
Multilength Single Pair Shortest Disjoint Paths

�

Cristina G. Fernandes

1 y

Hein van der Holst

2 z

Jos�e Coelho de Pina

1

1

Instituto de Matem�ati
a e Estat��sti
a

2

Fa
hberei
h Mathematik und Informatik,

Universidade de S~ao Paulo - Brazil Freie Universit�at Berlin,

Rua do Mat~ao 1010, 05508-090 S~ao Paulo/SP, Brazil Arnimallee 2{6, D-14195 Berlin, Germany

E-mail: f
ris,
oelhog�ime.usp.br E-mail: hvdholst�math.fu-berlin.de

Topi
s: algorithms and 
omputational 
omplexity.

Abstra
t

The k-shortest paths problem 
onsists of: given a digraph D, a pair (s; t) of verti
es of D and k

non-negative fun
tions l

1

; : : : ; l

k

on the ar
s of D, �nd k internally vertex-disjoint paths P

1

; : : : ; P

k

from

s to t su
h that l

1

(P

1

)+ � � �+ l

k

(P

k

) is as small as possible. We des
ribe, for ea
h �xed k, a polynomial-

time algorithm for the k-shortest paths restri
ted to a
y
li
 digraphs. We prove two 
omplexity

results: unless P = NP, for ea
h 
onstant 
, there is no polynomial-time n




-approximation algorithm

(1) for the 2-shortest paths, where n is the number of verti
es of D, and (2) for the k-shortest

paths restri
ted to a
y
li
 digraphs. We also show a polynomial-time algorithm for a multi
ommodity

variation of the problem in planar graphs.
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1 Introdu
tion

The well-known single pair shortest path problem 
onsists of: given a digraph D, a non-negative fun
tion

l on the ar
s of D and two verti
es s and t, �nd a path P from s to t that minimizes l(P ), where l(P )

denotes the sum of l(e) over all ar
s e in P . This problem is solvable in polynomial time. We address the

following generalization of the single pair shortest path problem, whi
h we 
all k-shortest paths:

given : { a digraph D = (V;A);

{ a pair (s; t) of verti
es of D;

{ non-negative fun
tions l

1

; : : : ; l

k

on the ar
s of D;

�nd : { k internally vertex-disjoint paths P

1

; : : : ; P

k

from s to t su
h that

l

1

(P

1

) + � � �+ l

k

(P

k

)

is as small as possible.

For l

1

= : : : = l

k

the k-shortest paths redu
es to the min-
ost 
ow problem and, therefore, 
an be solved

in polynomial time.

We 
onsider �rst the problem on a
y
li
 digraphs. Algorithms for �nding ar
-disjoint paths in a
y
li


digraphs have appli
ations on s
heduling problems [1℄ and air
raft assignment problems [7℄. We reformulate

the k-shortest paths in a
y
li
 digraphs in terms of �nding a shortest path in a (large) a
y
li
 digraph.

This is a known reformulation due to Perl and Shiloa
h [6℄ for �nding two vertex-disjoint paths in an a
y
li


digraph. Later this was extended by Fortune, Hop
roft and Wyllie [3℄ in order to derive a polynomial-time

algorithm for the k vertex-disjoint paths problem in a
y
li
 digraphs (see also S
hrijver [7℄). From this

reformulation, we derive the theorem below.

Theorem 1.1 For ea
h �xed k, there exists a polynomial-time algorithm for the k-shortest paths re-

stri
ted to a
y
li
 digraphs.

We also prove the following inapproximability result, whi
h shows that the problem be
omes mu
h

harder on general digraphs, even if k = 2.

Theorem 1.2 For ea
h 
onstant 
, there is no polynomial-time n




-approximation algorithm for the 2-

shortest paths unless P = NP, where n is the number of verti
es of the given digraph.

With respe
t to the intra
tability and inapproximabity of the problem in a
y
li
 digraphs, we show the

following theorem.

Theorem 1.3 For ea
h 
onstant 
, there is no polynomial-time n




-approximation algorithm for the k-

shortest paths restri
ted to a
y
li
 digraphs unless P = NP, where n is the number of verti
es of the

given digraph.

Theorems 1.2 and 1.3 show that the result in Theorem 1.1 is tight in the sense that it does not hold,

unless P = NP, if we drop either the restri
tion on k being �xed or on D being a
y
li
. Surprisingly, the

problem be
omes mu
h harder if we drop any of these restri
tions.

We 
onsider also a variant of the problem in undire
ted graphs, with multiple pairs of terminals. For

this variant, we present a polynomial-time algorithm for the 
ase where all length fun
tions are the same,

the given graph is planar and the terminals lie on the boundary of the same fa
e in an adequate order.
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2 Disjoint paths in a
y
li
 digraphs

In order to prove Theorem 1.1, we 
onsider the following disjoint paths problem:

given : { a dire
ted graph D = (V;A);

{ pairs (s

1

; t

1

); : : : ; (s

k

; t

k

) of verti
es of D;

{ subsets A

1

; : : : ; A

k

of A;

{ a set H of pairs fi; jg from f1; : : : ; kg;

�nd : { paths P

1

; : : : ; P

k

in D su
h that:

(i) P

i

is an s

i

-t

i

-path in D[A

i

℄ (i = 1; : : : ; k);

(ii) P

i

and P

j

are vertex-disjoint for fi; jg in H.

