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Abstract. We present a simple pedagogical graph theoretical descrip-
tion of Lempel, Even, and Cederbaum (LEC) planarity method based on
concepts due to Thomas. A linear-time implementation of LEC method
using the PC-tree data structure of Shih and Hsu is provided and de-
scribed in details. We report on an experimental study involving this
implementation and other available linear-time implementations of pla-
narity algorithms.

1 Introduction

The first linear-time planarity testing algorithm is due to Hopcroft and Tar-
jan [9]. Their algorithm is an ingenious implementation of the method of Aus-
lander and Parter [1] and Goldstein [8]. Some notes to the algorithm were made
by Deo [6], and significant additional details were presented by Williamson [20,
21] and Reingold, Nievergelt, and Deo [16].

The second method of planarity testing proven to achieve linear time is due
to Lempel, Even, and Cederbaum (LEC) [13]. This method was optimized to
linear time thanks to the st-numbering algorithm of Even and Tarjan [7] and
the PQ-tree data structure of Booth and Lueker (BL) [2]. Chiba, Nishizeki, Abe,
and Ozawa [5] augmented the PQ-tree operations so that a planar embedding is
also computed in linear time.

All these algorithms are widely regarded as being quite complex [5,12,17].
Recent research efforts have resulted in simpler linear-time algorithms proposed
by Shih and Hsu (SH) [10,17,18] and by Boyer and Myrvold (BM) [3,4]. These
algorithms implement LEC method and present similar and very interesting
ideas. Each algorithm uses its own data structure to efficiently maintain relevant
information on the (planar) already examined portion of the graph.

The description of SH algorithm made by Thomas [19] provided us with the
key concepts to give a simple graph theoretical description of LEC method. This
description increases the understanding of BL, SH, and BM algorithms, all based
on LEC method.
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Section 2 contains definitions of the key ingredients used by LEC method.
In Section 3, an auxiliary algorithm is considered. LEC method is presented in
Section 4 and an implementation of SH algorithm is described in Section 5. This
implementation is available at http://www.ime.usp.br/“coelho/sh/ and, as
far as we know, is the unique available implementation of SH algorithm, even
though the algorithm was proposed about 10 years ago. Finally, Section 6 reports
on an experimental study.

2 Frames, XY -paths, XY -obstructions and planarity

This section contains the definitions of some concepts introduced by Thomas [19]
in his presentation of SH algorithm. We use these concepts in the coming sections
to present both LEC method and our implementation of SH algorithm.

Let H be a planar graph. A subgraph F of H is a frame of H if F' is induced
by the edges incident to the external face of a planar embedding of H (Figs. 1(a)
and 1(b)).
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Fig. 1. (a) A graph H. (b) A frame of H. (c) A path P in a frame. (d) The complement
of P.

If G is a connected graph, H is a planar induced subgraph of G and F' is a
frame of H, then we say that F' is a frame of H in G if it contains all vertices
of H that have a neighbor in Vi \ V. Neither every planar induced subgraph
of a graph G has a frame in G (Fig. 2(a)) nor every induced subgraph of a
planar graph G has a frame in G (Fig. 2(b)). The connection between frames
and planarity is given by the following lemma.

Fig.2. (a) Subgraphs of K33 and K5 induced by the solid edges have no frames.
(b) Subgraph induced by the solid edges has no frame in the graph.



Lemma 1 (Thomas [19]). If H is an induced subgraph of a planar graph G
such that G — Vi is connected, then H has a frame in G. ®

Let F be a frame of H and P be a path in F. The basis of P is the sub-
graph of F' formed by all blocks of F' which contain at least one edge of P. Let
C1,C5,...,Ck be the blocks in the basis of P. For i = 1,2,...,k, let P; := PNC;
and, if C; is a cycle, let P; := C; \ P;, otherwise let P; := P;. The complement
of P in F is the path P, U P, U... U Py, which is denoted by P. If Ep = ()
then P := P (Figs. 1(c) and 1(d)).

