Multilength Single Pair Shortest Disjoint Paths *

Cristina G. Fernandes® Hein van der Holst? ! José Coelho de Pinal
! Instituto de Matemética e Estatistica 2 Fachbereich Mathematik und Informatik,
Universidade de Sao Paulo - Brazil Freie Universitéat Berlin,
Rua do Matao 1010, 05508-090 Sao Paulo/SP, Brazil Arnimallee 26, D-14195 Berlin, Germany
E-mail: {cris,coelho}@ime.usp.br E-mail: hvdholst@math.fu-berlin.de

Topics: algorithms and computational complexity.

Abstract
The k-SHORTEST PATHS problem consists of: given a digraph D, a pair (s, t) of vertices of D and k
non-negative functions Iy, ..., [} on the arcs of D, find k internally vertex-disjoint paths Py, ..., P from

s to t such that I3 (P;) + - - - 4+ [(Py) is as small as possible. We describe, for each fixed k, a polynomial-
time algorithm for the k-SHORTEST PATHS restricted to acyclic digraphs. We prove two complexity
results: unless P = NP, for each constant ¢, there is no polynomial-time nc-approximation algorithm
(1) for the 2-SHORTEST PATHS, where n is the number of vertices of D, and (2) for the k-SHORTEST
PATHS restricted to acyclic digraphs. We also show a polynomial-time algorithm for a multicommodity
variation of the problem in planar graphs.

“Research supported in part by PRONEX/CNPq 664107/1997-4 (Brazil).
"Research supported in part by CNPq Proc. 301174/97-0 (Brazil).
tResearch supported in part by CAPES-PROAP (Brazil).

1 Introduction

The well-known single pair shortest path problem consists of: given a digraph D, a non-negative function
[on the arcs of D and two vertices s and ¢, find a path P from s to ¢ that minimizes [(P), where [(P)
denotes the sum of [(e) over all arcs e in P. This problem is solvable in polynomial time. We address the
following generalization of the single pair shortest path problem, which we call k-SHORTEST PATHS:

given : — a digraph D = (V, A);
— a pair (s,t) of vertices of D;
— non-negative functions [y, ..., [; on the arcs of D;
find: - k internally vertex-disjoint paths Pj,..., P, from s to ¢ such that

W(Py) + -+ 1 (Pr)

is as small as possible.

For [y = ... =l the k-SHORTEST PATHS reduces to the min-cost flow problem and, therefore, can be solved
in polynomial time.

We consider first the problem on acyclic digraphs. Algorithms for finding arc-disjoint paths in acyclic
digraphs have applications on scheduling problems [1] and aircraft assignment problems [7]. We reformulate
the k-SHORTEST PATHS in acyclic digraphs in terms of finding a shortest path in a (large) acyclic digraph.
This is a known reformulation due to Perl and Shiloach [6] for finding two vertex-disjoint paths in an acyclic
digraph. Later this was extended by Fortune, Hopcroft and Wyllie [3] in order to derive a polynomial-time
algorithm for the k vertex-disjoint paths problem in acyclic digraphs (see also Schrijver [7]). From this
reformulation, we derive the theorem below.

Theorem 1.1 For each fized k, there exists a polynomial-time algorithm for the k-SHORTEST PATHS re-
stricted to acyclic digraphs.

We also prove the following inapproximability result, which shows that the problem becomes much
harder on general digraphs, even if k = 2.

Theorem 1.2 For each constant c, there is no polynomial-time n-approximation algorithm for the 2-
SHORTEST PATHS unless P = NP, where n is the number of vertices of the given digraph.

With respect to the intractability and inapproximabity of the problem in acyclic digraphs, we show the
following theorem.

Theorem 1.3 For each constant c, there is no polynomial-time n°-approzimation algorithm for the k-
SHORTEST PATHS restricted to acyclic digraphs unless P = NP, where n is the number of vertices of the
given digraph.

Theorems 1.2 and 1.3 show that the result in Theorem 1.1 is tight in the sense that it does not hold,
unless P = NP, if we drop either the restriction on k£ being fixed or on D being acyclic. Surprisingly, the
problem becomes much harder if we drop any of these restrictions.

We consider also a variant of the problem in undirected graphs, with multiple pairs of terminals. For
this variant, we present a polynomial-time algorithm for the case where all length functions are the same,
the given graph is planar and the terminals lie on the boundary of the same face in an adequate order.