(1)

Fortune, Hop
roft and Wyllie [3℄ showed that this disjoint paths problem is NP-hard even for k = 2,

A

1

= A

2

= A and H = ff1; 2gg. A

ording to Even, Itai and Shamir [2℄, problem (1) is also NP-hard for

a
y
li
 digraphs. In fa
t, problem (1) is NP-hard even for a �xed a
y
li
 digraph, as noted by Alexander

S
hrijver. At the end of this se
tion, we in
lude the proof of this unpublished and surprising result.

We prove in the next theorem that problem (1) is polynomially solvable for instan
es satisfying the

following 
ondition:

There exists no dire
ted 
y
le C = P

j

0

� P

j

1

� � � � � P

j

t

in D su
h that:

(i) P

j

i

is a path from u

i

to u

i+1

in D[A

j

i

℄, u

i

6= t

j

i

(i = 0; : : : ; t),

where u

t+1

= u

0

;

(ii) fj

0

; j

1

g; : : : ; fj

t�1

; j

t

g; fj

t

; j

0

g belong to H.

(2)

If P and Q are paths then P �Q denotes the path obtained by the 
on
atenation of P and Q. Note that any

a
y
li
 digraph satis�es the 
ondition above. This theorem is a slight generalization of a result by Fortune,

Hop
roft and Wyllie [3℄. They showed that, for ea
h �xed k, the problem of �nding k vertex-disjoint paths

in an a
y
li
 digraph is polynomially solvable.

Theorem 2.1 For ea
h �xed k, there exists a polynomial-time algorithm for the disjoint paths problem

(1) for instan
es satisfying (2).

Proof. The proof is a minor modi�
ation of S
hrijver's proof [7℄ of Fortune, Hop
roft and Wyllie's k

vertex-disjoint paths theorem [3, 8℄. We in
lude it here for the sake of 
ompleteness.

Consider an instan
e of problem (1), that is, a digraph D, pairs (s

1

; t

1

); : : : ; (s

k

; t

k

) of verti
es of D,

subsets A

1

; : : : ; A

k

of ar
s of D and a set H of pairs fi; jg from f1; : : : ; kg. Make an auxiliary digraph

D

0

= (V

0

; A

0

) as follows. The vertex set V

0


onsists of all k-tuples (v

1

; : : : ; v

k

) of verti
es of D su
h that

v

i

6= v

j

for all fi; jg in H. There is an ar
 in D

0

from (v

1

; : : : ; v

k

) to (w

1

; : : : ; w

k

) if and only if there exists

an i in f1; : : : ; kg su
h that:

(i) v

j

= w

j

for all j 6= i;

(ii) (v

i

; w

i

) is an ar
 of A

i

;

(iii) if j 6= i, fi; jg 2 H and v

j

6= t

j

, there is no path in D[A

j

℄ from v

j

to v

i

.

(3)

Note that, as k is �xed, the size of D

0

is polynomially bounded on the size of D. Moreover, the following

holds:

D 
ontains paths P

1

; : : : ; P

k

su
h that P

i

is an s

i

-t

i

-path in D[A

i

℄ (i = 1; : : : ; k)

and P

i

and P

j

are vertex-disjoint for fi; jg in H

if and only if

D

0


ontains a path P from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

).

(4)

Suppose that P

1

; : : : ; P

k

exist. For any i, let P

i

follow the verti
es v

i;0

; v

i;1

; : : : ; v

i;t

i

. So v

i;0

= s

i

and

v

i;t

i

= t

i

for ea
h i. Choose j

1

; : : : ; j

k

su
h that 0 � j

i

� t

i

for ea
h i and su
h that:
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(i) D

0


ontains a path from (s

1

; : : : ; s

k

) to (v

1;j

1

; : : : ; v

k;j

k

), and

(ii) j

1

+ � � �+ j

k

is as large as possible.

Let I := fi j j

i

< t

i

g. Let us prove by 
ontradi
tion that I = ;. Suppose I 6= ;. By the de�nition of

D

0

and the maximality of j

1

+ � � � + j

k

, for ea
h i in I, there exists an i

0

6= i su
h that there is a path in

D[A

i

0

℄ from v

i

0

;j

i

0

to v

i;j

i

, with v

i

0

;j

i

0

6= t

i

0

and fi

0

; ig in H. So, for i in I, ea
h vertex v

i;j

i

is an endpoint of

a path in D[A

i

0

℄ starting at another vertex v

i

0

;j

i

0

6= t

j

i

0

, with i

0

in I and fi; i

0

g in H. This 
ontradi
ts (2),

so I = ;, that is, j

i

= t

i

for all i, in whi
h 
ase we are done.

Conversely, let P be a path from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

) inD

0

. Let P follow the verti
es (v

1;j

; : : : ; v

k;j

)

for j = 0; : : : ; t: So v

i;0

= s

i

for i = 1; : : : ; k: For ea
h i = 1; : : : ; k, let P

i

be the path in D following v

i;j

for j = 0; : : : ; t, taking repeated verti
es only on
e. So P

i

is an s

i

-t

i

-path in D[A

i

℄. Moreover, P

i

and P

j

are vertex-disjoint for ea
h fi; jg in H. Indeed, suppose P

1

and P

2

(say) have a vertex in 
ommon, where

f1; 2g belongs to H, that is, v

1;j

= v

2;j

0

for some j 6= j

0

. Without loss of generality, j < j

0

and v

1;j

6= v

1;j+1

.