Let W be a set of vertices in H and Z be a set of edges in H. A vertex v
in H sees W through Z if there is a path in H from v to a vertex in W with all
edges in Z. Let X and Y be sets of vertices of a frame F' of H. A path P in F
with basis S is an XY -path (Fig. 3) if

(pl) the endpoints of P are in X;

(p2) each vertex of S that sees X through Er \ Eg is in P;

(p3) each vertex of S that sees Y through Er \ Es is in P;

(p4) no component of F' — Vg contains vertices both in X and in Y.

Fig. 3. In (a), (b), (c), and (d), let P denote the thick path; its basis is shadowed.
(a) P is not an XY -path since it violates (p3). (b) P is an XY -path. (¢) P is not an
XY -path since it violates (p2). (d) P is not an XY -path since it violates (p4).

There are three types of objects that obstruct an XY -path to exist. They
are called XY -obstructions and are defined as



(o1) a 5-tuple (C,v1,va,v3,v4) where C is a cycle of F' and vy, v2, v3, and vy are
distinct vertices in C' that appear in this order in C, such that v; and wvs
see X through Er \ E¢ and vy and vg see Y through Er \ Ec;

(02) a 4-tuple (C,v1,v2,v3) where C is a cycle of F and v1, v, and v are
distinct vertices in C that see X and Y through Er \ E¢;

(03) a 4-tuple (v, K1, K2, K3) where v € Vp and K;, K, and K3 are distinct
components of F' — v such that K; contains vertices in X and in Y.

The existence of an XY -obstruction is related to non-planarity as follows.

Lemma 2 (Thomas [19]). Let H be a planar connected subgraph of a graph G
and w be a vertex in Vg \ Vi such that G — Vg and G — (Vg U{w}) is connected.
Let F be a frame of H in G, let X be the set of neighbors of w in Vg and let Y
be the set of neighbors of Vo \ (Vi U {w}) in Vp. If F has an XY -obstruction
then G has a subdivision of K33 or Ks.

Sketch of the proof: An XY-obstruction of type (0l) or (03) indicates a K3 3-
subdivision. An XY-obstruction of type (02) indicates either a Ks-subdivision

or a K3 s-subdivision (Fig. 4). =

@
u1 0_3\
Q S
7 N il ~
N N
)/ \’/,Q\ N
/ L4 U2 N
/ ! \ \
! 1 \ \
! | 1 \
I et N I !
| . 1 N
| . | N2 !
\ 4 [ N !
/ _ /
‘o P \ /
‘Y - ~ ,
\ 4 v2 ~ P,
v/ N
\ g
! v/ o
019 VU3
1
\\ /
~ //
(b) )
U1 uy 23
Q Q N
2N U2 = U3 AN
’ N - / N
R SN B - h
’ N N / U2\ \
/ ! \ AN / ! \ \
1 | \ N // w, | \
! w@ ! \ PN / \
I O I \ I . @ NP4
N ¢
| g 1 N ‘ I ’, - =< ,
| 4 | N | ’ | \
. ’ | v ! v \ /
’ \ / h \ l
v ,Q,/ / ' - Q- /
vy - ~ ' , v , ~ | ,
ol v2 ! / \“ , V2 N0
!
NV 7 A AP
v1@ U3 vlt@ Crus
/

Fig. 4. Some situations with an XY -obstruction (C, v, v2,vs) of type (02). The dashed
lines indicate paths. In w;v;-path, u; is the only vertex in (Vg \ (Vu U {w})), for
1 = 1,2,3. (a) Subdivision of K5 coming from an XY -obstruction. (b) Subdivisions
of K3 3 coming from an XY -obstruction. (¢) Concrete example of an XY -obstruction

leading to a K3, 3-subdivision.



