Multilength Single Pair Shortest Disjoint Paths *

Cristina G. Fernandes ${ }^{1} \dagger \quad$ Hein van der Holst ${ }^{2} \ddagger \quad$ José Coelho de Pina ${ }^{1}$
${ }^{1}$ Instituto de Matemática e Estatística Universidade de São Paulo - Brazil Rua do Matão 1010, 05508-090 São Paulo/SP, Brazil
E-mail: \{cris, coelho\}@ime.usp.br
${ }^{2}$ Fachbereich Mathematik und Informatik, Freie Universität Berlin,
Arnimallee 2-6, D-14195 Berlin, Germany
E-mail: hvdholst@math.fu-berlin.de

Topics: algorithms and computational complexity.

Abstract

The k-Shortest paths problem consists of: given a digraph D, a pair (s, t) of vertices of D and k non-negative functions l_{1}, \ldots, l_{k} on the arcs of D, find k internally vertex-disjoint paths P_{1}, \ldots, P_{k} from s to t such that $l_{1}\left(P_{1}\right)+\cdots+l_{k}\left(P_{k}\right)$ is as small as possible. We describe, for each fixed k, a polynomialtime algorithm for the k-Shortest paths restricted to acyclic digraphs. We prove two complexity results: unless $\mathrm{P}=\mathrm{NP}$, for each constant c, there is no polynomial-time n^{c}-approximation algorithm (1) for the 2 -Shortest paths, where n is the number of vertices of D, and (2) for the k-Shortest PATHS restricted to acyclic digraphs. We also show a polynomial-time algorithm for a multicommodity variation of the problem in planar graphs.

[^0]
1 Introduction

The well-known single pair shortest path problem consists of: given a digraph D, a non-negative function l on the arcs of D and two vertices s and t, find a path P from s to t that minimizes $l(P)$, where $l(P)$ denotes the sum of $l(e)$ over all arcs e in P. This problem is solvable in polynomial time. We address the following generalization of the single pair shortest path problem, which we call k-ShOrtest paths:

```
given: - a digraph D=(V,A);
    - a pair (s,t) of vertices of D;
    - non-negative functions }\mp@subsup{l}{1}{},\ldots,\mp@subsup{l}{k}{}\mathrm{ on the arcs of D;
find: - k internally vertex-disjoint paths }\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{k}{}\mathrm{ from s to t such that
```

$$
l_{1}\left(P_{1}\right)+\cdots+l_{k}\left(P_{k}\right)
$$

is as small as possible.
For $l_{1}=\ldots=l_{k}$ the k-ShORTEST PATHS reduces to the min-cost flow problem and, therefore, can be solved in polynomial time.

We consider first the problem on acyclic digraphs. Algorithms for finding arc-disjoint paths in acyclic digraphs have applications on scheduling problems [1] and aircraft assignment problems [7]. We reformulate the k-SHORTEST PATHS in acyclic digraphs in terms of finding a shortest path in a (large) acyclic digraph. This is a known reformulation due to Perl and Shiloach [6] for finding two vertex-disjoint paths in an acyclic digraph. Later this was extended by Fortune, Hopcroft and Wyllie [3] in order to derive a polynomial-time algorithm for the k vertex-disjoint paths problem in acyclic digraphs (see also Schrijver [7]). From this reformulation, we derive the theorem below.
Theorem 1.1 For each fixed k, there exists a polynomial-time algorithm for the k-SHORTEST PATHS restricted to acyclic digraphs.

We also prove the following inapproximability result, which shows that the problem becomes much harder on general digraphs, even if $k=2$.
Theorem 1.2 For each constant c, there is no polynomial-time n^{c}-approximation algorithm for the 2 Shortest paths unless $\mathrm{P}=\mathrm{NP}$, where n is the number of vertices of the given digraph.

With respect to the intractability and inapproximabity of the problem in acyclic digraphs, we show the following theorem.
Theorem 1.3 For each constant c, there is no polynomial-time n^{c}-approximation algorithm for the k SHORTEST PATHS restricted to acyclic digraphs unless $\mathrm{P}=\mathrm{NP}$, where n is the number of vertices of the given digraph.

Theorems 1.2 and 1.3 show that the result in Theorem 1.1 is tight in the sense that it does not hold, unless $\mathrm{P}=\mathrm{NP}$, if we drop either the restriction on k being fixed or on D being acyclic. Surprisingly, the problem becomes much harder if we drop any of these restrictions.

We consider also a variant of the problem in undirected graphs, with multiple pairs of terminals. For this variant, we present a polynomial-time algorithm for the case where all length functions are the same, the given graph is planar and the terminals lie on the boundary of the same face in an adequate order.

2 Disjoint paths in acyclic digraphs

In order to prove Theorem 1.1, we consider the following disjoint paths problem:

$$
\begin{align*}
\text { given : } & \text { - a directed graph } D=(V, A) ; \\
& \text { - pairs }\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right) \text { of vertices of } D ; \\
& - \text { subsets } A_{1}, \ldots, A_{k} \text { of } A ; \\
& - \text { a set } H \text { of pairs }\{i, j\} \text { from }\{1, \ldots, k\} ; \tag{1}
\end{align*}
$$

find: - paths P_{1}, \ldots, P_{k} in D such that:
(i) P_{i} is an $s_{i}-t_{i}$-path in $D\left[A_{i}\right](i=1, \ldots, k)$;
(ii) P_{i} and P_{j} are vertex-disjoint for $\{i, j\}$ in H.

Fortune, Hopcroft and Wyllie [3] showed that this disjoint paths problem is NP-hard even for $k=2$, $A_{1}=A_{2}=A$ and $H=\{\{1,2\}\}$. According to Even, Itai and Shamir [2], problem (1) is also NP-hard for acyclic digraphs. In fact, problem (1) is NP-hard even for a fixed acyclic digraph, as noted by Alexander Schrijver. At the end of this section, we include the proof of this unpublished and surprising result.