By the de�nition of D

0

, there is no path in D[A

2

℄ from v

2;j

to v

1;j

. This however 
ontradi
ts the fa
t that

v

1;j

= v

2;j

0

and that there exists a path in D[A

2

℄ from v

2;j

to v

2;j

0

.

Therefore, to solve problem (1), it is enough to �nd a path in D

0

from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

), whi
h


an be done in polynomial time.

The ar
-disjoint version of the disjoint paths problem (1) 
onsists of repla
ing (ii) in (1) by:

P

i

and P

j

are ar
-disjoint for fi; jg in H. (5)

This ar
-disjoint paths problem 
an be reformulated in terms of the disjoint paths problem (1). Indeed,

let an instan
e of the ar
-disjoint paths problem be given, that is, a digraph D = (V;A), pairs of verti
es

(s

1

; t

1

); : : : ; (s

k

; t

k

), ar
 sets A

1

; : : : ; A

k

and a set H of pairs fi; jg from f1; : : : ; kg. We may assume that

ea
h s

i

is the tail of a unique ar
 a

i

of D and that t

i

is the head of a unique ar
 b

i

of D (i = 1; : : : ; k).

We make a digraph D

0

= (V

0

; A

0

) as follows. The vertex set of D

0

is the ar
 set A of D (i.e. V

0

:= A).

There is an ar
 in D

0

from a to b if the head of a and the tail of b 
oin
ide. For i = 1; : : : ; k, we de�ne

A

0

i

:= f(a; b) 2 A

0

j a; b 2 A

i

g. Finally we take H

0

:= H.

Finding paths P

1

; : : : ; P

k

in D satisfying (5) su
h that P

i

is an s

i

-t

i

-path in D[A

i

℄ (i = 1; : : : ; k) is

equivalent to the problem of �nding paths P

0

1

; : : : ; P

0

k

in D

0

satisfying (ii) of (1) su
h that P

0

i

is an a

i

-b

i

-

path in D

0

[A

0

i

℄ (i = 1; : : : ; k). Hen
e, the ar
-disjoint version of problem (1) is polynomially solvable for

instan
es satisfying a 
ondition similar to 
ondition (2).

Now, suppose that, for an instan
e of problem (1), one is given also non-negative fun
tions l

1

; : : : ; l

k

on

the ar
s of D. Then it is possible to �nd in polynomial time a solution P

1

; : : : ; P

k

of problem (1) su
h that

P

k

i=1

l

i

(P

i

) is as small as possible. Just de�ne a length fun
tion on the ar
s of D

0

(the digraph from the

proof of Theorem 2.1) as follows. The length of an ar
 of D

0

from (v

1

; : : : ; v

k

) to (w

1

; : : : ; w

k

) satisfying

(3) is l

i

(v

i

; w

i

). Now, a shortest path from (s

1

; : : : ; s

k

) to (t

1

; : : : ; t

k

) in D

0

with this length fun
tion on its

ar
s gives the desired paths. As the shortest path problem in an a
y
li
 digraph with arbitrary length on

its ar
s 
an be solved in linear time, we have Theorem 1.1.

Theorem 1.1 For ea
h �xed k, there exists a polynomial-time algorithm for the k-shortest paths re-

stri
ted to a
y
li
 digraphs.

We 
on
lude this se
tion with the proof of S
hrijver's result on the 
omplexity of problem (1).

Theorem 2.2 (A. S
hrijver) The disjoint paths problem (1) restri
ted to instan
es having the digraph

in Figure 1 as input is NP-hard.

Proof. Consider the following transformation of planar 3-
olorability to problem (1) restri
ted to

instan
es having the a
y
li
 digraph displayed in Figure 1 as input. A k-
oloring of a graph G = (V;E)

is a fun
tion f from V to f1; : : : ; kg su
h that f(u) 6= f(v) whenever fu; vg belongs to E. Graph G is
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k-
olorable if G has a k-
oloring. The planar 3-
olorability problem 
onsists of: given: a planar

graph G = (V;E); question: is G 3-
olorable? planar 3-
olorability was shown to be NP-
omplete by

Sto
kmeyer [9℄.

u u u u

w1

1

w

1c c c2 3

4w w

2

2

3

3

4

Figure 1: Problem (1) is NP-hard for instan
es having this a
y
li
 digraph as input.

Let us be given a planar graph G = (V;E) with V = fv

1

; : : : ; v

k

g and let f

0

be a 4-
oloring of G. This

fun
tion f

0


an be 
omputed in polynomial time (see, for instan
e, Nishizeki and Chiba [5℄). We 
onstru
t

an instan
e of problem (1) depending on G and f

0

as follows. Let H := ffi; jg j fv

i

; v

j

g 2 Eg and, for

i = 1; : : : ; k, let s

i

:= u

f

0

(v

i

)

, t

i

:= w

f

0

(v

i

)

and A

i

be the set of all ar
s of the digraph in Figure 1. We


laim that G is 3-
olorable if and only if the 
onstru
ted instan
e of problem (1) is feasible. Suppose G is

3-
olorable and let f be a 3-
oloring of G. For i = 1; : : : ; k, let P

i

be the path from s

i

to t

i

that traverses




f(v

i

)

. One 
an 
he
k that P

1

; : : : ; P

k

is a solution to the problem (1). Conversely, let P

1

; : : : ; P

k

be a

solution to the disjoint paths problem (1) and de�ne f from V to f1; 2; 3g su
h that, for i = 1; : : : ; k, the

path P

i

from s

i

to t

i

traverses the vertex 


f(v

i

)

. One 
an verify that f is a 3-
oloring of G.