3 Finding XY-paths or XY -obstructions

Let F' be a connected frame and let X and Y be subsets of Vg. If F is a tree,
then finding an XY-path or an XY-obstruction is an easy task. The following
algorithm finds either an XY-path or an XY-obstruction in F' manipulating a
tree that represents F'.

Let B be the set of blocks of a connected graph H and let T" be the tree with
vertex set B U Vg and edges of the form Bv where B € B and v € Vg. We call
T the block tree® of H (Fig. 5). Each node of T in B is said a C-node and each
node of T in Vg is said a P-node.

Fig. 5. A graph and its block tree.

Algorithm Central(F, X,Y’). Receives a connected frame F' and subsets X
and Y of V and returns either an XY -path or an XY -obstruction in F.

Let To be the block tree of F'. The algorithm is iterative and each iteration begins
with a subtree T of Ty, subsets X7 and Y7 of Vr and subsets W and Z of Vr. The
sets X7 and Yr are formed by the nodes of T that see X and Y through Er, \ Er,
respectively. The sets W and Z contain the P-nodes of Ty that see X and Y through
Er,\Er, respectively. At the beginning of the first iteration, T' = T, Xy = X, Yr =Y,
W =X, and Z =Y. Each iteration consists of the following:

Case 1: Each leaf of T is in X7 N Yy and T is a path.
Let R be the set of P-nodes of T'.
For each C-node C of T, let X¢ :== Ve N(W UR) and Yo := Ve N(ZU R).

Case 1A: Each C-node C of T has a path Pg containing X¢ and internally
disjoint from Y¢.
Let Pr be the path in F' obtained by the concatenation of the paths in
{Pc : C is a C-node of T'}.
Let P be a path in F with endpoints in X, containing Pr and containing
Ve NW for each block C in the basis of P.
Return P and stop.

3 The leaves in Vi make the definition slightly different than the usual.



Case 1B: There exists a C-node C of T such that no path containing X¢ is
internally disjoint from Yc.
Let v1,v2,vs, and va be distinct vertices of C appearing in this order in C,
such that v; and vz are in X¢ and v and v4 are in Yc.
Return (C,v1,v2,vs,v4) and stop.

Case 2: Each leaf of T is in X7 NY7 and there exists a node v of T' with degree greater
than 2.

Case 2A: v is a C-node.
Let C be the block of F' corresponding to v.
Let v1,v2, and vz be distinct P-nodes adjacent to v in T'.
Return (C,v1,v2,v3) and stop.
Case 2B: v is a P-node.
Let C1,C2, and C3 be distinct C-nodes adjacent to v in T'.
Let Ki, K3, and K3 be components of F' — v such that C; is a block of K; +v
(i=1,2,3).
Return (v, K1, K2, K3) and stop.
Case 3: There exists a leaf f of T not in X7 NYr.
Let u be the node of T' adjacent to f.
Let T :=T — f.
Let Xpv := (X7 \ {f}) U{u} if f is in X7; otherwise X7/ := Xr.
Let Y7 := (Y7 \ {f}) U{u} if f is in Yz; otherwise Y+ := Yr.
Let W' := W U {u} if f is in X7 and w is a P-node; otherwise W' := W.
Let Z' :== Z U {u} if f is in Y7 and u is a P-node; otherwise Z' := Z.
Start a new iteration with T”, Xy, Yy, W', and Z’ in the roles of T, X1, Yr, W,
and Z, respectively.

The execution of the algorithm consists of a sequence of “reductions” made by
Case 3 followed by an occurrence of either Case 1 or Case 2. At the beginning of
the last iteration, the leaves of T are called terminals. The concept of a terminal
node is used in a fundamental way by SH algorithm. The following theorem
follows from the correctness of the algorithm.