We prove in the next theorem that problem (1) is polynomially solvable for instances satisfying the following condition:

$$
\begin{align*}
& \text { There exists no directed cycle } C=P_{j_{0}} \cdot P_{j_{1}} \ldots \cdot P_{j_{t}} \text { in } D \text { such that: } \\
& \quad \text { (i) } P_{j_{i}} \text { is a path from } u_{i} \text { to } u_{i+1} \text { in } D\left[A_{j_{i}}\right], u_{i} \neq t_{j_{i}}(i=0, \ldots, t) \text {, } \\
& \text { where } u_{t+1}=u_{0} ; \tag{2}\\
& \text { (ii) }\left\{j_{0}, j_{1}\right\}, \ldots,\left\{j_{t-1}, j_{t}\right\},\left\{j_{t}, j_{0}\right\} \text { belong to } H \text {. }
\end{align*}
$$

If P and Q are paths then $P \cdot Q$ denotes the path obtained by the concatenation of P and Q. Note that any acyclic digraph satisfies the condition above. This theorem is a slight generalization of a result by Fortune, Hopcroft and Wyllie [3]. They showed that, for each fixed k, the problem of finding k vertex-disjoint paths in an acyclic digraph is polynomially solvable.
Theorem 2.1 For each fixed k, there exists a polynomial-time algorithm for the disjoint paths problem (1) for instances satisfying (2).

Proof. The proof is a minor modification of Schrijver's proof [7] of Fortune, Hopcroft and Wyllie's k vertex-disjoint paths theorem $[3,8]$. We include it here for the sake of completeness.

Consider an instance of problem (1), that is, a digraph D, pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ of vertices of D, subsets A_{1}, \ldots, A_{k} of arcs of D and a set H of pairs $\{i, j\}$ from $\{1, \ldots, k\}$. Make an auxiliary digraph $D^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ as follows. The vertex set V^{\prime} consists of all k-tuples $\left(v_{1}, \ldots, v_{k}\right)$ of vertices of D such that $v_{i} \neq v_{j}$ for all $\{i, j\}$ in H. There is an arc in D^{\prime} from $\left(v_{1}, \ldots, v_{k}\right)$ to $\left(w_{1}, \ldots, w_{k}\right)$ if and only if there exists an i in $\{1, \ldots, k\}$ such that:
(i) $v_{j}=w_{j}$ for all $j \neq i$;
(ii) $\left(v_{i}, w_{i}\right)$ is an arc of A_{i};
(iii) if $j \neq i,\{i, j\} \in H$ and $v_{j} \neq t_{j}$, there is no path in $D\left[A_{j}\right]$ from v_{j} to v_{i}.

Note that, as k is fixed, the size of D^{\prime} is polynomially bounded on the size of D. Moreover, the following holds:
D contains paths P_{1}, \ldots, P_{k} such that P_{i} is an $s_{i}-t_{i}$-path in $D\left[A_{i}\right](i=1, \ldots, k)$
and P_{i} and P_{j} are vertex-disjoint for $\{i, j\}$ in H
if and only if
D^{\prime} contains a path P from $\left(s_{1}, \ldots, s_{k}\right)$ to $\left(t_{1}, \ldots, t_{k}\right)$.
Suppose that P_{1}, \ldots, P_{k} exist. For any i, let P_{i} follow the vertices $v_{i, 0}, v_{i, 1}, \ldots, v_{i, t_{i}}$. So $v_{i, 0}=s_{i}$ and $v_{i, t_{i}}=t_{i}$ for each i. Choose j_{1}, \ldots, j_{k} such that $0 \leq j_{i} \leq t_{i}$ for each i and such that:
(i) D^{\prime} contains a path from $\left(s_{1}, \ldots, s_{k}\right)$ to $\left(v_{1, j_{1}}, \ldots, v_{k, j_{k}}\right)$, and
(ii) $j_{1}+\cdots+j_{k}$ is as large as possible.

Let $I:=\left\{i \mid j_{i}<t_{i}\right\}$. Let us prove by contradiction that $I=\emptyset$. Suppose $I \neq \emptyset$. By the definition of D^{\prime} and the maximality of $j_{1}+\cdots+j_{k}$, for each i in I, there exists an $i^{\prime} \neq i$ such that there is a path in $D\left[A_{i^{\prime}}\right]$ from $v_{i^{\prime}, j_{j^{\prime}}}$ to $v_{i, j_{i}}$, with $v_{i^{\prime}, j_{i^{\prime}}} \neq t_{i^{\prime}}$ and $\left\{i^{\prime}, i\right\}$ in H. So, for i in I, each vertex $v_{i, j_{i}}$ is an endpoint of a path in $D\left[A_{i^{\prime}}\right]$ starting at another vertex $v_{i^{\prime}, j_{i^{\prime}}} \neq t_{j_{i^{\prime}}}$, with i^{\prime} in I and $\left\{i, i^{\prime}\right\}$ in H. This contradicts (2), so $I=\emptyset$, that is, $j_{i}=t_{i}$ for all i, in which case we are done.

Conversely, let P be a path from $\left(s_{1}, \ldots, s_{k}\right)$ to $\left(t_{1}, \ldots, t_{k}\right)$ in D^{\prime}. Let P follow the vertices $\left(v_{1, j}, \ldots, v_{k, j}\right)$ for $j=0, \ldots, t$. So $v_{i, 0}=s_{i}$ for $i=1, \ldots, k$. For each $i=1, \ldots, k$, let P_{i} be the path in D following $v_{i, j}$ for $j=0, \ldots, t$, taking repeated vertices only once. So P_{i} is an $s_{i}-t_{i}$-path in $D\left[A_{i}\right]$. Moreover, P_{i} and P_{j} are vertex-disjoint for each $\{i, j\}$ in H. Indeed, suppose P_{1} and P_{2} (say) have a vertex in common, where $\{1,2\}$ belongs to H, that is, $v_{1, j}=v_{2, j^{\prime}}$ for some $j \neq j^{\prime}$. Without loss of generality, $j<j^{\prime}$ and $v_{1, j} \neq v_{1, j+1}$. By the definition of D^{\prime}, there is no path in $D\left[A_{2}\right]$ from $v_{2, j}$ to $v_{1, j}$. This however contradicts the fact that $v_{1, j}=v_{2, j^{\prime}}$ and that there exists a path in $D\left[A_{2}\right]$ from $v_{2, j}$ to $v_{2, j^{\prime}}$.