2 Disjoint paths in acyclic digraphs

In order to prove Theorem 1.1, we consider the following disjoint paths problem:

given : — a directed graph D = (V, A);

— pairs (81,%1), ..., (S, tx) of vertices of D;
— subsets Aq,..., A of A;
—a set H of pairs {3, j} from {1,...,k}; (1)

find: — paths Pi,..., P, in D such that:
(i) P; is an s;-t;-path in D[A4;] (i =1,...,k);
(it) P; and Pj are vertex-disjoint for {i,j} in H.

Fortune, Hopcroft and Wyllie [3] showed that this disjoint paths problem is NP-hard even for k = 2,
Ay = Ay = A and H = {{1,2}}. According to Even, Itai and Shamir [2], problem (1) is also NP-hard for
acyclic digraphs. In fact, problem (1) is NP-hard even for a fixed acyclic digraph, as noted by Alexander
Schrijver. At the end of this section, we include the proof of this unpublished and surprising result.

We prove in the next theorem that problem (1) is polynomially solvable for instances satisfying the
following condition:

There exists no directed cycle C' = Pj, - Pj, - --- - Pj, in D such that:
(¢) Pj; is a path from u; to ui11 in D[Aj], w; # tj;, (i = 0,...,1),
where up11 = ug;
(lZ) {jOajl}a SRR {jt—lajt}a {jtajO} belong to H.

If P and @ are paths then P-(@Q denotes the path obtained by the concatenation of P and (). Note that any
acyclic digraph satisfies the condition above. This theorem is a slight generalization of a result by Fortune,
Hopcroft and Wyllie [3]. They showed that, for each fixed k, the problem of finding k vertex-disjoint paths
in an acyclic digraph is polynomially solvable.

(2)

Theorem 2.1 For each fized k, there exists a polynomial-time algorithm for the disjoint paths problem
(1) for instances satisfying (2).

Proof. The proof is a minor modification of Schrijver’s proof [7] of Fortune, Hopcroft and Wyllie’s k
vertex-disjoint paths theorem [3, 8]. We include it here for the sake of completeness.

Consider an instance of problem (1), that is, a digraph D, pairs (s1,t1),. .., (Sk, tx) of vertices of D,
subsets Aj,..., A of arcs of D and a set H of pairs {i,j} from {1,...,k}. Make an auxiliary digraph
D" = (V'] A") as follows. The vertex set V' consists of all k-tuples (v1,...,vx) of vertices of D such that
v; # vj for all {i,j} in H. There is an arc in D' from (v1,...,vk) to (w1,...,wy) if and only if there exists
an i in {1,...,k} such that:

(i) vj = w; for all j # i;
(13) (vi,w;) is an arc of Aj; (3)
(i13) if j # 4, {i,j} € H and vj # t;, there is no path in D[A;] from v; to v;.
Note that, as k is fixed, the size of D’ is polynomially bounded on the size of D. Moreover, the following
holds:

D contains paths Py,..., P, such that P; is an s;-t;-path in D[A;] (1 = 1,...,k)
and P; and P; are vertex-disjoint for {4, j} in H

if and only if
D’ contains a path P from (s1,...,s) to (t1,...,%).

(4)

Suppose that Py, ..., P exist. For any 4, let P; follow the vertices v;,vi1,...,vit. S0 v;o = s; and
v;t; = t; for each 4. Choose ji, ..., ji such that 0 < j; <t; for each ¢ and such that:

(i) D' contains a path from (s1,...,sx) to (vij,,..., vk,), and
(#3) 41 + -+ + jr is as large as possible.

Let I :={i | j; < t;}. Let us prove by contradiction that I = (). Suppose I # (). By the definition of
D’ and the maximality of j; + --- + ji, for each ¢ in I, there exists an 7' # ¢ such that there is a path in
D[Ay] from vy j, to v;j,, with vy ;, # ty and {i',i} in H. So, for i in I, each vertex v; j; is an endpoint of
a path in D[Ay] starting at another vertex vy j, # t;,, with 4’ in I and {i,i'} in H. This contradicts (2),
so I =, that is, j; = t; for all 4, in which case we are done.

Conversely, let P be a path from (s1,...,sg) to (¢1,...,%) in D'. Let P follow the vertices (v j, ..., vz ;)
for j =0,...,t. So vjg = s; fori =1,...,k. For each 1 = 1,...,k, let P, be the path in D following v; ;
for j = 0,...,t, taking repeated vertices only once. So P; is an s;-t;-path in D[A;]. Moreover, P; and P;
are vertex-disjoint for each {i,7} in H. Indeed, suppose P; and P» (say) have a vertex in common, where
{1,2} belongs to H, that is, v1,; = v j» for some j # j'. Without loss of generality, j < j' and vy j # vq j41.
By the definition of D', there is no path in D[A5] from vy ; to v1 ;. This however contradicts the fact that
v1,j = vg j» and that there exists a path in D[A] from vg; to vy jr.