Theorem 3 (Thomas [19]). If F is a frame of a connected graph and X andY
are subsets of Vi, then either there exists an XY -path or an XY -obstruction
mE. B

4 LEC planarity testing method

One of the ingredients of LEC method is a certain ordering vy, vs, ..., v, of the
vertices of the given graph G such that, for i =1,...,n, the induced subgraphs
G[{v1,--.,v;}] and G[{vi41,- .., v, }] are connected. Equivalently, G is connected
and, for ¢ = 2,...,n — 1, vertex v; is adjacent to v; and v, for some j and k
such that 1 < j <i < k < n. A numbering of the vertices according to such an
ordering is called a LEC-numbering of G. If the ordering is such that viv,, is an
edge of the graph, the numbering is called an st-numbering [13]. One can show
that every biconnected graph has a LEC-numbering.



Fig.6. (a) A frame F and an XY-path P in thick edges. (b) F after moving the
elements of X to one side and the elements of Y to the other side of P. Squares mark
vertices in Vr \ V5 that do not see Y\ Vs through Er \ Es, where P is the complement
and S is the basis of P. (c) F' together with the edges with one endpoint in F' and the
other in w. (d) A frame of H + w.

LEC method examines the vertices of a given biconnected graph, one by one,
according to a LEC-numbering. In each iteration, the method tries to extend a
frame of the subgraph induced by the already examined vertices. If this is not
possible, the method declares the graph is non-planar and stops.

Method LEC(G). Receives a biconnected graph G and returns YES if G is
planar, and NO otherwise.

Number the vertices of G according to a LEC-numbering. Each iteration starts with
an induced subgraph H of G and a frame F of H in G. At the beginning of the first
iteration, H and F' are empty. Each iteration consists of the following:

Case 1: H=G.
Return YES e stop.
Case 2: H #G.
Let w be the smallest numbered vertex in G — V.
Let X := {u € Vr : uw € Eg}.
Let Y := {u € VF : there exists v € Vg \ (V& U {w}) such that uwv € Eg}.



Case 2A: There exists an XY -obstruction in F'.
Return NO and stop.

Case 2B: There exists an XY -path P in F.
Let P := (wo, w1, ..., ws) be the complement of P and let S be the basis of P.
Let R be the set of vertices in V7 \ V5 that do not see Y \ V through Er \ Es
(Figs. 6(a) and 6(b)).
Let F' be the graph resulting from the addition of w and the edges wwo
and wwy, to the graph F — R (Fig. 6(c)).
Let H' := H + w (Fig. 6(d)).
Start a new iteration with H' and F’ in the roles of H and F respectively.

The following invariants hold during the execution of the method.

(lecl) H and G — Vi are connected graphs;
(lec2) F'is a frame of H in G.

These invariants together with Lemmas 1 and 2 and Theorem 3 imply the cor-
rectness of the method and the following classical theorem.

Theorem 4 (Kuratowski). A graph is planar if and only if it has no subdivi-
sion of K33 or K5. H

Three of the algorithms mentioned in the introduction are very clever linear-
time implementations of LEC method. BL use an st-numbering instead of an
arbitrary LEC-numbering of the vertices and use a PQ-tree to store F'. SH use
a DFS-numbering and a PC-tree to store F'. BM also use a DFS-numbering and
use still another data structure to store F. One can use the previous description
easily to design a quadratic implementation of LEC method.

5 Implementation of SH algorithm

SH algorithm, as all other linear-time planarity algorithms, is quite complex to
implement. The goal of this section is to share our experience in implementing it.

Let G be a connected graph. A DFS-numbering is a numbering of the vertices
of G obtained from searching a DFS-tree of G in post-order. SH algorithm uses
a DFS-numbering instead of a LEC-numbering. If the vertices of G are ordered
according to a DFS-numbering, then the graph G[{i+1,...,n}]is connected, for
i=1,...,n. As a DFS-numbering does not guarantee that H := G[{1,...,i—1}]
is connected, if there exists a frame F' of H and H is not connected, then F is also
not connected. Besides, to compute (if it exists) a frame of H + i, it is necessary
to compute an XY -path for each component of F' that contains a neighbor of 4.