Therefore, to solve problem (1), it is enough to find a path in D^{\prime} from $\left(s_{1}, \ldots, s_{k}\right)$ to $\left(t_{1}, \ldots, t_{k}\right)$, which can be done in polynomial time.

The arc-disjoint version of the disjoint paths problem (1) consists of replacing (ii) in (1) by:

$$
\begin{equation*}
P_{i} \text { and } P_{j} \text { are arc-disjoint for }\{i, j\} \text { in } H . \tag{5}
\end{equation*}
$$

This arc-disjoint paths problem can be reformulated in terms of the disjoint paths problem (1). Indeed, let an instance of the arc-disjoint paths problem be given, that is, a digraph $D=(V, A)$, pairs of vertices $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, arc sets A_{1}, \ldots, A_{k} and a set H of pairs $\{i, j\}$ from $\{1, \ldots, k\}$. We may assume that each s_{i} is the tail of a unique arc a_{i} of D and that t_{i} is the head of a unique arc b_{i} of $D(i=1, \ldots, k)$. We make a digraph $D^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ as follows. The vertex set of D^{\prime} is the arc set A of D (i.e. $V^{\prime}:=A$). There is an arc in D^{\prime} from a to b if the head of a and the tail of b coincide. For $i=1, \ldots, k$, we define $A_{i}^{\prime}:=\left\{(a, b) \in A^{\prime} \mid a, b \in A_{i}\right\}$. Finally we take $H^{\prime}:=H$.

Finding paths P_{1}, \ldots, P_{k} in D satisfying (5) such that P_{i} is an $s_{i}-t_{i}$-path in $D\left[A_{i}\right](i=1, \ldots, k)$ is equivalent to the problem of finding paths $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ in D^{\prime} satisfying (ii) of (1) such that P_{i}^{\prime} is an $a_{i}{ }^{-} b_{i}{ }^{-}$ path in $D^{\prime}\left[A_{i}^{\prime}\right](i=1, \ldots, k)$. Hence, the arc-disjoint version of problem (1) is polynomially solvable for instances satisfying a condition similar to condition (2).

Now, suppose that, for an instance of problem (1), one is given also non-negative functions l_{1}, \ldots, l_{k} on the arcs of D. Then it is possible to find in polynomial time a solution P_{1}, \ldots, P_{k} of problem (1) such that $\sum_{i=1}^{k} l_{i}\left(P_{i}\right)$ is as small as possible. Just define a length function on the arcs of D^{\prime} (the digraph from the proof of Theorem 2.1) as follows. The length of an arc of D^{\prime} from $\left(v_{1}, \ldots, v_{k}\right)$ to (w_{1}, \ldots, w_{k}) satisfying (3) is $l_{i}\left(v_{i}, w_{i}\right)$. Now, a shortest path from $\left(s_{1}, \ldots, s_{k}\right)$ to $\left(t_{1}, \ldots, t_{k}\right)$ in D^{\prime} with this length function on its arcs gives the desired paths. As the shortest path problem in an acyclic digraph with arbitrary length on its arcs can be solved in linear time, we have Theorem 1.1.

Theorem 1.1 For each fixed k, there exists a polynomial-time algorithm for the k-SHORTEST PATHS restricted to acyclic digraphs.

We conclude this section with the proof of Schrijver's result on the complexity of problem (1).
Theorem 2.2 (A. Schrijver) The disjoint paths problem (1) restricted to instances having the digraph in Figure 1 as input is NP-hard.

Proof. Consider the following transformation of planar 3-colorability to problem (1) restricted to instances having the acyclic digraph displayed in Figure 1 as input. A k-coloring of a graph $G=(V, E)$ is a function f from V to $\{1, \ldots, k\}$ such that $f(u) \neq f(v)$ whenever $\{u, v\}$ belongs to E. Graph G is
k-colorable if G has a k-coloring. The planar 3-colorability problem consists of: given: a planar graph $G=(V, E)$; question: is G 3-colorable? Planar 3-colorability was shown to be NP-complete by Stockmeyer [9].

Figure 1: Problem (1) is NP-hard for instances having this acyclic digraph as input.

Let us be given a planar graph $G=(V, E)$ with $V=\left\{v_{1}, \ldots, v_{k}\right\}$ and let f^{\prime} be a 4 -coloring of G. This function f^{\prime} can be computed in polynomial time (see, for instance, Nishizeki and Chiba [5]). We construct an instance of problem (1) depending on G and f^{\prime} as follows. Let $H:=\left\{\{i, j\} \mid\left\{v_{i}, v_{j}\right\} \in E\right\}$ and, for $i=1, \ldots, k$, let $s_{i}:=u_{f^{\prime}\left(v_{i}\right)}, t_{i}:=w_{f^{\prime}\left(v_{i}\right)}$ and A_{i} be the set of all arcs of the digraph in Figure 1. We claim that G is 3 -colorable if and only if the constructed instance of problem (1) is feasible. Suppose G is 3 -colorable and let f be a 3 -coloring of G. For $i=1, \ldots, k$, let P_{i} be the path from s_{i} to t_{i} that traverses $c_{f\left(v_{i}\right)}$. One can check that P_{1}, \ldots, P_{k} is a solution to the problem (1). Conversely, let P_{1}, \ldots, P_{k} be a solution to the disjoint paths problem (1) and define f from V to $\{1,2,3\}$ such that, for $i=1, \ldots, k$, the path P_{i} from s_{i} to t_{i} traverses the vertex $c_{f\left(v_{i}\right)}$. One can verify that f is a 3 -coloring of G.