3 Inapproximability for the 2-shortest paths

In this se
tion we analyze the 
omplexity of the 2-shortest paths problem. Spe
i�
ally, we prove

Theorem 1.2.

Theorem 1.2 For ea
h 
onstant 
, there is no polynomial-time n




-approximation algorithm for the 2-

shortest paths unless P = NP, where n is the number of verti
es of the given digraph.

Proof. We may assume 
 � 1. Suppose that there is a polynomial-time n




-approximation algorithm A

for the 2-shortest paths, where n is the number of verti
es of the given digraph. Let us show that, if

this is the 
ase, we 
an solve 3-sat in polynomial time, whi
h implies that P = NP. For this, 
onsider the

following polynomial-time redu
tion from 3-sat to 2-shortest paths.

Let � be an instan
e of 3-sat, that is, a set fC

1

; : : : ; C

m

g of 3-
lauses on variables x

1

; : : : ; x

h

. Let us

des
ribe a digraph D, two length fun
tions l

1

and l

2

on the ar
s of D and two verti
es s and t.

For ea
h variable x

i

, denote by d

i

the largest between the number of times x

i

appears in � and the

number of times that x

i

appears in �. There is a gadget as in Figure 2(a) for ea
h x

i

. The number of

undire
ted four-
y
les in the gadget is d

i

+ 1. The sour
e vertex in the gadget is 
alled v

i

and the sink

vertex, w

i

. The verti
es of in-degree one in the gadget are partitioned into two sets: L

i

and R

i

, as in

Figure 2(a).

For ea
h 
lause C

j

, there is a gadget as in Figure 2(b). The sink and sour
e verti
es are 
alled u

j

and

l

j

respe
tively. Ea
h of the other verti
es has as label one of the literals in 
lause C

j

.

The digraph of the instan
e of 2-shortest paths is obtained as follows. First, we 
onne
t the gadgets of

all variables and 
lauses in series, identifyingw

i

and v

i+1

(i = 1; : : : ; n�1) and u

j

and l

j+1

(j = 1; : : : ;m�1).

Then, we add an ar
 from s to v

1

, one from w

h

to l

1

and one from u

m

to t. The ar
s we have up to now

5



(a) (c)

(b)

s
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x

1
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1

x
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x

3

x

3

x

3

x

2

x

2

x

2

x

2

l

j

u

j

C

1

C

2

v

i

w

i

L

i

R

i

Figure 2: (a) The gadget for variable x

i

. One, between x

i

or x

i

, appears three times in �, while the other

appears at most three times. (b) The gadget for 
lause C

j

= fx

1

; x

2

; x

3

g. (
) Ar
s of type 1 of the digraph

built from � = (x

1

_ x

2

_ x

3

)(x

1

_ x

2

_ x

3

).

are said to be of type 1. See Figure 2(
). Se
ond, we add three ar
s from s: one to t, one to the �rst vertex

in L

1

and another to the �rst vertex in R

1

. Similarly, we add two ar
s to t: one from the last vertex in

L

h

and one from the last vertex in R

h

. For ea
h two 
onse
utive verti
es in L

i

, we add a path from the

upper one to the lower one, of length one or two. When the path has length two, the middle vertex is one

of the verti
es labeled x

i

in the 
lause gadgets. The same holds for R

i

with x

i

in the pla
e of x

i

. This is

done in su
h a way that any labeled vertex is in exa
tly one of these two-length paths. Finally, there are

also ar
s from the last vertex in L

i

and from the last vertex in R

i

to both, the �rst vertex in L

i+1

and the

�rst vertex in R

i+1

(i = 1; : : : ; n� 1). The ar
s added in this se
ond phase are said to be of type 2. This

�nishes the des
ription of the digraph D and verti
es s and t. See Figure 3(a) for a 
omplete example.

Note that the number of verti
es in this digraph is at most 4 + 3d + 3h + 4m, where d :=

P

h

i=1

d

i

� 3m.

Also, there are two internally disjoint paths from s to t in D.

To 
omplete the des
ription of the instan
e of 2-shortest paths, it is missing only to des
ribe the

two length fun
tions l

1

and l

2

on the ar
s of D. In l

1

, ar
s of type 1 have length one, while ar
s of type 2

have length M := (4+3d+3h+4m)


+1

+1. In l

2

, all ar
s have length one, but ar
 st, whose length is M .

Note that the 
onstru
tion of D, s, t, l

1

and l

2

takes polynomial time on the size of �.

Claim 3.1 � is satis�able if and only if there are two internally disjoint paths P

1

and P

2

from s to t in

D su
h that l

1

(P

1

) + l

2

(P

2

) � 4 + 3d+ 3h+ 4m.

Proof. Assume � is satis�able and 
onsider an assignment whi
h satis�es �. Let us des
ribe two internally

disjoint paths P

1

and P

2

in D from s to t su
h that l

1

(P

1

) + l

2

(P

2

) � 4 + 3d+ 3h+ 4m.