Let v be a vertex of F' and C be a block of F' containing v and, if possible,
a higher numbered vertex. We say v is active if v sees X UY through Er \ E¢.

PC-tree

The data structure proposed by SH to store F' is called a PC-tree and is here
denoted by T'. Conceptually, a PC-tree is an arborescence representing the rel-
evant information of the block forest of F'. It consists of P-nodes and C-nodes.



There is a P-node for each active vertex of F' and a C-node for each cycle of F'.
We refer to a P-node by the corresponding vertex of F'. There is an arc from a
P-node u to a P-node v in T if and only if wv is a block of F'. Each C-node ¢ has
a circular list, denoted RBC(c), with all P-nodes in its corresponding cycle of F',
in the order they appear in this cycle. This list starts by the largest numbered
P-node in it, which is called its head. The head of the list has a pointer to ¢. Each
P-node appears in at most one RBC' in a non-head cell. It might appear in the
head cell of several RBCs. Each P-node v has a pointer nonhead_RBC_cell(v)
to the non-head cell in which it appears in an RBC. This pointer is NULL if
there is no such cell. The name RBC extends for representative bounding cycle
(Figs. 7(a)-(c)).

Let T' be the rooted forest whose node set coincides with the node set of T'
and the arc set is defined as follows. Every arc of T is an arc of T". Besides these
arcs, there are some wirtual arcs: for every C-node ¢, there is an arc in 7" from
¢ to the P-node which is the head of RBC(c) and there is an arc to ¢ from all
the other P-nodes in RBC(c) (Fig. 7(d)). In the exposition ahead, we use on
nodes of T' concepts such as parent, child, leaf, ancestral, descendant and so on.
By these, we mean their counterparts in 7".

Forest T" is not really kept by the implementation. However, during each
iteration, some of the virtual arcs are determined and temporarily stored to
avoid traversing parts of the PC-tree more than once. So, each non-head cell
in an RBC and each C-node has a pointer to keep its virtual arc, when it is
determined. The pointer is NULL while the virtual arc is not known.

Values h(u) and b(v)

For each vertex u of G, denote by h(u) the largest numbered neighbor of v in G.
This value can be computed together with a DFS-numbering, and can be stored
in an array at the beginning of the algorithm.

For each node v of T, let b(v) := max{h(u) : uis a descendant of v in T'}. For a
C-node of T', this number does not change during the execution of the algorithm.
On the other hand, for a P-node of T', this number might decrease because its set
of descendants might shrink when T is modified. So, in the implementation, the
value of b(c) for a C-node ¢ is computed and stored when c is created. It is the
maximum over b(u) for all u in the path in T corresponding to the XY-path in
F that originated c. One way to keep b(v) for a P-node v is, at the beginning of
the algorithm, to build an adjacency list for G sorted by the values of h, and to
keep, during the algorithm, for each P-node of T', a pointer to the last traversed
vertex in its sorted adjacency list. Each time the algorithm needs to access b(v)
for a P-node v, it moves this pointer ahead on the adjacency list (if necessary)
until (1) it reaches a vertex u which has v as its parent, in which case b(v) is the
maximum between h(v) and b(u), or (2) it reaches the end of the list, in which
case b(v) = h(v).