3 Inapproximability for the 2-SHORTEST PATHS

In this section we analyze the complexity of the 2 -Shortest paths problem. Specifically, we prove Theorem 1.2.

Theorem 1.2 For each constant c, there is no polynomial-time n^{c}-approximation algorithm for the 2 Shortest paths unless $\mathrm{P}=\mathrm{NP}$, where n is the number of vertices of the given digraph.
Proof. We may assume $c \geq 1$. Suppose that there is a polynomial-time n^{c}-approximation algorithm A for the 2 -shortest paths, where n is the number of vertices of the given digraph. Let us show that, if this is the case, we can solve 3 -sat in polynomial time, which implies that $\mathrm{P}=\mathrm{NP}$. For this, consider the following polynomial-time reduction from 3 -SAT to 2 -Shortest paths.

Let Φ be an instance of 3 -sat, that is, a set $\left\{C_{1}, \ldots, C_{m}\right\}$ of 3 -clauses on variables x_{1}, \ldots, x_{h}. Let us describe a digraph D, two length functions l_{1} and l_{2} on the arcs of D and two vertices s and t.

For each variable x_{i}, denote by d_{i} the largest between the number of times x_{i} appears in Φ and the number of times that \bar{x}_{i} appears in Φ. There is a gadget as in Figure 2(a) for each x_{i}. The number of undirected four-cycles in the gadget is $d_{i}+1$. The source vertex in the gadget is called v_{i} and the sink vertex, w_{i}. The vertices of in-degree one in the gadget are partitioned into two sets: L_{i} and R_{i}, as in Figure 2(a).

For each clause C_{j}, there is a gadget as in Figure 2(b). The sink and source vertices are called u_{j} and l_{j} respectively. Each of the other vertices has as label one of the literals in clause C_{j}.

The digraph of the instance of 2-Shortest paths is obtained as follows. First, we connect the gadgets of all variables and clauses in series, identifying w_{i} and $v_{i+1}(i=1, \ldots, n-1)$ and u_{j} and $l_{j+1}(j=1, \ldots, m-1)$. Then, we add an arc from s to v_{1}, one from w_{h} to l_{1} and one from u_{m} to t. The arcs we have up to now

Figure 2: (a) The gadget for variable x_{i}. One, between x_{i} or \bar{x}_{i}, appears three times in Φ, while the other appears at most three times. (b) The gadget for clause $C_{j}=\left\{x_{1}, \bar{x}_{2}, x_{3}\right\}$. (c) Arcs of type 1 of the digraph built from $\Phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$.
are said to be of type 1. See Figure 2(c). Second, we add three arcs from s : one to t, one to the first vertex in L_{1} and another to the first vertex in R_{1}. Similarly, we add two arcs to t : one from the last vertex in L_{h} and one from the last vertex in R_{h}. For each two consecutive vertices in L_{i}, we add a path from the upper one to the lower one, of length one or two. When the path has length two, the middle vertex is one of the vertices labeled x_{i} in the clause gadgets. The same holds for R_{i} with \bar{x}_{i} in the place of x_{i}. This is done in such a way that any labeled vertex is in exactly one of these two-length paths. Finally, there are also arcs from the last vertex in L_{i} and from the last vertex in R_{i} to both, the first vertex in L_{i+1} and the first vertex in $R_{i+1}(i=1, \ldots, n-1)$. The arcs added in this second phase are said to be of type 2. This finishes the description of the digraph D and vertices s and t. See Figure 3(a) for a complete example. Note that the number of vertices in this digraph is at most $4+3 d+3 h+4 m$, where $d:=\sum_{i=1}^{h} d_{i} \leq 3 m$. Also, there are two internally disjoint paths from s to t in D.

To complete the description of the instance of 2-SHORTEST PATHS, it is missing only to describe the two length functions l_{1} and l_{2} on the arcs of D. In l_{1}, arcs of type 1 have length one, while arcs of type 2 have length $M:=(4+3 d+3 h+4 m)^{c+1}+1$. In l_{2}, all arcs have length one, but arc st, whose length is M.

Note that the construction of D, s, t, l_{1} and l_{2} takes polynomial time on the size of Φ.
Claim 3.1 Φ is satisfiable if and only if there are two internally disjoint paths P_{1} and P_{2} from s to t in D such that $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right) \leq 4+3 d+3 h+4 m$.
Proof. Assume Φ is satisfiable and consider an assignment which satisfies Φ. Let us describe two internally disjoint paths P_{1} and P_{2} in D from s to t such that $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right) \leq 4+3 d+3 h+4 m$.

Path P_{1} starts with arc $s v_{1}$, goes from v_{1} to w_{h} using only arcs in the variable gadgets, then uses arc $w_{h} l_{1}$ and goes from l_{1} to u_{m} using only arcs in the clause gadgets. It ends with arc $u_{m} t$. Inside the variable gadget for x_{i}, path P_{1} goes through all vertices in L_{i} if x_{i} is TRUE in the assignment or all vertices in R_{i} if x_{i} is FALSE. In the clause gadgets, P_{1} goes always through a vertex whose label is a TRUE literal in the assignment. Note that P_{1} uses only type 1 arcs. Thus $l_{1}\left(P_{1}\right)=3+2 d+2 h+2 m$.

Figure 3: (a) Digraph built from $\Phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$. The dashed arcs have l_{1} equals one, while the others have l_{1} equals M. (b) Paths P_{1} and P_{2} corresponding to the assignment $x_{1}=F, x_{2}=T$ and $x_{3}=T$.

Path P_{2} uses only type 2 arcs. If x_{1} is true (false), it goes from s to the first vertex in $L_{1}\left(R_{1}\right)$. From there, it traverses all vertices in $L_{1}\left(R_{1}\right)$ and jumps to L_{2} if x_{2} is true or to R_{2} if x_{2} is FALSE and proceeds in the same way until it gets to the last vertex in R_{h} or L_{h}. In this traversal, it goes back and forth to the clause gadgets through some length-two paths, always using a vertex whose label is a literal set to false. From the last vertex in L_{h} or R_{h}, it goes directly to t. Note that P_{2} is indeed internally disjoint from P_{1}, as it uses only type 2 arcs. Moreover, $l_{2}\left(P_{2}\right)=1+d+h+2 m$.

