
ar
X

iv
:1

00
4.

14
37

v1
 [

cs
.D

S]
 8

 A
pr

 2
01

0

A Note on Johnson, Minkoff and Phillips’ Algorithm

for the Prize-Collecting Steiner Tree Problem

Paulo Feofiloff ∗ Cristina G. Fernandes ∗ Carlos E. Ferreira ∗ José Coelho de Pina ∗

revised October 2009 †

Abstract

The primal-dual scheme has been used to provide approximation algorithms for many problems.

Goemans and Williamson gave a (2− 1

n−1
)-approximation for the Prize-Collecting Steiner Tree

Problem that runs in O(n3 logn) time. Johnson, Minkoff and Phillips proposed a faster imple-

mentation of Goemans and Williamson’s algorithm. We give a proof that the approximation

ratio of this implementation is exactly 2.

1 Introduction

Consider a graph G = (V,E), a function c from E into the set Q≥ of non-negative rationals and a

function π from V into Q≥. The Prize-Collecting Steiner Tree Problem (PCST) asks for a

tree T in G such that
∑

e∈ET
ce+

∑
v∈V \VT

πv is minimum. (We denote by VT and ET , respectively,

the vertex and edge sets of a graph T .) The rooted variant of the problem requires T to contain a

given root vertex.

Goemans and Williamson [2, 3] used a primal-dual scheme to derive a (2− 1

n−1
)-approximation

for the rooted variant of PCST, where n := |V |. By trying all possible choices for the root, they

obtained a (2− 1

n−1
)-approximation for the unrooted PCST. The resulting algorithm runs in time

O(n3 log n). Johnson, Minkoff and Phillips [4] proposed a modification of the algorithm that runs

the primal-dual scheme only once, resulting in a running-time of O(n2 log n). They claimed their

algorithm—which we refer to as JMP— achieves an approximation ratio of 2− 1

n−1
. Unfortunately,

their claim does not hold.

This note does two things. First, it proves that the JMP algorithm is a 2-approximation

(the proof involves some non-trivial technical details). Second, it shows an example where the

approximation ratio achieved by the JMP algorithm is exactly 2, thereby contradicting the claim

by Johnson, Minkoff and Phillips.

†This paper was originally published as http://www.ime.usp.br/~cris/publ/jmp-analysis.ps.gz in

2006. The present version makes explicit a stronger statement, implicit in the original version: that the addressed

implementation is a Lagrangean preserving 2-approximation. It also introduces some cosmetic changes in notation

and corrects a technical error in the proof of one of the invariants.
∗Departamento de Ciência da Computação, Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua

do Matão 1010, 05508-090 São Paulo/SP, Brazil. E-mail: {pf,cris,cef,coelho}@ime.usp.br. Research supported

in part by PRONEX/CNPq 664107/1997-4 (Brazil).

1

http://arxiv.org/abs/1004.1437v1
http://www.ime.usp.br/~cris/publ/jmp-analysis.ps.gz

2 Notation and preliminaries

For any subset F of E, let c(F) :=
∑

e∈F ce. For any subset X of V , let π(X) :=
∑

v∈X πv and let

X := V \X. If T is a subgraph of G, we shall abuse notation and write π(T) and π(T) to mean

π(VT) and π(VT) respectively. Similarly, we shall write c(T) to mean c(ET). Hence, the goal of

PCST(G, c, π) is to find a tree T in G such that c(T) + π(T) is minimum.

A collection L of nonnull subsets of V is laminar if, for any two elements L1 and L2 of L,

either L1 ∩ L2 = ∅ or L1 ⊆ L2 or L1 ⊇ L2. For any subset X of V , let

L[X] := {L ∈ L : L ⊆ X} and LX := {L ∈ L : L ⊇ X} .

For every L in L that is not in L[X]∪L[X]∪LX , the sets L∩X, L\X and X \L are all nonempty.

For any subgraph T of G, we shall abuse notation and write L[T], L[T], and LT in place of L[VT],

L[VT], and LVT
respectively.

The union of all sets in L shall be denoted by
⋃

L. The set of all maximal elements of L shall

be denoted by L∗. If L is laminar, the elements of L∗ are pairwise disjoint. If, in addition,
⋃

L = V

then L∗ is a partition of V .

For any laminar collection L of subsets of V and any edge e of G, let L(e) := {L ∈ L : e ∈ δGL},

where δGL stands for the set of edges of G with one end in L and the other in L.

Let y be a function from L into Q≥. For any subcollection L′ of L, let y(L′) :=
∑

L∈L′ yL. We

say that y respects c if

y(L(e)) ≤ ce for each e in E . (1)

We say an edge e is tight for y if equality holds in (1). We say y respects π if

y(L[X]) ≤ π(X) for each X in L . (2)

We shall say that y saturates an element X of L if equality holds in (2). The following lemma

summarizes the effect of the two “respects” constraints on y:

Lemma 2.1 Let L be a laminar collection of subsets of V and y a function from L into Q≥. If y

respects c and π then

y(L \ LT) ≤ c(T) + π(T)

for any connected subgraph T of G.