Traversal of the PC-tree

The traversal of the PC-tree T, inspired by Boyer and Myrvold [3,4], is done
as follows. To go from a P-node u to a node v which is an ancestral of u in T',
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Fig. 7. (a) A graph G, a DFS-numbering of its vertices and, in thick edges, a frame F'
of G[1..11] in G. (b) Black vertices in frame F' are inactive. (¢) The PC-tree T for F,
with RBCSs indicated in dotted. (d) Rooted tree T’ corresponding to T'; virtual arcs
are dashed.

one starts with = u and repeats the following procedure until x = v. If z is a
P-node and nonhead_RBC_cell(x) is NULL, move x up to its parent. If z is a P-
node and nonhead_RBC-cell(x) is non-NULL, either its virtual arc is NULL or not.
If it is non-NULL, move z to the C-node pointed by the virtual arc. Otherwise,
starting at nonhead_RBC_cell(x), search the RBC in an arbitrary direction until
either (1) the head of the RBC is reached or (2) a cell in the RBC with its virtual
arc non-NULL is reached or (3) a P-node y such that b(y) > w is reached. If (3)
happens before (1), search the RBC, restarting at nonhead_RBC_cell(x), but in
the other direction, until either (1) or (2) happens. If (1) happens, move z to
the C-node pointed by the head. If (2) happens, move z to the C-node pointed
by the virtual arc. In any case, search all visited cells in the RBC again, setting
their virtual arcs to . Also, set the virtual arc from z to the head of its RBC.

In a series of moments, the implementation traverses parts of T'. For each
node of T', there is a mark to tell whether it was already visited in this iteration
or not. By visited, we mean a node which was assigned to z in the traversal
process described above. Every time a new node is included in T, it is marked as
unvisited. Also, during each phase of the algorithm where nodes are marked as
visited, the algorithm stacks each visited node and, at the end of the phase, un-
stacks them all, undoing the marks. This way, at the beginning of each iteration,
all nodes of T' are marked as unvisited.

The same trick with a stack is done to unset the virtual arcs. When a virtual
arc for a node v is set in the traversal, v is included in a second stack and, at
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the end of the iteration, this stack is emptied and all corresponding virtual arcs
are set back to NULL.

Terminals

The next concept, introduced by SH, is the key on how to search efficiently for
an XY-obstruction. A node t of T is a terminal if

(t1) b(t) > w;
(t2) t has a descendant in 7' that is a neighbor of w in G;
(t3) no proper descendant of ¢ satisfies properties (t1) and (t2) simultaneously.

Because of the orientation of the PC-tree, one of the terminals from Section 4
might not be a terminal here. This happens when one of the terminals from
Section 4 is an ancestor in the PC-tree of all others. An extra effort in the
implementation is necessary to detect and deal with this possible extra terminal.

The first phase of an iteration of the implementation is the search for the
terminals. This phase consists of, for each neighbor v of w such that v < w,
traversing T starting at v until a visited node z is met. (Mark all nodes visited
in the traversal; this will be left implicit from now on.) On the way, if a node
u such that b(u) > w is seen, mark the first such node as a candidate-terminal
and, if z is marked as such, unmark it. The result from this phase is the list of
terminals for each component of F.

Search for XY-obstructions

The second phase is the search for an XY -obstruction. First, if there are three
or more terminals for some component of F', then there is an XY-obstruction of
type either (02) or (03) in F' (Case 2 of Central algorithm). We omit the details
on how to effectively find it because this is a terminal case of the algorithm.
Second, if there are at most two terminals for each component of F', then, for
each component of F' with at least one terminal, do the following. If it has two
terminals, call them ¢; and ¢2. If it has only one terminal, call it ¢; and let #o
be the highest numbered vertex in this component. Test each C-node ¢ on the
path in T between t; and ¢y for an XY-obstruction of type (01l) (Case 1B of
Central algorithm). The test decides if the cycle in F' corresponding to ¢ plays
or not the role of C in (0l). Besides these tests, the implementation performs
one more test in the case of two terminals. The least common ancestor m of #;
and t in T is tested for an XY -obstruction of type (02), if m is a C-node, or an
XY -obstruction of type (03), if m is a P-node. This extra test arises from the
possible undetected terminal.