Therefore $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right)=4+3 d+3 h+4 m$, as desired. See in Figure 3(b) how P_{1} and P_{2} look like for the example given in Figure 3(a).

Now assume there are two internally disjoint paths P_{1} and P_{2} in D from s to t such that $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right) \leq$ $4+3 d+3 h+4 m$. Note that P_{1} can only use type 1 arcs, otherwise $l_{1}\left(P_{1}\right) \geq M>4+3 d+3 h+4 m$ (the last inequality holds as $c \geq 1$). Also, P_{2} does not use arc st, as $l_{2}(s t)=M>4+3 d+3 h+4 m$. As P_{1} uses only type $1 \operatorname{arcs}, P_{1}$ uses $s v_{1}$, then it goes from v_{1} to w_{h} using only arcs in the variable gadgets, then it uses $w_{h} l_{1}$ and goes from l_{1} to u_{m} inside the clause gadgets, finishing with $u_{m} t$. Path P_{1} cannot use vertices both in L_{i} and R_{i}, otherwise the only path from s to t in D internally disjoint from P_{1} consists of st. But $l_{2}(s t)=M>4+3 d+3 h+4 m$. Indeed, P_{1} must pass by all vertices of the variable gadget x_{i} not in $L_{i} \cup R_{i}$ and by all unlabeled vertices in the clause gadgets. But then, if P_{2} uses the first vertex in L_{i}, it has no other way except using all other vertices in L_{i}. The same holds for R_{i}.

Now we are ready to describe the assignment. Set x_{i} to true if and only if P_{2} uses vertices of L_{i}. Note that P_{2} visits all labeled vertices in the clause gadgets whose labels were set to false. But path P_{1} necessarily uses a labeled vertex in each clause gadget. The label \tilde{x}_{i} of this labeled vertex must then be true, which means there is a TRUE literal in each clause. That is, Φ is satisfiable.

Now we proceed with the proof of Theorem 1.2. Run algorithm A on the constructed instance of 2SHORTEST PATHS. The algorithm returns two paths, P_{1} and P_{2}. If $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right)<M$ then Φ is satisfiable, otherwise Φ is not satisfiable.

First, note that the above algorithm runs in polynomial-time, as the reduction and A take polynomialtime. Moreover, it solves 3 -sat. Indeed, assume $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right) \geq M$. As A is an n^{c}-approximation and $n=4+3 d+3 h+4 m$, the value of an optimal solution for this instance of the 2 -SHORTEST PATHS is at least $M /(4+3 d+3 h+4 m)^{c}>4+3 d+3 h+4 m$. By the claim, Φ is not satisfiable. Now, assume $l_{1}\left(P_{1}\right)+l_{2}\left(P_{2}\right)<M$. This means P_{1} uses no type 2 arc. Any path from s to t in D which uses no type 2 arc uses exactly $3+2 d+2 h+2 m$ arcs of type 1 , that is, $l_{1}\left(P_{1}\right)=3+2 d+2 h+2 m$. But then, as $n=4+3 d+3 h+4 m$, path P_{2} uses at most $2+d+h+2 m$ vertices, that is, $l_{2}\left(P_{2}\right) \leq 2+d+h+2 m$. Therefore, by the claim, Φ is satisfiable. As 3 -sat is solvable in polynomial time only if $\mathrm{P}=\mathrm{NP}$, there is no n^{c}-approximation algorithm for 2 -SHORTEST PATHS unless $\mathrm{P}=\mathrm{NP}$.

In fact, it is easy to modify this theorem to show that, for any polynomial-time computable function f, there is no polynomial-time $f(|I|)$-approximation algorithm for 2-SHORTEST PATHS, where I denotes an arbitrary instance of 2-SHORTEST PATHS.

Consider the undirected edge/vertex-disjoint versions of the k-SHORTEST PATHS problem. There are well-known reductions from the undirected edge-disjoint version to the undirected vertex-disjoint and to the directed arc/vertex-disjoint versions of the problem. One can modify the proof of the previous theorem in order to get the following stronger theorem.

Theorem 3.2 For each constant c, there is no polynomial-time n^{c}-approximation algorithm for the undirected edge-disjoint 2 -ShORTEST PATHS unless $\mathrm{P}=\mathrm{NP}$, where n is the number of vertices of the given graph.

4 Inapproximability for acyclic digraphs

In this section we show that if k is non-fixed then the k-SHORTEST PATHS is hard to approximate, even restricted to acyclic digraphs. The proof of the theorem below is a modification of the proof of Theorem 1.2.
Theorem 1.3 For each constant c, there is no polynomial-time n^{c}-approximation algorithm for the k SHORTEST PATHS restricted to acyclic digraphs unless $\mathrm{P}=\mathrm{NP}$, where n is the number of vertices of the given digraph.
Proof. We may assume $c \geq 1$. Suppose that there is a polynomial-time n^{c}-approximation algorithm A for the k-SHORTEST PATHS on acyclic digraph, where n is the number of vertices of the given digraph. Consider the following polynomial-time reduction from 3 -SAT to k-SHORTEST PATHS.

Let Φ be an instance of 3 -sAT, that is, a set $\left\{C_{1}, \ldots, C_{m}\right\}$ of 3 -clauses on variables x_{1}, \ldots, x_{h}. Let us describe an acyclic digraph D, two vertices s and t and length functions l_{0}, \ldots, l_{h} on the arcs of D.