Therefore, to solve problem (1), it is enough to find a path in D’ from (sq,...,sg) to (t1,...,%), which
can be done in polynomial time. =

The arc-disjoint version of the disjoint paths problem (1) consists of replacing (i7) in (1) by:
P; and Pj are arc-disjoint for {4, j} in H. (5)

This arc-disjoint paths problem can be reformulated in terms of the disjoint paths problem (1). Indeed,
let an instance of the arc-disjoint paths problem be given, that is, a digraph D = (V, A), pairs of vertices
(s15t1)y- -, (Sk,tx), arc sets Ay,..., Ax and a set H of pairs {i,5} from {1,...,k}. We may assume that

each s; is the tail of a unique arc a; of D and that t; is the head of a unique arc b; of D (i = 1,...,k).
We make a digraph D' = (V'; A") as follows. The vertex set of D' is the arc set A of D (i.e. V' := A).
There is an arc in D’ from a to b if the head of a and the tail of b coincide. For i = 1,...,k, we define

Al :={(a,b) € A" | a,b € A;}. Finally we take H' := H.

Finding paths Pi,..., P, in D satisfying (5) such that P; is an s;-t;-path in D[A;] (i = 1,...,k) is
equivalent to the problem of finding paths P[,..., P} in D’ satisfying (ii) of (1) such that P; is an a;-b;-
path in D'[A]] (i = 1,...,k). Hence, the arc-disjoint version of problem (1) is polynomially solvable for
instances satisfying a condition similar to condition (2).

Now, suppose that, for an instance of problem (1), one is given also non-negative functions ly,...,l; on
the arcs of D. Then it is possible to find in polynomial time a solution P, ..., Py of problem (1) such that
Zle I;(P;) is as small as possible. Just define a length function on the arcs of D’ (the digraph from the
proof of Theorem 2.1) as follows. The length of an arc of D' from (v1,...,vg) to (ws,...,wy) satisfying
(3) is I;(v;, w;). Now, a shortest path from (s1,...,s;) to (¢1,...,%) in D' with this length function on its
arcs gives the desired paths. As the shortest path problem in an acyclic digraph with arbitrary length on
its arcs can be solved in linear time, we have Theorem 1.1.

Theorem 1.1 For each fized k, there exists a polynomial-time algorithm for the k-SHORTEST PATHS re-
stricted to acyclic digraphs. W

We conclude this section with the proof of Schrijver’s result on the complexity of problem (1).

Theorem 2.2 (A. Schrijver) The disjoint paths problem (1) restricted to instances having the digraph
in Figure 1 as input is NP-hard. =

Proof. Consider the following transformation of PLANAR 3-COLORABILITY to problem (1) restricted to
instances having the acyclic digraph displayed in Figure 1 as input. A k-coloring of a graph G = (V, E)
is a function f from V to {1,...,k} such that f(u) # f(v) whenever {u,v} belongs to E. Graph G is

k-colorable if G has a k-coloring. The PLANAR 3-COLORABILITY problem consists of: given: a planar
graph G = (V, E); question: is G 3-colorable? PLANAR 3-COLORABILITY was shown to be NP-complete by
Stockmeyer [9].

Figure 1: Problem (1) is NP-hard for instances having this acyclic digraph as input.

Let us be given a planar graph G = (V, E) with V' = {v1,...,v;} and let f’ be a 4-coloring of G. This
function f’ can be computed in polynomial time (see, for instance, Nishizeki and Chiba [5]). We construct
an instance of problem (1) depending on G' and f' as follows. Let H := {{i,j} | {vi,v;} € E} and, for
i =1,...,k, let s; := up(y,), ti := wpr(y,) and A; be the set of all arcs of the digraph in Figure 1. We
claim that G is 3-colorable if and only if the constructed instance of problem (1) is feasible. Suppose G is
3-colorable and let f be a 3-coloring of G. For 7 =1,...,k, let P; be the path from s; to ; that traverses
Cf(v;)- One can check that Pi,..., P is a solution to the problem (1). Conversely, let Pp,..., Py be a
solution to the disjoint paths problem (1) and define f from V to {1,2,3} such that, for i = 1,...,k, the
path P; from s; to ?; traverses the vertex cy(,,). One can verify that f is a 3-coloring of G. =

3 Inapproximability for the 2-SHORTEST PATHS

In this section we analyze the complexity of the 2-SHORTEST PATHS problem. Specifically, we prove
Theorem 1.2.