Path P

1

starts with ar
 sv

1

, goes from v

1

to w

h

using only ar
s in the variable gadgets, then uses ar


w

h

l

1

and goes from l

1

to u

m

using only ar
s in the 
lause gadgets. It ends with ar
 u

m

t. Inside the variable

gadget for x

i

, path P

1

goes through all verti
es in L

i

if x

i

is true in the assignment or all verti
es in R

i

if x

i

is false. In the 
lause gadgets, P

1

goes always through a vertex whose label is a true literal in the

assignment. Note that P

1

uses only type 1 ar
s. Thus l

1

(P

1

) = 3 + 2d+ 2h+ 2m.

6
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Figure 3: (a) Digraph built from � = (x

1

_ x

2

_ x

3

)(x
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_ x

2

_ x

3

). The dashed ar
s have l

1

equals one,

while the others have l

1

equals M . (b) Paths P

1

and P

2


orresponding to the assignment x

1

= F , x

2

= T

and x

3

= T .

Path P

2

uses only type 2 ar
s. If x

1

is true (false), it goes from s to the �rst vertex in L

1

(R

1

).

From there, it traverses all verti
es in L

1

(R

1

) and jumps to L

2

if x

2

is true or to R

2

if x

2

is false and

pro
eeds in the same way until it gets to the last vertex in R

h

or L

h

. In this traversal, it goes ba
k and

forth to the 
lause gadgets through some length-two paths, always using a vertex whose label is a literal

set to false. From the last vertex in L

h

or R

h

, it goes dire
tly to t. Note that P

2

is indeed internally

disjoint from P

1

, as it uses only type 2 ar
s. Moreover, l

2

(P

2

) = 1 + d+ h+ 2m.

Therefore l

1

(P

1

) + l

2

(P

2

) = 4 + 3d + 3h + 4m, as desired. See in Figure 3(b) how P

1

and P

2

look like

for the example given in Figure 3(a).

Now assume there are two internally disjoint paths P

1

and P

2

inD from s to t su
h that l

1

(P

1

)+l

2

(P

2

) �

4 + 3d + 3h + 4m. Note that P

1


an only use type 1 ar
s, otherwise l

1

(P

1

) � M > 4 + 3d + 3h + 4m

(the last inequality holds as 
 � 1). Also, P

2

does not use ar
 st, as l

2

(st) = M > 4 + 3d + 3h + 4m. As

P

1

uses only type 1 ar
s, P

1

uses sv

1

, then it goes from v

1

to w

h

using only ar
s in the variable gadgets,

then it uses w

h

l

1

and goes from l

1

to u

m

inside the 
lause gadgets, �nishing with u

m

t. Path P

1


annot use

verti
es both in L

i

and R

i

, otherwise the only path from s to t in D internally disjoint from P

1


onsists of

st. But l

2

(st) =M > 4 + 3d+ 3h+ 4m. Indeed, P

1

must pass by all verti
es of the variable gadget x

i

not

in L

i

[R

i

and by all unlabeled verti
es in the 
lause gadgets. But then, if P

2

uses the �rst vertex in L

i

, it

has no other way ex
ept using all other verti
es in L

i

. The same holds for R

i

.

Now we are ready to des
ribe the assignment. Set x

i

to true if and only if P

2

uses verti
es of L

i

.

Note that P

2

visits all labeled verti
es in the 
lause gadgets whose labels were set to false. But path P

1

ne
essarily uses a labeled vertex in ea
h 
lause gadget. The label ~x

i

of this labeled vertex must then be

true, whi
h means there is a true literal in ea
h 
lause. That is, � is satis�able.

7



Now we pro
eed with the proof of Theorem 1.2. Run algorithm A on the 
onstru
ted instan
e of 2-

shortest paths. The algorithm returns two paths, P

1

and P

2

. If l

1

(P

1

)+l

2

(P

2

) < M then � is satis�able,

otherwise � is not satis�able.

First, note that the above algorithm runs in polynomial-time, as the redu
tion and A take polynomial-

time. Moreover, it solves 3-sat. Indeed, assume l

1

(P

1

) + l

2

(P

2

) � M . As A is an n




-approximation and

n = 4 + 3d + 3h + 4m, the value of an optimal solution for this instan
e of the 2-shortest paths is

at least M=(4 + 3d + 3h + 4m)




> 4 + 3d + 3h + 4m. By the 
laim, � is not satis�able. Now, assume

l

1

(P

1

) + l

2

(P

2

) < M . This means P

1

uses no type 2 ar
. Any path from s to t in D whi
h uses no

type 2 ar
 uses exa
tly 3 + 2d+ 2h+ 2m ar
s of type 1, that is, l

1

(P

1

) = 3 + 2d+ 2h + 2m. But then, as

n = 4 + 3d + 3h + 4m, path P

2

uses at most 2 + d + h + 2m verti
es, that is, l

2

(P

2

) � 2 + d + h + 2m.

Therefore, by the 
laim, � is satis�able. As 3-sat is solvable in polynomial time only if P = NP, there is

no n




-approximation algorithm for 2-shortest paths unless P = NP.

In fa
t, it is easy to modify this theorem to show that, for any polynomial-time 
omputable fun
tion

f , there is no polynomial-time f(jIj)-approximation algorithm for 2-shortest paths, where I denotes an

arbitrary instan
e of 2-shortest paths.

Consider the undire
ted edge/vertex-disjoint versions of the k-shortest paths problem. There are

well-known redu
tions from the undire
ted edge-disjoint version to the undire
ted vertex-disjoint and to

the dire
ted ar
/vertex-disjoint versions of the problem. One 
an modify the proof of the previous theorem

in order to get the following stronger theorem.