Proof. For M := {L ∈ L : δTL 6= ∅}, we have y(M) ≤
∑

L∈M |δTL|yL =
∑

e∈ET
y(L(e)) ≤∑

e∈ET
ce = c(T). For N := L[T], we have y(N) =

∑
L∈N ∗ y(L[L]) ≤

∑
L∈N ∗ π(L) ≤ π(T).

The lemma follows from the two inequalities since L = M∪N ∪ LT .

Let opt(PCST(G, c, π)) denote the minimum value of the sum c(T) + π(T) when T is a tree

in G. Then the following corollary establishes the relevant lower bound for opt(PCST(G, c, π)):

Corollary 2.2 Let L be a laminar collection of subsets of V and y a function from L into Q≥.

If y respects c and π then y(L \ LO) ≤ opt(PCST(G, c, π)) for any optimal solution O of

PCST(G, c, π).

2

Before we state the algorithm, a few more definitions are needed. Let L be a laminar collection

of subsets of V such that
⋃

L = V . We say that an edge is internal to L∗ if both of its ends are in

the same element of L∗. All other edges are external to L∗. For any external edge, there are two

elements of L∗ containing its ends. We call these two elements the extremes of the edge in L∗.

Given a forest F in G and a subset L of V , we say that F is L-connected if VF ∩ L = ∅ or

the induced subgraph F [VF ∩ L] is connected. In other words, F is L-connected if the following

property holds: for any two vertices x and y of F in L, there exists a path from x to y in F and that

path never leaves L. If F spans G (as is the case during the first phase of the algorithm below),

the condition “F [VF ∩ L] is connected” can, of course, be replaced by “F [L] is connected”.

For any collection L of subsets of V , we shall say that F is L-connected if F is L-connected

for each L in L.

For any collection S of subsets of V , we say a tree T has no bridge in S if |δTS| 6= 1 (whence

δTS = ∅ or |δTS| ≥ 2) for all S in S. We say that a tree T in G is wrapped in S if VT ⊆ S for

some S in S.

3 Johnson, Minkoff and Phillips’ algorithm

The JMP algorithm is a 2-approximation for the PCST. It receives G, c, π and returns a tree T

in G such that c(T) + 2π(T) ≤ 2 opt(PCST(G, c, π)). (For our purposes, it would be enough to

have c(T) + π(T) on the left side of the inequality. The factor 2 multiplying π is a bonus, and,

because of it, the JMP algorithm is said to be a Lagrangean preserving 2-approximation [1].)

The algorithm has two phases, the second one operating on the output of the first.

Phase I: Each iteration in phase I starts with a spanning forest F in G, a laminar collection L

of subsets of V such that
⋃

L = V , a subcollection S of L, and a function y from L into Q≥ such

that the following invariants hold:

(i1) F is L-connected;

(i2) y respects c and π;

(i3) each edge of F is tight for y;

(i4) y saturates every element of S;

(i5) no element of L∗ \ S is the union of elements of S;

(i6) for any L-connected tree T in G, if T has no bridge in S and is not wrapped in S then

∑

e∈ET

y(L(e)) + 2 y(L[T]) ≤ 2 y(L \ L{o}) (3)

for any vertex o of G.

The first iteration starts with F = (V, ∅), L = {{v} : v ∈ V }, S = ∅, and y = 0. Each iteration

consists of the following:

Case I.1: |L∗ \ S| > 1.

For ε in Q≥, let yε be the function defined as follows: yε
L
= y

L
+ ε if L ∈ L∗ \ S and

yε
L
= y

L
otherwise. Let ε be the largest number in Q≥ such that the function yε respects

c and π.

3

Subcase I.1.A: yε saturates some element L of L∗ \ S.

Start a new iteration with S ∪{L} and yε in the roles of S and y respectively.

(The forest F and the collection L do not change.)

Subcase I.1.B: some edge e external to L∗ is tight for yε and has at least

one of its extremes in L∗ \ S.

Let L1 and L2 be the extremes of e in L∗. Set yε
L1∪L2

:= 0 and start a

new iteration with F + e, L ∪ {L1 ∪ L2}, and yε in the roles of F , L, and y

respectively. (The collection S does not change.)

Case I.2: |L∗ \ S| = 1.

This is the end of phase I. Start phase II.

Phase II: During this phase, the collections L and S and the function y remain unchanged. Let

M be the only element of L∗ \ S. Each iteration begins with a subgraph T of F such that

(i7) T is an L-connected tree;

(i8) M \ VT admits a partition into elements of S.

The first iteration begins with T = F [M]. Each iteration does the following:

Case II.1: |δTZ| = 1 for some Z in S.

Start a new iteration with T − Z in place of T .

Case II.2: |δTZ| 6= 1 for each Z in S.

Return T and stop.

4 Analysis of the algorithm

Suppose, for the moment, that invariants (i1) to (i8) are correct. At the end of phase II, T is a

tree by virtue of (i7). As T is a subgraph of F , due to (i3),

c(T) =
∑

e∈ET

ce =
∑

e∈ET

y(L(e)) .

