties in L

i

if x

i

is true in the assignment or all verties in R

i

if x

i

is false. In the lause gadgets, P

1

goes always through a vertex whose label is a true literal in the

assignment. Note that P

1

uses only type 1 ars. Thus l

1

(P

1

) = 3 + 2d+ 2h+ 2m.

6
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1
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2
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3

)(x

1

_ x

2

_ x

3

). The dashed ars have l

1

equals one,

while the others have l

1

equals M . (b) Paths P

1

and P

2

orresponding to the assignment x

1

= F , x

2

= T

and x

3

= T .

Path P

2

uses only type 2 ars. If x

1

is true (false), it goes from s to the �rst vertex in L

1

(R

1

).

From there, it traverses all verties in L

1

(R

1

) and jumps to L

2

if x

2

is true or to R

2

if x

2

is false and

proeeds in the same way until it gets to the last vertex in R

h

or L

h

. In this traversal, it goes bak and

forth to the lause gadgets through some length-two paths, always using a vertex whose label is a literal

set to false. From the last vertex in L

h

or R

h

, it goes diretly to t. Note that P

2

is indeed internally

disjoint from P

1

, as it uses only type 2 ars. Moreover, l

2

(P

2

) = 1 + d+ h+ 2m.

Therefore l

1

(P

1

) + l

2

(P

2

) = 4 + 3d + 3h + 4m, as desired. See in Figure 3(b) how P

1

and P

2

look like

for the example given in Figure 3(a).

Now assume there are two internally disjoint paths P

1

and P

2

inD from s to t suh that l

1

(P

1

)+l

2

(P

2

) �

4 + 3d + 3h + 4m. Note that P

1

an only use type 1 ars, otherwise l

1

(P

1

) � M > 4 + 3d + 3h + 4m

(the last inequality holds as  � 1). Also, P

2

does not use ar st, as l

2

(st) = M > 4 + 3d + 3h + 4m. As

P

1

uses only type 1 ars, P

1

uses sv

1

, then it goes from v

1

to w

h

using only ars in the variable gadgets,

then it uses w

h

l

1

and goes from l

1

to u

m

inside the lause gadgets, �nishing with u

m

t. Path P

1

annot use

verties both in L

i

and R

i

, otherwise the only path from s to t in D internally disjoint from P

1

onsists of

st. But l

2

(st) =M > 4 + 3d+ 3h+ 4m. Indeed, P

1

must pass by all verties of the variable gadget x

i

not

in L

i

[R

i

and by all unlabeled verties in the lause gadgets. But then, if P

2

uses the �rst vertex in L

i

, it

has no other way exept using all other verties in L

i

. The same holds for R

i

.

Now we are ready to desribe the assignment. Set x

i

to true if and only if P

2

uses verties of L

i

.

Note that P

2

visits all labeled verties in the lause gadgets whose labels were set to false. But path P

1

neessarily uses a labeled vertex in eah lause gadget. The label ~x

i

of this labeled vertex must then be

true, whih means there is a true literal in eah lause. That is, � is satis�able.

7



Now we proeed with the proof of Theorem 1.2. Run algorithm A on the onstruted instane of 2-

shortest paths. The algorithm returns two paths, P

1

and P

2

. If l

1

(P

1

)+l

2

(P

2

) < M then � is satis�able,

otherwise � is not satis�able.

First, note that the above algorithm runs in polynomial-time, as the redution and A take polynomial-

time. Moreover, it solves 3-sat. Indeed, assume l

1

(P

1

) + l

2

(P

2

) � M . As A is an n



-approximation and

n = 4 + 3d + 3h + 4m, the value of an optimal solution for this instane of the 2-shortest paths is

at least M=(4 + 3d + 3h + 4m)



> 4 + 3d + 3h + 4m. By the laim, � is not satis�able. Now, assume

l

1

(P

1

) + l

2

(P

2

) < M . This means P

1

uses no type 2 ar. Any path from s to t in D whih uses no

type 2 ar uses exatly 3 + 2d+ 2h+ 2m ars of type 1, that is, l

1

(P

1

) = 3 + 2d+ 2h + 2m. But then, as

n = 4 + 3d + 3h + 4m, path P

2

uses at most 2 + d + h + 2m verties, that is, l

2

(P

2

) � 2 + d + h + 2m.