To perform each of these tests, the implementation keeps one more piece
of information for each C-node ¢. Namely, it computes, in each iteration, the
number of P-nodes in RBC(c) that see X through Er \ Ec, where C is the cycle
in F' corresponding to ¢. This number is computed in the first phase. Each C-
node has a counter that, at the beginning of each iteration, values 1 (to account
for the head of its RBC'). During the first phase, every time an RBC is entered
through a P-node which was unvisited, the counter of the corresponding C-node
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is incremented by 1. As a result, at the end of the first phase, each (relevant)
C-node knows its number.

For the test of a C-node ¢, the implementation searches RBC(c), starting
at the head of RBC(c). It moves in an arbitrary direction, stopping only when
it finds a P-node u (distinct from the head) such that b(u) > w. On the way,
the implementation counts the number of P-nodes traversed. If only one step is
given, it starts again at the head of RBC(c) and moves to the other direction
until it finds a P-node u such that b(u) > w, counting the P-nodes, as before.
If the counter obtained matches the number computed for that C-node in the
first phase, it passed the test, otherwise, except for two cases, there in an XY-
obstruction of type (ol). The first of the two cases missing happens when there
are exactly two terminals and c¢ is the lower common ancestor of them. The
second of the two cases happens when there is exactly one terminal and c is
(potentially) the upper block in which the XY -path ends. The test required
in these two cases is slightly different, but similar, and might give raise to an
XY -obstruction of type (ol) or (02). We omit the details.

PC-tree update

The last phase refers to Case 2B in LEC method. It consists of the modification
of T according to the new frame. First, one has to add to T a P-node for w.
Then, parts of T referring to a component with no neighbor of w remain the
same. Parts of T referring to a component with exactly one neighbor of w are
easily adjusted. So we concentrate on the parts of T' referring to components
with two or more neighbors of w. Each of these originates a new C-node. For
each of them, the second phase determined the basis of an XY -path, which is
given by a path @ in T. Path @) consists basically of the nodes visited during
the second phase. Let us describe the process in the case where there is only one
terminal. The case of two terminals is basically a double application of this one.

Call ¢ the new C-node being created. Start RBC(c) with its head cell, which
refers to w, and points back to c¢. Traverse () once again, going up in 7. For
each P-node u in @) such that nonhead_RBC_cell(u) is NULL, if b(u) > w (here
we refer to the possibly new value of b(u), as u might have lost a child in the
traversal), then an RBC cell is created, referring to u. It is included in RBC(c)
and nonhead_RBC_cell(u) is set to point to it. For each P-node u such that
nonhead_RBC_cell(u) is non-NULL, let ¢’ be its parent in T. Concatenate to
RBC(c) a part of RBC(c'), namely, the part of RBC(c') that was not used to
get to ¢ in any traversal in the second phase. To be able to concatenate without
traversing this part, one can use a simple data structure proposed by Boyer
and Myrvold [4,3] to keep a doubled linked list. (The data structure consists
of the cells with two indistinct pointers, one for each direction. To move in a
certain direction, one starts making the first move in that direction, then, to
keep moving in the same direction, it is enough to choose always the pointer
that does not lead back to the previous cell.)

During the traversal of @), one can compute the value of b(c). Its value is
simply the maximum of b(u) over all node u traversed. This completes the de-
scription of the core of the implementation.
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Certificate

To be able to produce a certificate for its answer, the implementation carries
still more information. Namely, it carries the DFS-tree that originated the DFS-
numbering of the vertices and, for each C-node, a combinatorial description
of a planar embedding of the corresponding biconnected component where the
P-nodes in its RBC appear all on the boundary of the same face. We omit the
details, but one can find at http://www.ime.usp.br/"coelho/sh/ the complete
implementation, that also certificates its answer.

6 Experimental study

The main purpose of this study was to confirm the linear-time behavior of our
implementation and to acquire a deeper understanding of SH algorithm. Boyer
et al. [11] made a similar experimental study that does not include SH algorithm.