Theorem 3.2 For ea
h 
onstant 
, there is no polynomial-time n




-approximation algorithm for the undi-

re
ted edge-disjoint 2-shortest paths unless P = NP, where n is the number of verti
es of the given

graph.

4 Inapproximability for a
y
li
 digraphs

In this se
tion we show that if k is non-�xed then the k-shortest paths is hard to approximate, even

restri
ted to a
y
li
 digraphs. The proof of the theorem below is a modi�
ation of the proof of Theorem 1.2.

Theorem 1.3 For ea
h 
onstant 
, there is no polynomial-time n




-approximation algorithm for the k-

shortest paths restri
ted to a
y
li
 digraphs unless P = NP, where n is the number of verti
es of the

given digraph.

Proof. We may assume 
 � 1. Suppose that there is a polynomial-time n




-approximation algorithm A

for the k-shortest paths on a
y
li
 digraph, where n is the number of verti
es of the given digraph.

Consider the following polynomial-time redu
tion from 3-sat to k-shortest paths.

Let � be an instan
e of 3-sat, that is, a set fC

1

; : : : ; C

m

g of 3-
lauses on variables x

1

; : : : ; x

h

. Let us

des
ribe an a
y
li
 digraph D, two verti
es s and t and length fun
tions l

0

; : : : ; l

h

on the ar
s of D.

Digraph D 
onsists of verti
es s; v

0

; : : : ; v

h

; t, ar
s st, sv

0

, v

h

t and, for ea
h variable x

i

, two internally

disjoint paths, Q

i

and

�

Q

i

, from v

i�1

to v

i

. Path Q

i

(

�

Q

i

) has as many internal verti
es as appearan
es of

x

i

(x

i

). Additionally, for ea
h 
lause C

j

, there are three length-two paths from s to t, ea
h one having as

middle vertex a vertex labeled by one of the literals in C

j

. This is done in su
h a way that no two of these

paths share the middle vertex. See Figure 4 for an example.

Let M := (3+ 3m+ h)




(2 +3m+3h) + 1. For ea
h C

j

, set l

j

(e) := 1 if e is one of the ar
s in the three

length-two paths added for C

j

and set l

j

(e) := M otherwise. Set l

0

(e) := 1 if e = sv

0

or e = v

h

t or e is

in path Q

i

or

�

Q

i

for some i. Otherwise set l

0

(e) := M . This 
ompletes the des
ription of the instan
e of

k-shortest paths. Observe that D is a
y
li
 and that there are k internally disjoint paths from s to t in

D. Also, observe that D, s, t and l

0

; : : : ; l

h


an be 
onstru
ted in polynomial time.

Claim 4.1 � is satis�able if and only if there are internally disjoint paths P

0

; : : : ; P

h

from s to t in D

8
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s for the variables. (b) Digraph for � = (x

1

_ x

2

_ x

3

)(x

1

_ x

2

_ x

3

).

su
h that l

0

(P

0

) + � � �+ l

h

(P

h

) � 2 + 3m+ 3h.

Proof. Assume � is satis�able and 
onsider an assignment whi
h satis�es �. Let P

0

be the path starting

with ar
 sv

0

, ending with ar
 v

h

t, and using Q

i

, if x

i

is false, or

�

Q

i

, if x

i

is true, for ea
h i. Note that ea
h

labeled vertex in P

0

has as label a literal that is false in the assignment. Moreover, l

0

(P

0

) � 2 + 3m+ h.

For ea
h 
lause C

j

, let P

j

be one among the three paths for C

j

that use a vertex whose label is a literal set

to true in the assignment. There is one su
h path be
ause the assignment satis�es �. Paths P

0

; : : : ; P

h

are su
h that l

0

(P

0

) + � � �+ l

h

(P

h

) � 2 + 3m+ 3h.

Suppose now that there are internally disjoint paths P

0

; : : : ; P

h

from s to t in D su
h that l

0

(P

0

)+ � � �+

l

h

(P

h

) � 2 + 3m + 3h. Note that M > 2 + 3m + 3h, be
ause 
 � 1. Therefore, P

0

; : : : ; P

h

use only ar
s

whose length is one in their respe
tive length fun
tions. In parti
ular, P

0

uses ne
essarily ar
s sv

0

and v

h

t

and passes by verti
es v

1

; : : : ; v

h�1

. To go from v

i�1

to v

i

, path P

0

uses either Q

i

or

�

Q

i

. Set variable x

i

to true if P

0

uses

�

Q

i

and set x

i

to false if P

0

uses path Q

i

. For ea
h C

j

, path P

j

has to be one of the

length-two paths for C

j

. Let ~x

i

be the label of the middle in P

j

. If P

0

uses Q

i

, then ~x

i

= x

i

(or P

j

and P

0

would not be internally disjoint). If P

0

uses

�

Q

i

, then ~x

i

= x

i

. In both 
ases, ~x

i

is true in the assignment

and therefore this assignment satis�es C

j

, for all j.