Digraph D consists of vertices $s, v_{0}, \ldots, v_{h}, t$, arcs $s t, s v_{0}, v_{h} t$ and, for each variable x_{i}, two internally disjoint paths, Q_{i} and \bar{Q}_{i}, from v_{i-1} to v_{i}. Path $Q_{i}\left(\bar{Q}_{i}\right)$ has as many internal vertices as appearances of $x_{i}\left(\bar{x}_{i}\right)$. Additionally, for each clause C_{j}, there are three length-two paths from s to t, each one having as middle vertex a vertex labeled by one of the literals in C_{j}. This is done in such a way that no two of these paths share the middle vertex. See Figure 4 for an example.

Let $M:=(3+3 m+h)^{c}(2+3 m+3 h)+1$. For each C_{j}, set $l_{j}(e):=1$ if e is one of the arcs in the three length-two paths added for C_{j} and set $l_{j}(e):=M$ otherwise. Set $l_{0}(e):=1$ if $e=s v_{0}$ or $e=v_{h} t$ or e is in path Q_{i} or \bar{Q}_{i} for some i. Otherwise set $l_{0}(e):=M$. This completes the description of the instance of k-Shortest paths. Observe that D is acyclic and that there are k internally disjoint paths from s to t in D. Also, observe that D, s, t and l_{0}, \ldots, l_{h} can be constructed in polynomial time.

Claim 4.1 Φ is satisfiable if and only if there are internally disjoint paths P_{0}, \ldots, P_{h} from s to t in D

- $-C_{1}$
$\ldots \ldots C_{2}$

Figure 4: (a) Arcs for the variables. (b) Digraph for $\Phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$.
such that $l_{0}\left(P_{0}\right)+\cdots+l_{h}\left(P_{h}\right) \leq 2+3 m+3 h$.
Proof. Assume Φ is satisfiable and consider an assignment which satisfies Φ. Let P_{0} be the path starting with arc $s v_{0}$, ending with arc $v_{h} t$, and using Q_{i}, if x_{i} is FALSE, or \bar{Q}_{i}, if x_{i} is true, for each i. Note that each labeled vertex in P_{0} has as label a literal that is FALSE in the assignment. Moreover, $l_{0}\left(P_{0}\right) \leq 2+3 m+h$. For each clause C_{j}, let P_{j} be one among the three paths for C_{j} that use a vertex whose label is a literal set to true in the assignment. There is one such path because the assignment satisfies Φ. Paths P_{0}, \ldots, P_{h} are such that $l_{0}\left(P_{0}\right)+\cdots+l_{h}\left(P_{h}\right) \leq 2+3 m+3 h$.

Suppose now that there are internally disjoint paths P_{0}, \ldots, P_{h} from s to t in D such that $l_{0}\left(P_{0}\right)+\cdots+$ $l_{h}\left(P_{h}\right) \leq 2+3 m+3 h$. Note that $M>2+3 m+3 h$, because $c \geq 1$. Therefore, P_{0}, \ldots, P_{h} use only arcs whose length is one in their respective length functions. In particular, P_{0} uses necessarily arcs $s v_{0}$ and $v_{h} t$ and passes by vertices v_{1}, \ldots, v_{h-1}. To go from v_{i-1} to v_{i}, path P_{0} uses either Q_{i} or \bar{Q}_{i}. Set variable x_{i} to true if P_{0} uses \bar{Q}_{i} and set x_{i} to false if P_{0} uses path Q_{i}. For each C_{j}, path P_{j} has to be one of the length-two paths for C_{j}. Let \tilde{x}_{i} be the label of the middle in P_{j}. If P_{0} uses Q_{i}, then $\tilde{x}_{i}=\bar{x}_{i}$ (or P_{j} and P_{0} would not be internally disjoint). If P_{0} uses \bar{Q}_{i}, then $\tilde{x}_{i}=x_{i}$. In both cases, \tilde{x}_{i} is TRUE in the assignment and therefore this assignment satisfies C_{j}, for all j.

To complete the proof of Theorem 1.3, it is enough to describe how to use algorithm A to get a polynomial-time algorithm for 3 -sat. Just run algorithm A on the constructed instance of k-SHORTEST paths. It returns paths P_{0}, \ldots, P_{h}. If $l_{0}\left(P_{0}\right)+\cdots+l_{h}\left(P_{h}\right)<M$, then Φ is satisfiable, otherwise Φ is not satisfiable. The resulting algorithm is clearly polynomial and solves 3 -sat. Indeed, assume that $l_{0}\left(P_{0}\right)+\cdots+l_{h}\left(P_{h}\right) \geq M$. Algorithm A is an n^{c}-approximation, where n is the number of vertices of D, that is, $n=3+3 m+h$. Therefore, the value of an optimal solution for this instance of the k-SHORTEST paths is at least $M /(3+3 m+h)^{c}>2+3 m+3 h$. By the claim, Φ is not satisfiable. Now, assume $l_{0}\left(P_{0}\right)+\cdots+l_{h}\left(P_{h}\right)<M$. This means P_{0} uses neither st nor arcs in the paths of the clauses. Therefore P_{0} uses arcs $s v_{0}$ and $v_{h} t$ and, for each i, uses either Q_{i} or \bar{Q}_{i}. Thus $l_{0}\left(P_{0}\right) \leq 2+3 m+h$. Also, each path P_{j} has to be one of the paths for clause C_{j}, otherwise $l_{j}\left(P_{j}\right) \geq M$. Hence $l_{j}\left(P_{j}\right)=2$, for all j, and $l_{0}\left(P_{0}\right)+\cdots+l_{h}\left(P_{h}\right) \leq 2+3 m+3 h$. By the claim, Φ is satisfiable.

This theorem also holds for any polynomial-time computable function f : there is no polynomial-time $f(|I|)$-approximation algorithm for k-Shortest paths in acyclic digraphs. Here, I denotes an arbitrary instance of k-SHORTEST PATHS in acyclic digraphs.