Theorem 1.2 For each constant c, there is no polynomial-time nc-approzimation algorithm for the 2-
SHORTEST PATHS unless P = NP, where n is the number of vertices of the given digraph.

Proof. We may assume ¢ > 1. Suppose that there is a polynomial-time napproximation algorithm A
for the 2-SHORTEST PATHS, where n is the number of vertices of the given digraph. Let us show that, if
this is the case, we can solve 3-SAT in polynomial time, which implies that P = NP. For this, consider the
following polynomial-time reduction from 3-SAT to 2-SHORTEST PATHS.

Let ® be an instance of 3-SAT, that is, a set {C,...,Cy,} of 3-clauses on variables x1,...,z,. Let us
describe a digraph D, two length functions /; and [5 on the arcs of D and two vertices s and .

For each variable x;, denote by d; the largest between the number of times z; appears in ® and the
number of times that Z; appears in ®. There is a gadget as in Figure 2(a) for each z;. The number of
undirected four-cycles in the gadget is d; + 1. The source vertex in the gadget is called v; and the sink
vertex, w;. The vertices of in-degree one in the gadget are partitioned into two sets: L; and R;, as in
Figure 2(a).

For each clause Cj, there is a gadget as in Figure 2(b). The sink and source vertices are called u; and
[; respectively. Each of the other vertices has as label one of the literals in clause Cj.

The digraph of the instance of 2-SHORTEST PATHS is obtained as follows. First, we connect the gadgets of
all variables and clauses in series, identifying w; and v;41 (¢ = 1,...,n—1)and u;and [, (j = 1,...,m—1).
Then, we add an arc from s to vy, one from wjy, to {1 and one from u,, to t. The arcs we have up to now

@

vi
L; @ R;
w;
uj
lj

>

(b) C

T T3

Figure 2: (a) The gadget for variable z;. One, between x; or Z;, appears three times in ®, while the other
appears at most three times. (b) The gadget for clause C; = {z1,Z2,23}. (c) Arcs of type 1 of the digraph
built from & = ({L'1 Vxo V xg)(fl VZaV 53).

are said to be of type 1. See Figure 2(c). Second, we add three arcs from s: one to ¢, one to the first vertex
in L1 and another to the first vertex in Ry. Similarly, we add two arcs to ¢: one from the last vertex in
Lj, and one from the last vertex in Rj. For each two consecutive vertices in L;, we add a path from the
upper one to the lower one, of length one or two. When the path has length two, the middle vertex is one
of the vertices labeled z; in the clause gadgets. The same holds for R; with Z; in the place of z;. This is
done in such a way that any labeled vertex is in exactly one of these two-length paths. Finally, there are
also arcs from the last vertex in L; and from the last vertex in R; to both, the first vertex in L;,; and the
first vertex in R; 1 (1 = 1,...,n —1). The arcs added in this second phase are said to be of type 2. This
finishes the description of the digraph D and vertices s and ¢. See Figure 3(a) for a complete example.
Note that the number of vertices in this digraph is at most 4 + 3d 4+ 3h + 4m, where d := 2?21 d; < 3m.
Also, there are two internally disjoint paths from s to ¢ in D.

To complete the description of the instance of 2-SHORTEST PATHS, it is missing only to describe the
two length functions [and [5 on the arcs of D. In [y, arcs of type 1 have length one, while arcs of type 2
have length M := (4 +3d + 3h +4m)°T! + 1. In I, all arcs have length one, but arc st, whose length is M.

Note that the construction of D, s, ¢, [; and [takes polynomial time on the size of ®.

Claim 3.1 @ is satisfiable if and only if there are two internally disjoint paths Py and P> from s to t in
D such that I1(Py) + l5(Ps) <4+ 3d + 3h + 4m.

Proof. Assume @ is satisfiable and consider an assignment which satisfies ®. Let us describe two internally
disjoint paths P; and P, in D from s to ¢ such that I1(P;) + l2(P) < 4+ 3d 4+ 3h + 4m.

Path P starts with arc sv;, goes from v; to wp using only arcs in the variable gadgets, then uses arc
wpl1 and goes from [y to u,, using only arcs in the clause gadgets. It ends with arc u,,t. Inside the variable
gadget for z;, path P, goes through all vertices in L; if z; is TRUE in the assignment or all vertices in R;
if z; is FALSE. In the clause gadgets, P, goes always through a vertex whose label is a TRUE literal in the
assignment. Note that P, uses only type 1 arcs. Thus [y(P) = 3 + 2d + 2h + 2m.