To 
omplete the proof of Theorem 1.3, it is enough to des
ribe how to use algorithm A to get a

polynomial-time algorithm for 3-sat. Just run algorithm A on the 
onstru
ted instan
e of k-shortest

paths. It returns paths P

0

; : : : ; P

h

. If l

0

(P

0

) + � � � + l

h

(P

h

) < M , then � is satis�able, otherwise �

is not satis�able. The resulting algorithm is 
learly polynomial and solves 3-sat. Indeed, assume that

l

0

(P

0

) + � � � + l

h

(P

h

) � M . Algorithm A is an n




-approximation, where n is the number of verti
es of D,

that is, n = 3 + 3m + h. Therefore, the value of an optimal solution for this instan
e of the k-shortest

paths is at least M=(3 + 3m + h)




> 2 + 3m + 3h. By the 
laim, � is not satis�able. Now, assume

l

0

(P

0

) + � � � + l

h

(P

h

) < M . This means P

0

uses neither st nor ar
s in the paths of the 
lauses. Therefore

P

0

uses ar
s sv

0

and v

h

t and, for ea
h i, uses either Q

i

or

�

Q

i

. Thus l

0

(P

0

) � 2 + 3m + h. Also, ea
h

path P

j

has to be one of the paths for 
lause C

j

, otherwise l

j

(P

j

) � M . Hen
e l

j

(P

j

) = 2, for all j, and

l

0

(P

0

) + � � �+ l

h

(P

h

) � 2 + 3m+ 3h. By the 
laim, � is satis�able.

This theorem also holds for any polynomial-time 
omputable fun
tion f : there is no polynomial-time

f(jIj)-approximation algorithm for k-shortest paths in a
y
li
 digraphs. Here, I denotes an arbitrary

instan
e of k-shortest paths in a
y
li
 digraphs.
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5 Minimizing sum of lengths

Consider the following shortest disjoint paths problem:

given : { an undire
ted planar graph G = (V;E), embedded in R

2

;

{ pairs fs

1

; t

1

g; : : : ; fs

k

; t

k

g of verti
es on the boundary of G;

{ a non-negative fun
tion l on the edges of G;

�nd : { pairwise vertex-disjoint paths P

1

; : : : ; P

k

in G where P

i

is an s

i

-t

i

-path,

for ea
h i = 1; : : : ; k, and l(P

1

) + � � � + l(P

k

) is as small as possible.

We denote this problem by sdp(G; fs

1

; t

1

g; : : : ; fs

k

; t

k

g), or simply by sdp, when the instan
e is 
lear from

the 
ontext.

If the verti
es s

1

; : : : ; s

k

; t

k

; : : : ; t

1

o

ur in this order when following the boundary of G, then sdp 
an

be seen as a parti
ular 
ase of the min-
ost 
ow problem. Indeed, from G, we 
onstru
t a digraph D by

splitting ea
h vertex v of G into two verti
es v

+

and v

�

, joined by an ar
 (v

�

; v

+

) of 
ost zero. An edge

vw of G be
omes ar
s (v

+

; w

�

) and (w

+

; v

�

) of D, both of 
ost l(vw). In addition, D has verti
es s, t and

ar
s (s; s

�

i

), (t

+

i

; t), for i = 1; : : : ; k, of 
ost zero. Solving sdp is equivalent to �nding a maximum s-t-
ow

of minimum 
ost in D, with ea
h ar
 having 
apa
ity one. Hen
e, in this parti
ular 
ase, sdp 
an be solved

in polynomial time.

A graph G = (V [f
g; E) is 
alled a wheel if G�
 is a 
ir
uit and fv; 
g 2 E for ea
h v in V . Gr�ots
hel,

Martin and Weismantel [4℄ showed that if G = (V [ f
g; E) is a wheel and s

1

; t

1

; : : : ; s

k

; t

k

o

ur in this

order when following the 
ir
uit G � 
 then the edge-disjoint version of sdp 
an be solved in polynomial

time. Moreover, Gr�ots
hel, Martin and Weismantel gave a 
omplete des
ription of the path pa
king polytope

(the 
onvex hull of in
ident ve
tors of sets E

0

� E, su
h that G[E

0

℄ is a pa
king of edge-disjoint s

i

-t

i

-paths

in G).

Using dynami
 programming, we show that, also in the following 
ase, sdp 
an be solved in polynomial

time:

k is �xed and the verti
es s

1

; t

1

; : : : ; s

k

; t

k

o

ur in this

order when following the boundary of G.

(6)

We assume that sdp is feasible (this 
an be tested in linear time) and that G is 2-
onne
ted.

We shall use the following notation. If P is a path and u; v are verti
es in P then P (u; v) is the subpath

of P 
onne
ting u to v. We denote by Q

i

a shortest s

i

-t

i

-path. Let R

i

be the subgraph of G indu
ed by

the verti
es in the 
losed region bounded by the path Q

i

and the path on the boundary of G from s

i

to

t

i


ontaining no other s

j

or t

j

(i = 1; : : : ; k). Also, let Q

i;j

:= R

i

\ R

j

. By short
ut arguments, we may

assume that Q

i;j

is either a path or empty, for i 6= j. Figure 5 illustrates the notation. There, P

1

; P

2

; P

3

are paths of an optimal solution.

Let G, fs

1

; t

1

g; : : : ; fs

k

; t

k

g and l be an instan
e of sdp with the property that s

1

; t

1

; : : : ; s

k

; t

k

o

ur

in this order when following the boundary of G. Observe that sdp has an optimal solution P

1

; : : : ; P

k

so

that P

i

is entirely 
ontained in the region R

i

(i = 1; : : : ; k).