Therefore, by the laim, � is satis�able. As 3-sat is solvable in polynomial time only if P = NP, there is

no n



-approximation algorithm for 2-shortest paths unless P = NP.

In fat, it is easy to modify this theorem to show that, for any polynomial-time omputable funtion

f , there is no polynomial-time f(jIj)-approximation algorithm for 2-shortest paths, where I denotes an

arbitrary instane of 2-shortest paths.

Consider the undireted edge/vertex-disjoint versions of the k-shortest paths problem. There are

well-known redutions from the undireted edge-disjoint version to the undireted vertex-disjoint and to

the direted ar/vertex-disjoint versions of the problem. One an modify the proof of the previous theorem

in order to get the following stronger theorem.

Theorem 3.2 For eah onstant , there is no polynomial-time n



-approximation algorithm for the undi-

reted edge-disjoint 2-shortest paths unless P = NP, where n is the number of verties of the given

graph.

4 Inapproximability for ayli digraphs

In this setion we show that if k is non-�xed then the k-shortest paths is hard to approximate, even

restrited to ayli digraphs. The proof of the theorem below is a modi�ation of the proof of Theorem 1.2.

Theorem 1.3 For eah onstant , there is no polynomial-time n



-approximation algorithm for the k-

shortest paths restrited to ayli digraphs unless P = NP, where n is the number of verties of the

given digraph.

Proof. We may assume  � 1. Suppose that there is a polynomial-time n



-approximation algorithm A

for the k-shortest paths on ayli digraph, where n is the number of verties of the given digraph.

Consider the following polynomial-time redution from 3-sat to k-shortest paths.

Let � be an instane of 3-sat, that is, a set fC

1

; : : : ; C

m

g of 3-lauses on variables x

1

; : : : ; x

h

. Let us

desribe an ayli digraph D, two verties s and t and length funtions l

0

; : : : ; l

h

on the ars of D.

Digraph D onsists of verties s; v

0

; : : : ; v

h

; t, ars st, sv

0

, v

h

t and, for eah variable x

i

, two internally

disjoint paths, Q

i

and

�

Q

i

, from v

i�1

to v

i

. Path Q

i

(

�

Q

i

) has as many internal verties as appearanes of

x

i

(x

i

). Additionally, for eah lause C

j

, there are three length-two paths from s to t, eah one having as

middle vertex a vertex labeled by one of the literals in C

j

. This is done in suh a way that no two of these

paths share the middle vertex. See Figure 4 for an example.

Let M := (3+ 3m+ h)



(2 +3m+3h) + 1. For eah C

j

, set l

j

(e) := 1 if e is one of the ars in the three

length-two paths added for C

j

and set l

j

(e) := M otherwise. Set l

0

(e) := 1 if e = sv

0

or e = v

h

t or e is

in path Q

i

or

�

Q

i

for some i. Otherwise set l

0

(e) := M . This ompletes the desription of the instane of

k-shortest paths. Observe that D is ayli and that there are k internally disjoint paths from s to t in

D. Also, observe that D, s, t and l

0

; : : : ; l

h

an be onstruted in polynomial time.

Claim 4.1 � is satis�able if and only if there are internally disjoint paths P

0

; : : : ; P

h

from s to t in D

8
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1
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2

_ x
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)(x
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2

_ x

3

).

suh that l

0

(P

0

) + � � �+ l

h

(P

h

) � 2 + 3m+ 3h.

Proof. Assume � is satis�able and onsider an assignment whih satis�es �. Let P

0

be the path starting

with ar sv

0

, ending with ar v

h

t, and using Q

i

, if x

i

is false, or

�

Q

i

, if x

i

is true, for eah i. Note that eah

labeled vertex in P

0

has as label a literal that is false in the assignment. Moreover, l

0

(P

0

) � 2 + 3m+ h.