(b)

Figure 3: (a) Digraph built from ® = (21 V T2 V x3)(T1 V T2 V T3). The dashed arcs have [; equals one,
while the others have [y equals M. (b) Paths P; and P» corresponding to the assignment 1 = F, zo =T
and z3 =T.

Path P, uses only type 2 arcs. If 21 is TRUE (FALSE), it goes from s to the first vertex in L; (Ry).
From there, it traverses all vertices in L; (R;) and jumps to Lo if z9 is TRUE or to Ry if 9 is FALSE and
proceeds in the same way until it gets to the last vertex in Ry or Lj. In this traversal, it goes back and
forth to the clause gadgets through some length-two paths, always using a vertex whose label is a literal
set to FALSE. From the last vertex in Lj or Ry, it goes directly to t. Note that P, is indeed internally
disjoint from Pp, as it uses only type 2 arcs. Moreover, lo(Py) =1+ d + h + 2m.

Therefore [1(Py) + l2(P2) = 4 4+ 3d + 3h + 4m, as desired. See in Figure 3(b) how P; and P» look like
for the example given in Figure 3(a).

Now assume there are two internally disjoint paths P; and P in D from s to ¢ such that Iy (Py)+1(Ps) <
4 4+ 3d 4+ 3h + 4m. Note that P, can only use type 1 arcs, otherwise [1(P1) > M > 4 + 3d + 3h + 4m
(the last inequality holds as ¢ > 1). Also, P» does not use arc st, as la(st) = M > 4 + 3d + 3h + 4m. As
P, uses only type 1 arcs, P, uses svi, then it goes from v; to wy using only arcs in the variable gadgets,
then it uses wyl; and goes from [y to uy, inside the clause gadgets, finishing with u,,t. Path P; cannot use
vertices both in L; and R;, otherwise the only path from s to ¢ in D internally disjoint from P; consists of
st. But ly(st) = M > 4+ 3d + 3h + 4m. Indeed, P; must pass by all vertices of the variable gadget x; not
in L; U R; and by all unlabeled vertices in the clause gadgets. But then, if P, uses the first vertex in L;, it
has no other way except using all other vertices in L;. The same holds for R;.

Now we are ready to describe the assignment. Set z; to TRUE if and only if P, uses vertices of L;.
Note that P, visits all labeled vertices in the clause gadgets whose labels were set to FALSE. But path P;
necessarily uses a labeled vertex in each clause gadget. The label z; of this labeled vertex must then be
TRUE, which means there is a TRUE literal in each clause. That is, ® is satisfiable. =

Now we proceed with the proof of Theorem 1.2. Run algorithm A on the constructed instance of 2-
SHORTEST PATHS. The algorithm returns two paths, Py and P. If I (P;)+12(Py) < M then ® is satisfiable,
otherwise ® is not satisfiable.

First, note that the above algorithm runs in polynomial-time, as the reduction and A take polynomial-
time. Moreover, it solves 3-SAT. Indeed, assume I1(P;) + lo(P) > M. As A is an n“approximation and
n = 4+ 3d + 3h + 4m, the value of an optimal solution for this instance of the 2-SHORTEST PATHS is
at least M /(4 + 3d + 3h + 4m)¢ > 4 + 3d + 3h + 4m. By the claim, ® is not satisfiable. Now, assume
I1(P1) + l2(P,) < M. This means P, uses no type 2 arc. Any path from s to ¢ in D which uses no
type 2 arc uses exactly 3 + 2d 4+ 2h + 2m arcs of type 1, that is, [;(P;) = 3 + 2d + 2h + 2m. But then, as
n =44 3d + 3h + 4m, path P, uses at most 2 + d + h + 2m vertices, that is, lo(P) < 2+ d + h + 2m.
Therefore, by the claim, & is satisfiable. As 3-SAT is solvable in polynomial time only if P = NP, there is
no nfapproximation algorithm for 2-SHORTEST PATHS unless P = NP. m

In fact, it is easy to modify this theorem to show that, for any polynomial-time computable function
f, there is no polynomial-time f(|I|)-approximation algorithm for 2-SHORTEST PATHS, where I denotes an
arbitrary instance of 2-SHORTEST PATHS.

Consider the undirected edge/vertex-disjoint versions of the k-SHORTEST PATHS problem. There are
well-known reductions from the undirected edge-disjoint version to the undirected vertex-disjoint and to
the directed arc/vertex-disjoint versions of the problem. One can modify the proof of the previous theorem
in order to get the following stronger theorem.

Theorem 3.2 For each constant c, there is no polynomial-time n°-approzimation algorithm for the undi-
rected edge-disjoint 2-SHORTEST PATHS unless P = NP, where n is the number of vertices of the given
graph.