5 Minimizing sum of lengths

Consider the following shortest disjoint paths problem:

$$
\begin{aligned}
\text { given: } & \text { - an undirected planar graph } G=(V, E), \text { embedded in } \mathbb{R}^{2} ; \\
& - \text { pairs }\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\} \text { of vertices on the boundary of } G ; \\
& - \text { a non-negative function } l \text { on the edges of } G ; \\
\text { find }: & - \text { pairwise vertex-disjoint paths } P_{1}, \ldots, P_{k} \text { in } G \text { where } P_{i} \text { is an } s_{i}-t_{i} \text {-path, } \\
& \text { for each } i=1, \ldots, k, \text { and } l\left(P_{1}\right)+\cdots+l\left(P_{k}\right) \text { is as small as possible. }
\end{aligned}
$$

We denote this problem by $\operatorname{SDP}\left(G,\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}\right)$, or simply by SDP, when the instance is clear from the context.

If the vertices $s_{1}, \ldots, s_{k}, t_{k}, \ldots, t_{1}$ occur in this order when following the boundary of G, then SDP can be seen as a particular case of the min-cost flow problem. Indeed, from G, we construct a digraph D by splitting each vertex v of G into two vertices v^{+}and v^{-}, joined by an arc $\left(v^{-}, v^{+}\right)$of cost zero. An edge $v w$ of G becomes arcs $\left(v^{+}, w^{-}\right)$and $\left(w^{+}, v^{-}\right)$of D, both of cost $l(v w)$. In addition, D has vertices s, t and $\operatorname{arcs}\left(s, s_{i}^{-}\right),\left(t_{i}^{+}, t\right)$, for $i=1, \ldots, k$, of cost zero. Solving SDP is equivalent to finding a maximum s - t-flow of minimum cost in D, with each arc having capacity one. Hence, in this particular case, SDP can be solved in polynomial time.

A graph $G=(V \cup\{c\}, E)$ is called a wheel if $G-c$ is a circuit and $\{v, c\} \in E$ for each v in V. Grötschel, Martin and Weismantel [4] showed that if $G=(V \cup\{c\}, E)$ is a wheel and $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ occur in this order when following the circuit $G-c$ then the edge-disjoint version of SDP can be solved in polynomial time. Moreover, Grötschel, Martin and Weismantel gave a complete description of the path packing polytope (the convex hull of incident vectors of sets $E^{\prime} \subseteq E$, such that $G\left[E^{\prime}\right]$ is a packing of edge-disjoint s_{i} - t_{i}-paths in G).

Using dynamic programming, we show that, also in the following case, SDP can be solved in polynomial time:
k is fixed and the vertices $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ occur in this
order when following the boundary of G.

We assume that SDP is feasible (this can be tested in linear time) and that G is 2-connected.
We shall use the following notation. If P is a path and u, v are vertices in P then $P(u, v)$ is the subpath of P connecting u to v. We denote by Q_{i} a shortest $s_{i}-t_{i}$-path. Let R_{i} be the subgraph of G induced by the vertices in the closed region bounded by the path Q_{i} and the path on the boundary of G from s_{i} to t_{i} containing no other s_{j} or $t_{j}(i=1, \ldots, k)$. Also, let $Q_{i, j}:=R_{i} \cap R_{j}$. By shortcut arguments, we may assume that $Q_{i, j}$ is either a path or empty, for $i \neq j$. Figure 5 illustrates the notation. There, P_{1}, P_{2}, P_{3} are paths of an optimal solution.

Let $G,\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}$ and l be an instance of SDP with the property that $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ occur in this order when following the boundary of G. Observe that SDP has an optimal solution P_{1}, \ldots, P_{k} so that P_{i} is entirely contained in the region $R_{i}(i=1, \ldots, k)$.

Consider some i and j with $i \neq j$. Let $Q_{i, j}:=\left(v_{0}, e_{1}, v_{1}, \ldots, e_{d}, v_{d}\right)$. We call (f, h) a possible choice (for (i, j)) if $f=h=$ nil or $f=v_{p}$ and $h=v_{q}$ for some p, q satisfying $0 \leq p \leq q \leq d$. We say that $\left(f, h, f^{\prime}, h^{\prime}\right)$ is a feasible choice (for (i, j)) if (f, h) and $\left(f^{\prime}, h^{\prime}\right)$ are possible choices and if $f \neq$ nil $\neq f^{\prime}$ implies $\{f, h\} \cap\left\{f^{\prime}, h^{\prime}\right\}=\emptyset$. For each feasible choice $\left(f, h, f^{\prime}, h^{\prime}\right)$, let

$$
\begin{aligned}
G_{i, j, f, h, f^{\prime}, h^{\prime}}:= & G\left[V\left(R_{i}\right) \backslash\left(V\left(Q_{i, j}\right) \backslash V\left(Q_{i, j}(f, h)\right)\right)\right] \\
& \cup G\left[V\left(R_{j}\right) \backslash\left(V\left(Q_{i, j}\right) \backslash V\left(Q_{i, j}\left(f^{\prime}, h^{\prime}\right)\right)\right)\right],
\end{aligned}
$$

where $Q_{i, j}($ nil, nil $):=\emptyset$. Finally, we say that a sequence

$$
\left(\left(f_{i, j}, h_{i, j}, f_{i, j}^{\prime}, h_{i, j}^{\prime}\right): 1 \leq i<j \leq k\right)
$$

Figure 5: Illustration of the definitions.
is an acceptable choice provided that $\left(f_{i, j}, h_{i, j}, f_{i, j}^{\prime}, h_{i, j}^{\prime}\right)$ is a feasible choice for each (i, j), for all $1 \leq i<$ $j \leq k$.

Our dynamic programming approach is based on the following optimality criterion:
Let P_{1}, \ldots, P_{k} be an optimal solution to SDP and let $f_{i}, h_{i}, f_{j}, h_{j}$ be the first and last vertices of $Q_{i, j}$ in P_{i} and in P_{j}, respectively, for some i, j with $1 \leq i<j \leq k$. Then $P_{i}\left(f_{i}, h_{i}\right), P_{j}\left(f_{j}, h_{j}\right)$ is an optimal solution to $\operatorname{SDP}\left(G_{i, j, f_{i}, h_{i}, f_{j}, h_{j}},\left\{f_{i}, h_{i}\right\},\left\{f_{j}, h_{j}\right\}\right)$ (see Figure 6).