Consider some i and j with i 6= j. Let Q

i;j

:= (v

0

; e

1

; v

1

; : : : ; e

d

; v

d

). We 
all (f; h) a possible 
hoi
e

(for (i; j)) if f = h = nil or f = v

p

and h = v

q

for some p; q satisfying 0 � p � q � d. We say that

(f; h; f

0

; h

0

) is a feasible 
hoi
e (for (i; j)) if (f; h) and (f

0

; h

0

) are possible 
hoi
es and if f 6= nil 6= f

0

implies ff; hg \ ff

0

; h

0

g = ;. For ea
h feasible 
hoi
e (f; h; f

0

; h

0

), let

G

i;j;f;h;f

0

;h

0

:= G[V (R

i

) n (V (Q

i;j

) n V (Q

i;j

(f; h)))℄

[ G[V (R

j

) n (V (Q

i;j

) n V (Q

i;j

(f

0

; h

0

)))℄;

where Q

i;j

(nil,nil) := ;. Finally, we say that a sequen
e

((f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) : 1 � i < j � k)
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Figure 5: Illustration of the de�nitions.

is an a

eptable 
hoi
e provided that (f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) is a feasible 
hoi
e for ea
h (i; j), for all 1 � i <

j � k.

Our dynami
 programming approa
h is based on the following optimality 
riterion:

Let P

1

; : : : ; P

k

be an optimal solution to sdp and let f

i

; h

i

; f

j

; h

j

be the �rst and last verti
es

of Q

i;j

in P

i

and in P

j

, respe
tively, for some i, j with 1 � i < j � k. Then P

i

(f

i

; h

i

); P

j

(f

j

; h

j

)

is an optimal solution to sdp(G

i;j;f

i

;h

i

;f

j

;h

j

; ff

i

; h

i

g; ff

j

; h

j

g) (see Figure 6).

1
3h

3
f

f
1

h

3

G1,3, , , ,f
1 1h f

3 h3

t
1

s
3

s
1

3
t
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R3
Q1,2

Q

Q

1P
P3

1,3
Q

2,3

Figure 6: Illustration of the optimality 
ondition for sdp.

The algorithm 
onsists of �rst 
omputing, for ea
h (i; j), with 1 � i < j � k, and for ea
h feasible


hoi
e (f; h; f

0

; h

0

) for (i; j), a solution P

i;j;f;h;f

0

;h

0

; P

j;i;f;h;f

0

;h

0

to sdp(G

i;j;f;h;f

0

;h

0

; ff; hg; ff

0

; h

0

g), where,

P

i;j;nil;nil;f

0

;h

0

:= ; and P

j;i;f;h;nil;nil

:= ;). Now, we enumerate all a

eptable 
hoi
es

A := ((f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) : i; j = 1; : : : ; k; i < j)

(so, (f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) is a feasible 
hoi
e for all (i; j) with 1 � i < j � k) and we 
ompute P

A

1

; : : : ; P

A

k

,

where P

A

i

is a shortest s

i

-t

i

-path in

G[(V (R

i

) n V (Q

i;j

)) [ ([

i 6=j

V (P

i;j;f

i;j

;h

i;j

;f

0

i;j

;h

0

i;j

))℄ (i = 1; : : : ; k);

11



if there exists any.

The algorithm returns, for some a

eptable 
hoi
e A

�

, vertex-disjoint paths P

A

�

1

; : : : ; P

A

�

k

so that,

P

k

i=1

l(P

A

�

i

) = minf

P

k

i=1

l(P

A

i

) j A is an a

eptable 
hoi
eg:

Theorem 5.1 If s

1

; t

1

; : : : ; s

k

; t

k

o

ur in this order when following the boundary of G then, for ea
h

�xed k, sdp 
an be solved in polynomial time.

Proof. Any solution P

1

; : : : ; P

k

to sdp su
h that P

i

is a subgraph of R

i

indu
es an a

eptable 
hoi
e to

sdp. (For ea
h (i; j) with i < j, we de�ne (f

i;j

; h

i;j

; f

0

i;j

; h

0

i;j

) as the �rst and last verti
es of Q

i;j

in P

i

and P

j

, respe
tively. If the path Q

i;j

does not meet, say, P

i

then f

i;j

:= h

i;j

:= nil.) Sin
e by short
ut

arguments there exists at least one su
h a solution, it follows that the algorithm generates and returns a

solution to sdp.

One sees that sdp(G

i;j;f;h;f

0

;h

0

; ff; hg; ff

0

; h

0

g) 
an be solved in polynomial time, as (if f 6= nil 6= f

0

)

f; h; f

0

; h

0

are verti
es on the boundary of G

i;j;f;h;f

0

;h

0

. Thus, in order to show polynomiality, it remains to

verify that the number of a

eptable 
hoi
es is polynomially bounded. Indeed,

jfQ

i;j

j i < j and Q

i;j

6= ;gj = O(k

2

)

and there exist O(n

4

) feasible 
hoi
es for ea
h (i; j). Hen
e, there are O(n

4k

2

) a

eptable 
hoi
es.

Remark. Using similar te
hniques one 
an prove that if s

1

; t

1

; : : : ; s

k

; t

k

o

ur in this order when following

the boundary of G then the edge-disjoint version of sdp is polynomially solvable for ea
h �xed k. It 
an

also be proved that if, in addition, ji� jj > 1 implies Q

i;j

= ;, then sdp 
an be solved in polynomial time

(here k does not need to be �xed).
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