4 Inapproximability for acyclic digraphs

In this section we show that if k£ is non-fixed then the k-SHORTEST PATHS is hard to approximate, even
restricted to acyclic digraphs. The proof of the theorem below is a modification of the proof of Theorem 1.2.

Theorem 1.3 For each constant c, there is no polynomial-time n¢-approximation algorithm for the k-
SHORTEST PATHS restricted to acyclic digraphs unless P = NP, where n is the number of vertices of the
given digraph.

Proof. We may assume ¢ > 1. Suppose that there is a polynomial-time n°-approximation algorithm A
for the k-SHORTEST PATHS on acyclic digraph, where n is the number of vertices of the given digraph.
Consider the following polynomial-time reduction from 3-SAT to k-SHORTEST PATHS.

Let ® be an instance of 3-SAT, that is, a set {C,...,C,} of 3-clauses on variables x1,...,z). Let us
describe an acyclic digraph D, two vertices s and ¢ and length functions [y, ...,[; on the arcs of D.
Digraph D consists of vertices s, vy, ..., vp,t, arcs st, svy, vpt and, for each variable z;, two internally

disjoint paths, @Q; and Q;, from v;_; to v;. Path @Q; (Q;) has as many internal vertices as appearances of
z; (T;). Additionally, for each clause C}, there are three length-two paths from s to ¢, each one having as
middle vertex a vertex labeled by one of the literals in C';. This is done in such a way that no two of these
paths share the middle vertex. See Figure 4 for an example.

Let M := (34+3m+ h)°(2+3m +3h) + 1. For each Cj, set [;(e) := 1 if e is one of the arcs in the three
length-two paths added for C; and set [;(e) := M otherwise. Set ly(e) := 1 if e = svg or e = vt or e is
in path Q; or Q; for some i. Otherwise set ly(e) := M. This completes the description of the instance of
k-SHORTEST PATHS. Observe that D is acyclic and that there are k internally disjoint paths from s to ¢ in
D. Also, observe that D, s, t and [y, ...,[, can be constructed in polynomial time.

Claim 4.1 ® is satisfiable if and only if there are internally disjoint paths Py,..., Py from s to t in D

t

Figure 4: (a) Arcs for the variables. (b) Digraph for ® = (21 VZa V 23)(Z1 V T2 V T3).

such that lo(Po) + -+ + I(Py) <24 3m + 3h.

Proof. Assume @ is satisfiable and consider an assignment which satisfies ®. Let Py be the path starting
with arc svg, ending with arc v,t, and using Q;, if z; is FALSE, or Q;, if z; is TRUE, for each i. Note that each
labeled vertex in Py has as label a literal that is FALSE in the assignment. Moreover, ly(FPy) < 24 3m + h.
For each clause Cj, let P; be one among the three paths for C'; that use a vertex whose label is a literal set
to TRUE in the assignment. There is one such path because the assignment satisfies ®. Paths Py,..., P}
are such that lo(Py) + - + {4(Py) < 2+ 3m + 3h.

Suppose now that there are internally disjoint paths Py, ..., P, from s to ¢ in D such that lo(Py)+---+
Ih(Py) <24 3m + 3h. Note that M > 2 + 3m + 3h, because ¢ > 1. Therefore, P,..., P, use only arcs
whose length is one in their respective length functions. In particular, Py uses necessarily arcs svg and vt
and passes by vertices v1,...,v,_1. To go from v;_; to v;, path Py uses either Q; or Q;. Set variable z;
to TRUE if Py uses Q; and set z; to FALSE if Py uses path Q;. For each Cj, path P; has to be one of the
length-two paths for C;. Let Z; be the label of the middle in P;. If Py uses Q;, then Z; =Z; (or Pj and P
would not be internally disjoint). If Py uses Q;, then #; = ;. In both cases, #; is TRUE in the assignment
and therefore this assignment satisfies C';, for all j. =

To complete the proof of Theorem 1.3, it is enough to describe how to use algorithm A to get a
polynomial-time algorithm for 3-sAT. Just run algorithm A on the constructed instance of k-SHORTEST
PATHS. It returns paths Py,...,P,. If lo(Py) + -+ + In(Pn) < M, then ® is satisfiable, otherwise ®
is not satisfiable. The resulting algorithm is clearly polynomial and solves 3-SAT. Indeed, assume that
lo(Po) + -+ 1n(Py) > M. Algorithm A is an n®approximation, where n is the number of vertices of D,
that is, n = 3 + 3m + h. Therefore, the value of an optimal solution for this instance of the k-SHORTEST
PATHS is at least M /(3 + 3m + h)¢ > 2 4+ 3m + 3h. By the claim, ® is not satisfiable. Now, assume
lo(Po) + -+ 1n(Py) < M. This means Py uses neither st nor arcs in the paths of the clauses. Therefore
Py uses arcs svy and vyt and, for each i, uses either @; or Q;. Thus lo(Py) < 2 + 3m + h. Also, each
path P; has to be one of the paths for clause C;, otherwise [;(P;) > M. Hence [;(P;) = 2, for all j, and
lo(Py) + -+ +1n(Py) <2+ 3m + 3h. By the claim, ® is satisfiable. =