For eah lause C

j

, let P

j

be one among the three paths for C

j

that use a vertex whose label is a literal set

to true in the assignment. There is one suh path beause the assignment satis�es �. Paths P

0

; : : : ; P

h

are suh that l

0

(P

0

) + � � �+ l

h

(P

h

) � 2 + 3m+ 3h.

Suppose now that there are internally disjoint paths P

0

; : : : ; P

h

from s to t in D suh that l

0

(P

0

)+ � � �+

l

h

(P

h

) � 2 + 3m + 3h. Note that M > 2 + 3m + 3h, beause  � 1. Therefore, P

0

; : : : ; P

h

use only ars

whose length is one in their respetive length funtions. In partiular, P

0

uses neessarily ars sv

0

and v

h

t

and passes by verties v

1

; : : : ; v

h�1

. To go from v

i�1

to v

i

, path P

0

uses either Q

i

or

�

Q

i

. Set variable x

i

to true if P

0

uses

�

Q

i

and set x

i

to false if P

0

uses path Q

i

. For eah C

j

, path P

j

has to be one of the

length-two paths for C

j

. Let ~x

i

be the label of the middle in P

j

. If P

0

uses Q

i

, then ~x

i

= x

i

(or P

j

and P

0

would not be internally disjoint). If P

0

uses

�

Q

i

, then ~x

i

= x

i

. In both ases, ~x

i

is true in the assignment

and therefore this assignment satis�es C

j

, for all j.

To omplete the proof of Theorem 1.3, it is enough to desribe how to use algorithm A to get a

polynomial-time algorithm for 3-sat. Just run algorithm A on the onstruted instane of k-shortest

paths. It returns paths P

0

; : : : ; P

h

. If l

0

(P

0

) + � � � + l

h

(P

h

) < M , then � is satis�able, otherwise �

is not satis�able. The resulting algorithm is learly polynomial and solves 3-sat. Indeed, assume that

l

0

(P

0

) + � � � + l

h

(P

h

) � M . Algorithm A is an n



-approximation, where n is the number of verties of D,

that is, n = 3 + 3m + h. Therefore, the value of an optimal solution for this instane of the k-shortest

paths is at least M=(3 + 3m + h)



> 2 + 3m + 3h. By the laim, � is not satis�able. Now, assume

l

0

(P

0

) + � � � + l

h

(P

h

) < M . This means P

0

uses neither st nor ars in the paths of the lauses. Therefore

P

0

uses ars sv

0

and v

h

t and, for eah i, uses either Q

i

or

�

Q

i

. Thus l

0

(P

0

) � 2 + 3m + h. Also, eah

path P

j

has to be one of the paths for lause C

j

, otherwise l

j

(P

j

) � M . Hene l

j

(P

j

) = 2, for all j, and

l

0

(P

0

) + � � �+ l

h

(P

h

) � 2 + 3m+ 3h. By the laim, � is satis�able.

This theorem also holds for any polynomial-time omputable funtion f : there is no polynomial-time

f(jIj)-approximation algorithm for k-shortest paths in ayli digraphs. Here, I denotes an arbitrary

instane of k-shortest paths in ayli digraphs.
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5 Minimizing sum of lengths

Consider the following shortest disjoint paths problem:

given : { an undireted planar graph G = (V;E), embedded in R

2

;

{ pairs fs

1

; t

1

g; : : : ; fs

k

; t

k

g of verties on the boundary of G;

{ a non-negative funtion l on the edges of G;

�nd : { pairwise vertex-disjoint paths P

1

; : : : ; P

k

in G where P

i

is an s

i

-t

i

-path,

for eah i = 1; : : : ; k, and l(P

1

) + � � � + l(P

k

) is as small as possible.

We denote this problem by sdp(G; fs

1

; t

1

g; : : : ; fs

k

; t

k

g), or simply by sdp, when the instane is lear from

the ontext.