Figure 6: Illustration of the optimality condition for SDP.
The algorithm consists of first computing, for each (i, j), with $1 \leq i<j \leq k$, and for each feasible choice ($f, h, f^{\prime}, h^{\prime}$) for (i, j), a solution $P_{i, j, f, h, f^{\prime}, h^{\prime}}, P_{j, i, f, h, f^{\prime}, h^{\prime}}$ to $\operatorname{SDP}\left(G_{i, j, f, h, f^{\prime}, h^{\prime}},\{f, h\},\left\{f^{\prime}, h^{\prime}\right\}\right)$, where, $P_{i, j, \text { nil }, \text { nil }, f^{\prime}, h^{\prime}}:=\emptyset$ and $\left.P_{j, i, f, h, \text { nil, nil }}:=\emptyset\right)$. Now, we enumerate all acceptable choices

$$
A:=\left(\left(f_{i, j}, h_{i, j}, f_{i, j}^{\prime}, h_{i, j}^{\prime}\right): i, j=1, \ldots, k, i<j\right)
$$

(so, $\left(f_{i, j}, h_{i, j}, f_{i, j}^{\prime}, h_{i, j}^{\prime}\right)$ is a feasible choice for all (i, j) with $\left.1 \leq i<j \leq k\right)$ and we compute $P_{1}^{A}, \ldots, P_{k}^{A}$, where P_{i}^{A} is a shortest s_{i} - t_{i}-path in

$$
G\left[\left(V\left(R_{i}\right) \backslash V\left(Q_{i, j}\right)\right) \cup\left(\cup_{i \neq j} V\left(P_{i, j, f_{i, j}, h_{i, j}, f_{i, j}^{\prime}, h_{i, j}^{\prime}}\right)\right)\right] \quad(i=1, \ldots, k),
$$

if there exists any.
The algorithm returns, for some acceptable choice A^{*}, vertex-disjoint paths $P_{1}^{A^{*}}, \ldots, P_{k}^{A^{*}}$ so that,

$$
\sum_{i=1}^{k} l\left(P_{i}^{A^{*}}\right)=\min \left\{\sum_{i=1}^{k} l\left(P_{i}^{A}\right) \mid A \text { is an acceptable choice }\right\} .
$$

Theorem 5.1 If $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ occur in this order when following the boundary of G then, for each fixed k, SDP can be solved in polynomial time.

Proof. Any solution P_{1}, \ldots, P_{k} to SDP such that P_{i} is a subgraph of R_{i} induces an acceptable choice to SDP. (For each (i, j) with $i<j$, we define $\left(f_{i, j}, h_{i, j}, f_{i, j}^{\prime}, h_{i, j}^{\prime}\right)$ as the first and last vertices of $Q_{i, j}$ in P_{i} and P_{j}, respectively. If the path $Q_{i, j}$ does not meet, say, P_{i} then $f_{i, j}:=h_{i, j}:=$ nil.) Since by shortcut arguments there exists at least one such a solution, it follows that the algorithm generates and returns a solution to SDP.

One sees that $\operatorname{SDP}\left(G_{i, j, f, h, f^{\prime}, h^{\prime}},\{f, h\},\left\{f^{\prime}, h^{\prime}\right\}\right)$ can be solved in polynomial time, as (if $f \neq$ nil $\neq f^{\prime}$) $f, h, f^{\prime}, h^{\prime}$ are vertices on the boundary of $G_{i, j, f, h, f^{\prime}, h^{\prime}}$. Thus, in order to show polynomiality, it remains to verify that the number of acceptable choices is polynomially bounded. Indeed,

$$
\mid\left\{Q_{i, j} \mid i<j \text { and } Q_{i, j} \neq \emptyset\right\} \mid=O\left(k^{2}\right)
$$

and there exist $O\left(n^{4}\right)$ feasible choices for each (i, j). Hence, there are $O\left(n^{4 k^{2}}\right)$ acceptable choices.
Remark. Using similar techniques one can prove that if $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ occur in this order when following the boundary of G then the edge-disjoint version of SDP is polynomially solvable for each fixed k. It can also be proved that if, in addition, $|i-j|>1$ implies $Q_{i, j}=\emptyset$, then SDP can be solved in polynomial time (here k does not need to be fixed).

Acknowledgments

We thank Bruce Shepherd for bringing the k-shortest paths problem to our attention. We also thank Alexander Schrijver and Bruce Shepherd for many valuable comments and suggestions.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[2] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM Journal on Computing 5 (1976), 691-703.
[3] S. Fortune, J. Hopcroft, and J. Wyllie, The direct subgraph homeomorphism problem, Theoretical Computer Science 10 (1980), 111-121.
[4] M. Grötschel, A. Martin, and R. Weismantel, Optimum path packing on wheels: the consecutive case, Comput. Math. Appl. 31 (1996), no. 11, 23-35.
[5] T. Nishizeki and N. Chiba, Planar graphs: Theory and algorithms, North-Holland, Amsterdam, 1988.
[6] Y. Perl and Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, Journal of the Association for Computing Machinery 25 (1978), 1-9.
[7] A. Schrijver, A group-theoretical approach to disjoint paths in directed graphs, CWI Quarterly 6 (1993), 257-266.
[8] , Combinatorial optimization-polyhedra and efficiency, Springer-Verlag, forthcoming book, Part VII. Multiflows and Disjoint Paths.
[9] L.J. Stockmeyer, Planar 3-colorability is NP-complete, SIGACT News 5 (1973), 19-25.

[^0]: *Research supported in part by PRONEX/CNPq 664107/1997-4 (Brazil).
 ${ }^{\dagger}$ Research supported in part by CNPq Proc. 301174/97-0 (Brazil).
 ${ }^{\ddagger}$ Research supported in part by CAPES-PROAP (Brazil).