This theorem also holds for any polynomial-time computable function f: there is no polynomial-time
f(|I])-approximation algorithm for k-SHORTEST PATHS in acyclic digraphs. Here, I denotes an arbitrary
instance of k-SHORTEST PATHS in acyclic digraphs.

5 Minimizing sum of lengths

Consider the following shortest disjoint paths problem:

given : — an undirected planar graph G = (V, E), embedded in R?;
— pairs {s1,%1},...,{sk, tx} of vertices on the boundary of G;
— a non-negative function [on the edges of G;
find : — pairwise vertex-disjoint paths Py,..., Py in G where P; is an s;-t;-path,
foreach i =1,...,k, and I(Py) + --- 4+ [(P) is as small as possible.

We denote this problem by sDP(G, {s1,%1},...,{sk,tx}), or simply by SDP, when the instance is clear from
the context.

If the vertices s1,..., Sk, tk,- .., t1 occur in this order when following the boundary of G, then SDP can
be seen as a particular case of the min-cost flow problem. Indeed, from G, we construct a digraph D by
splitting each vertex v of G into two vertices v and v, joined by an arc (v—,v™") of cost zero. An edge
vw of G becomes arcs (v, w™) and (w*,v™) of D, both of cost [(vw). In addition, D has vertices s, t and
arcs (s,s;), (t,t), for i = 1,...,k, of cost zero. Solving SDP is equivalent to finding a maximum s-t-flow
of minimum cost in D, with each arc having capacity one. Hence, in this particular case, SDP can be solved
in polynomial time.

A graph G = (VU{c}, E) is called a wheel if G —c is a circuit and {v,c} € E for each v in V. Grétschel,
Martin and Weismantel [4] showed that if G = (V U {c}, E) is a wheel and s1,t1,..., Sk, t; occur in this
order when following the circuit G — ¢ then the edge-disjoint version of SDP can be solved in polynomial
time. Moreover, Grotschel, Martin and Weismantel gave a complete description of the path packing polytope
(the convex hull of incident vectors of sets E' C FE, such that G[E'] is a packing of edge-disjoint s;-t;-paths
in G).

Using dynamic programming, we show that, also in the following case, SDP can be solved in polynomial
time:

k is fixed and the vertices s1,t1,..., Sk, tx occur in this
order when following the boundary of G.

(6)

We assume that SDP is feasible (this can be tested in linear time) and that G is 2-connected.

We shall use the following notation. If P is a path and u, v are vertices in P then P(u,v) is the subpath
of P connecting u to v. We denote by (); a shortest s;-t;-path. Let R; be the subgraph of G induced by
the vertices in the closed region bounded by the path (); and the path on the boundary of G from s; to
t; containing no other s; or ¢; (i = 1,...,k). Also, let Q;; := R; N R;. By shortcut arguments, we may
assume that (); ; is either a path or empty, for ¢ # j. Figure 5 illustrates the notation. There, P;, P, P3
are paths of an optimal solution.

Let G, {s1,t1},...,{sk,tx} and [be an instance of SDP with the property that si,t1,..., s, t; occur
in this order when following the boundary of G. Observe that sSDP has an optimal solution P, ..., P so
that P; is entirely contained in the region R; (i = 1,...,k).

Consider some 4 and j with 7 # j. Let Q;; = (vo,e1,v1,...,eq,v4). We call (f,h) a possible choice
(for (4,7)) if f = h = nil or f = v, and h = v, for some p, ¢ satisfying 0 < p < ¢ < d. We say that
(f,h, f',h') is a feasible choice (for (i,7)) if (f,h) and (f’,h’') are possible choices and if f # nil # f'
implies {f,h} N {f',h'} = . For each feasible choice (f,h, f',h'), let

Gijsmpa = GIV(R)\ (V(Qij) \ V(Qij(f h)))]
U GIV(R)\ (V(Qij) \ V(Qii(f',h)))],

where Q; j(nil,nil) := (). Finally, we say that a sequence

((figs Pis fijoig) : 1 < i< j < k)

10

Figure 5: Illustration of the definitions.

is an acceptable choice provided that (fi,j,hi,j,fz-”j,h;’j) is a feasible choice for each (7,7), for all 1 < i <
j < k.
Our dynamic programming approach is based on the following optimality criterion:
Let Py, ..., P, be an optimal solution to SDP and let f;, h;, f;, h; be the first and last vertices
of Q;; in P; and in Pj, respectively, for some 4, j with 1 <4 < j < k. Then B;(f;, h;), Pj(fj, hj)
is an optimal solution to SDP(G; j 1, n,.f;.h; > Lfi> hi}s {fj: hj}) (see Figure 6).