The LEDA platform has a planarity library that includes implementations
of Hopcroft and Tarjan’s (HT) and BL algorithms and an experimental study
comparing them. The library includes the following planar graph generator rou-
tines: maximal planar map and random planar map. Neither of them generates
plane maps according to the uniform distribution [14], but they are well-known
and widely used. The following classes of graphs obtained through these routines
are used in the LEDA experimental study:

(G1) random planar graphs;

(G2) graphs with a K3 3: six vertices from a random planar graph are randomly
chosen and edges among them are added to form a K3 3;

(G3) graphs with a Kj: five random vertices from a random planar graph are
chosen and all edges among them are added to form a Kj;

(G4) random maximal planar graphs;

(G5) random maximal planar graphs plus a random edge connecting two non-
adjacent vertices.

Our experimental study extends the one presented in LEDA including our
implementation of SH algorithm made on the LEDA platform and an imple-
mentation of BM algorithm developed in C. We performed all empirical tests
used in LEDA to compare HT and BL implementations [15]. The experimen-
tal environment was a PC running GNU/Linux (RedHat 7.1) on a Celeron
T00MHz with 256MB of RAM. The compiler was the gcc 2.96 with options
-DLEDA_CHECKING_OFF -0.

In the experiments [15, p. 123], BL performs the planarity test 4 to 5 times
faster than our SH implementation in all five classes of graphs above. For the
planar classes (G1) and (G4), it runs 10 times faster than our SH to do the
planarity test and build the embedding. On (G2) and (G3), it is worse than our
SH, requiring 10% to 20% more time for testing and finding an obstruction. On
(G5), it runs within 65% of our SH time for testing and finding an obstruction.
For the planarity test only, HT runs within 70% of our SH time for the planar
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classes (G1) and (G4), but performs slightly worse than our SH on (G2) and
(G3). On (G5), it outperforms our SH, running in 40% of its time. For the
planar classes (G1) and (G4), HT is around 4 times faster when testing and
building the embedding. (The HT implementation in question has no option to
produce an obstruction when the input graph is non-planar; indeed, there is no
linear-time implementation known for finding the obstruction for it [22].) BM
performs better than all, but, remember, it is the only one implemented in C
and not in the LEDA platform. It runs in around 4% of the time spent by our
SH for testing and building the embedding and, for the non-planar classes, when
building the obstruction, it runs in about 15% of our SH time on (G2) and (G3)
and in about 10% of our SH time on (G5). (There is no implementation of BM
available that only does the planarity testing.) The time execution used on these
comparisons is the average CPU time on a set of 10 graphs from each class.
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Fig. 8. Empirical results comparing SH, HT, BL, and BM implementations.
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Figure 8 shows the average CPU time of each implementation on (a) (G1) for
only testing planarity (against BM with testing and building an embedding, as
there is no testing only available), (b) (G2) for testing and finding an obstruction
(HT is not included in this table, by the reason mentioned above), (c) (G4) for
testing and building an embedding, and (d) for testing and finding an obstruction
(again, HT excluded).

We believe the results discussed above and shown in the table are initial and
still not conclusive because our implementation is yet a prototype. (Also, in our
opinion, it is not fair to compare LEDA implementations with C implementa-
tions.)

Our current understanding of SH algorithm makes us believe that we can
design a new implementation which would run considerably faster. Our belief
comes, first, from the fact that our current code was developed to solve the
planarity testing only, and was later on modified to also produce a certificate
for its answer to the planarity test. Building an implementation from the start
thinking about the test and the certificate would be the right way, we believe, to
have a more efficient code. Second, during the adaptation to build the certificate
(specially the embedding when the input is planar) made us notice several details
in the way the implementation of the test was done that could be improved.
Even though, we decide to go forward with the implementation of the complete
algorithm (test plus certificate) so that we could understand it completely before
rewriting it from scratch. The description made on Section 5 already incorporates
some of the simplifications we thought of for our new implementation. It is our
intention to reimplement SH algorithm from scratch.
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