If the verties s

1

; : : : ; s

k

; t

k

; : : : ; t

1

our in this order when following the boundary of G, then sdp an

be seen as a partiular ase of the min-ost ow problem. Indeed, from G, we onstrut a digraph D by

splitting eah vertex v of G into two verties v

+

and v

�

, joined by an ar (v

�

; v

+

) of ost zero. An edge

vw of G beomes ars (v

+

; w

�

) and (w

+

; v

�

) of D, both of ost l(vw). In addition, D has verties s, t and

ars (s; s

�

i

), (t

+

i

; t), for i = 1; : : : ; k, of ost zero. Solving sdp is equivalent to �nding a maximum s-t-ow

of minimum ost in D, with eah ar having apaity one. Hene, in this partiular ase, sdp an be solved

in polynomial time.

A graph G = (V [fg; E) is alled a wheel if G� is a iruit and fv; g 2 E for eah v in V . Gr�otshel,

Martin and Weismantel [4℄ showed that if G = (V [ fg; E) is a wheel and s

1

; t

1

; : : : ; s

k

; t

k

our in this

order when following the iruit G �  then the edge-disjoint version of sdp an be solved in polynomial

time. Moreover, Gr�otshel, Martin and Weismantel gave a omplete desription of the path paking polytope

(the onvex hull of inident vetors of sets E

0

� E, suh that G[E

0

℄ is a paking of edge-disjoint s

i

-t

i

-paths

in G).

Using dynami programming, we show that, also in the following ase, sdp an be solved in polynomial

time:

k is �xed and the verties s

1

; t

1

; : : : ; s

k

; t

k

our in this

order when following the boundary of G.

(6)

We assume that sdp is feasible (this an be tested in linear time) and that G is 2-onneted.

We shall use the following notation. If P is a path and u; v are verties in P then P (u; v) is the subpath

of P onneting u to v. We denote by Q

i

a shortest s

i

-t

i

-path. Let R

i

be the subgraph of G indued by

the verties in the losed region bounded by the path Q

i

and the path on the boundary of G from s

i

to

t

i

ontaining no other s

j

or t

j

(i = 1; : : : ; k). Also, let Q

i;j

:= R

i

\ R

j

. By shortut arguments, we may

assume that Q

i;j

is either a path or empty, for i 6= j. Figure 5 illustrates the notation. There, P

1

; P

2

; P

3

are paths of an optimal solution.

Let G, fs

1

; t

1

g; : : : ; fs

k

; t

k

g and l be an instane of sdp with the property that s

1

; t

1

; : : : ; s

k

; t

k

our

in this order when following the boundary of G. Observe that sdp has an optimal solution P

1

; : : : ; P

k

so

that P

i

is entirely ontained in the region R

i

(i = 1; : : : ; k).

Consider some i and j with i 6= j. Let Q

i;j

:= (v

0

; e

1

; v

1

; : : : ; e

d

; v

d

). We all (f; h) a possible hoie

(for (i; j)) if f = h = nil or f = v

p

and h = v

q

for some p; q satisfying 0 � p � q � d. We say that

(f; h; f

0

; h

0

) is a feasible hoie (for (i; j)) if (f; h) and (f

0

; h

0

) are possible hoies and if f 6= nil 6= f

0

implies ff; hg \ ff

0

; h

0

g = ;. For eah feasible hoie (f; h; f

0

; h

0

), let

G

i;j;f;h;f

0

;h

0

:= G[V (R

i

) n (V (Q

i;j

) n V (Q

i;j

(f; h)))℄

[ G[V (R

j

) n (V (Q

i;j

) n V (Q

i;j

(f

0

; h

0

)))℄;

where Q

i;j

(nil,nil) := ;. Finally, we say that a sequene

((f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) : 1 � i < j � k)

10
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Figure 5: Illustration of the de�nitions.

is an aeptable hoie provided that (f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) is a feasible hoie for eah (i; j), for all 1 � i <

j � k.