Glls f hl ’ f3 !h3

1 1

Figure 6: Illustration of the optimality condition for SDP.

The algorithm consists of first computing, for each (i,7), with 1 < i < j < k, and for each feasible
choice (f,h, f',h') for (i,7), a solution P ¢n .1y Pjifhfrn to SDP(Gij pn pnrs{fs b}, {f',h'}), where,

P; jnitni,f p =0 and Pj; ¢ pnilnil :=0). Now, we enumerate all acceptable choices
A = ((fl,]ahz,jale,jvh;,])Z?]:]-a7k72<])
(80, (fiyjshiyj» fi j» i ;) is a feasible choice for all (i,7) with 1 < i < j < k) and we compute PA ... P,

where PiA is a shortest s;-t;-path in

GIV(R)\V(Qij)) U Uiz V(Bijigijhigosi e N (E=1,0k),

11

if there exists any.
The algorithm returns, for some acceptable choice A*, vertex-disjoint paths PIA*, e ,P,CA* so that,

Ele I(PA) = min{Zf:1 I(P/) | A is an acceptable choice}.

Theorem 5.1 If sy, ty,...,Sk, tx occur in this order when following the boundary of G then, for each
fized k, SDP can be solved in polynomial time.

Proof. Any solution Py,..., P, to sDP such that P; is a subgraph of R; induces an acceptable choice to
spP. (For each (i,7) with i < j, we define (f;;, hij, f] ;, h; ;) as the first and last vertices of @;; in P;
and Pj, respectively. If the path Q;; does not meet, say, P; then f;; := h;; := nil.) Since by shortcut
arguments there exists at least one such a solution, it follows that the algorithm generates and returns a
solution to SDP.

One sees that SDP(G j rn.f05{f b}, {f',h'}) can be solved in polynomial time, as (if f # nil # f7)
[y h, f',h' are vertices on the boundary of Gj j ¢, ¢ .p. Thus, in order to show polynomiality, it remains to
verify that the number of acceptable choices is polynomially bounded. Indeed,

{Qij | i <jand Qi # 0} = O(K)
and there exist O(n?) feasible choices for each (i, 7). Hence, there are O(n*”) acceptable choices.

Remark. Using similar techniques one can prove that if s1,¢1, ..., sk, tx occur in this order when following
the boundary of G then the edge-disjoint version of SDP is polynomially solvable for each fixed k. It can
also be proved that if, in addition, |i — j| > 1 implies Q; ; = 0, then SDP can be solved in polynomial time
(here k does not need to be fixed).

Acknowledgments

We thank Bruce Shepherd for bringing the k-SHORTEST PATHS problem to our attention. We also thank
Alexander Schrijver and Bruce Shepherd for many valuable comments and suggestions.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] S. Even, A. Itai, and A. Shamir, On the complezity of timetable and multicommodity flow problems,
SIAM Journal on Computing 5 (1976), 691-703.

[3] S. Fortune, J. Hopcroft, and J. Wyllie, The direct subgraph homeomorphism problem, Theoretical
Computer Science 10 (1980), 111-121.

[4] M. Grotschel, A. Martin, and R. Weismantel, Optimum path packing on wheels: the consecutive case,
Comput. Math. Appl. 31 (1996), no. 11, 23-35.

[5] T. Nishizeki and N. Chiba, Planar graphs: Theory and algorithms, North-Holland, Amsterdam, 1988.

[6] Y. Perl and Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph, Journal of
the Association for Computing Machinery 25 (1978), 1-9.

[7] A. Schrijver, A group-theoretical approach to disjoint paths in directed graphs, CWI Quarterly 6 (1993),
257-266.

8]

, Combinatorial optimization—polyhedra and efficiency, Springer-Verlag, forthcoming book,
Part VII. Multiflows and Disjoint Paths.

[9] L.J. Stockmeyer, Planar 3-colorability is NP-complete, SIGACT News 5 (1973), 19-25.

12