Our dynami programming approah is based on the following optimality riterion:

Let P

1

; : : : ; P

k

be an optimal solution to sdp and let f

i

; h

i

; f

j

; h

j

be the �rst and last verties

of Q

i;j

in P

i

and in P

j

, respetively, for some i, j with 1 � i < j � k. Then P

i

(f

i

; h

i

); P

j

(f

j

; h

j

)

is an optimal solution to sdp(G

i;j;f

i

;h

i

;f

j

;h

j

; ff

i

; h

i

g; ff

j

; h

j

g) (see Figure 6).

1
3h

3
f

f
1

h

3

G1,3, , , ,f
1 1h f

3 h3

t
1

s
3

s
1

3
t

R1

R3
Q1,2

Q

Q

1P
P3

1,3
Q

2,3

Figure 6: Illustration of the optimality ondition for sdp.

The algorithm onsists of �rst omputing, for eah (i; j), with 1 � i < j � k, and for eah feasible

hoie (f; h; f

0

; h

0

) for (i; j), a solution P

i;j;f;h;f

0

;h

0

; P

j;i;f;h;f

0

;h

0

to sdp(G

i;j;f;h;f

0

;h

0

; ff; hg; ff

0

; h

0

g), where,

P

i;j;nil;nil;f

0

;h

0

:= ; and P

j;i;f;h;nil;nil

:= ;). Now, we enumerate all aeptable hoies

A := ((f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) : i; j = 1; : : : ; k; i < j)

(so, (f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) is a feasible hoie for all (i; j) with 1 � i < j � k) and we ompute P

A

1

; : : : ; P

A

k

,

where P

A

i

is a shortest s

i

-t

i

-path in

G[(V (R

i

) n V (Q

i;j

)) [ ([

i 6=j

V (P

i;j;f

i;j

;h

i;j

;f

0

i;j

;h

0

i;j

))℄ (i = 1; : : : ; k);

11



if there exists any.

The algorithm returns, for some aeptable hoie A

�

, vertex-disjoint paths P

A

�

1

; : : : ; P

A

�

k

so that,

P

k

i=1

l(P

A

�

i

) = minf

P

k

i=1

l(P

A

i

) j A is an aeptable hoieg:

Theorem 5.1 If s

1

; t

1

; : : : ; s

k

; t

k

our in this order when following the boundary of G then, for eah

�xed k, sdp an be solved in polynomial time.

Proof. Any solution P

1

; : : : ; P

k

to sdp suh that P

i

is a subgraph of R

i

indues an aeptable hoie to

sdp. (For eah (i; j) with i < j, we de�ne (f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) as the �rst and last verties of Q

i;j

in P

i

and P

j

, respetively. If the path Q

i;j

does not meet, say, P

i

then f

i;j

:= h

i;j

:= nil.) Sine by shortut

arguments there exists at least one suh a solution, it follows that the algorithm generates and returns a

solution to sdp.

One sees that sdp(G

i;j;f;h;f

0

;h

0

; ff; hg; ff

0

; h

0

g) an be solved in polynomial time, as (if f 6= nil 6= f

0

)

f; h; f

0

; h

0

are verties on the boundary of G

i;j;f;h;f

0

;h

0

. Thus, in order to show polynomiality, it remains to

verify that the number of aeptable hoies is polynomially bounded. Indeed,

jfQ

i;j

j i < j and Q

i;j

6= ;gj = O(k

2

)

and there exist O(n

4

) feasible hoies for eah (i; j). Hene, there are O(n

4k

2

) aeptable hoies.

Remark. Using similar tehniques one an prove that if s

1

; t

1

; : : : ; s

k

; t

k

our in this order when following

the boundary of G then the edge-disjoint version of sdp is polynomially solvable for eah �xed k. It an

also be proved that if, in addition, ji� jj > 1 implies Q

i;j

= ;, then sdp an be solved in polynomial time

(here k does not need to be �xed).
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