On the other hand, L∗ ∩ S is a partition of M and, by (i8), there is a partition of M \ VT into

elements of S. Therefore, some subcollection Z of S is a partition of VT . Hence,

π(T) =
∑

S∈Z

π(S) =
∑

S∈Z

y(L[S]) ≤ y(L[T]) .

Here, the second equality follows from (i4). Therefore,

c(T) + 2π(T) ≤
∑

e∈ET

y(L(e)) + 2 y(L[T]) . (4)

In order to show that (3) holds, we must verify that T satisfies the hypotheses of (i6). By (i7), T

is L-connected. Due to (i5), M is not the union of elements of S. Hence, by virtue (i8), T is not

4

wrapped in S. Since we are in Case II.2, T has no bridge in S. Hence, T satisfies the hypotheses

of (i6). Now, by (3) coupled with (4),

c(T) + 2π(T) ≤ 2 y(L \ L{o}) (5)

for any vertex o. Now, let o be an arbitrary vertex of an optimal solution O of PCST(G, c, π).

Since y respects c and π, as stated in (i2), Corollary 2.2 implies

c(T) + 2π(T) ≤ 2 y(L \ L{o}) ≤ 2 y(L \ LO) ≤ 2 opt(PCST(G, c, π)) .

This proves the following theorem (which is the correct version of Theorem 3.2 by Johnson, Minkoff

and Phillips [4]):

Theorem 4.1 The JMP algorithm is a 2-approximation for the PCST.

To complete the proof of the theorem we must only verify the invariants of the algorithm,

something we shall do in the next section.

The example in Figure 1 shows that the approximation ratio of the JMP algorithm can be

arbitrarily close to 2, regardless of the size of the graph. So, Theorem 4.1 is tight.

(b) (c)
2

2

1

u u
10

u(d) 2

2 2

2

1
1(a)

2

2

10

1

u

1
11 + ρ1 + ρ1 + ρ

Figure 1: (a) An instance of the PCST. (b) The solution produced by the JMP algorithm when

ρ > 0. Its cost is 4. (c) The optimal solution, consisting of vertex u alone, has cost 2 + ρ. (d) A

similar instance of arbitrary size consists of a long path.

5 Proofs of the invariants

Invariants (i1) to (i4) obviously hold at the beginning of each iteration of phase I. We must only

verify the other four invariants.

Proof of (i5). Obviously (i5) holds at the beginning of the first iteration. Now consider

an iteration where Case I.1 occurs. If Subcase I.1.A occurs, then (i5) remains trivially true at

the beginning of the next iteration. Next, suppose Subcase I.1.B occurs. Adjust notation so

that L1 /∈ S. Since (i5) holds at the beginning of the current iteration, L1 is not the union of

elements of S. Hence, L1 ∪ L2 is not the union of elements of S. Therefore, (i5) remains trivially

true at the beginning of the next iteration.

The verification of (i6) depends on the following lemma:

5

Lemma 5.1 Let P be a partition of V and (A,B) a bipartition of P. Let T be a tree in G. If T

is P-connected, has no bridge in B, and is not wrapped in B, then

1

2

∑

A∈A

|δTA|+ |A[T]| ≤ |A| − 1 . (6)

Proof. Let us say that two elements of P are adjacent if there is an edge of T with these two

elements as extremes. This adjacency relation defines a graph H having P as set of vertices. Since

T is P-connected, the edges of H are in one-to-one correspondence with the edges of T external

to P. Hence, the degree of any vertex P of H is exactly |δTP |, and therefore 1

2

∑
P∈P |δTP | = |EH|.

Since T is connected, H has 1 + |P[T]| components (all are singletons, except at most one). Since

T has no cycles and is P-connected, H is a forest. Hence |EH| = |P| − 1− |P[T]| and therefore

1

2

∑

P∈P

|δTP | = |P| − 1− |P[T]| . (7)

Now consider the vertices of H that are in B. Since T has no bridge in B and is not wrapped

in B, each B in B is such that either |δTB| ≥ 2 or B ⊆ VT . Hence
∑

B∈B |δTB| ≥ 2 |B \ B[T]|, and

therefore
1

2

∑

B∈B

|δTB| ≥ |B| − |B[T]| . (8)

The difference between (7) and (8) is the claimed inequality (6).

Proof of (i6). It is clear that (i6) holds at the beginning of the first iteration. Now assume

that it holds at the beginning of some iteration where Case I.1 occurs.

Suppose, first, that Subcase I.1.A occurs. At the end of the subcase, let S ′ := S ∪ {L}, let o

be any vertex, and let T be an L-connected tree that has no bridge in S ′, is not wrapped in S ′,

and such that all its edges are tight for yε. Of course all edges of T are tight for y. Since T has

no bridge in S and is not wrapped in S, (3) holds. We must show that (3) also holds when yε is

substituted for y. Let P := L∗, A := L∗ \S, and B := L∗ ∩S. Since |A{o}| ≤ 1, Lemma 5.1 implies

∑

A∈A

|δTA| ε + 2 |A[T]| ε ≤ 2 |A \ A{o}| ε .

The addition of this inequality to (3) produces

∑

e∈ET

yε(L(e)) + 2 yε(L[T]) ≤ 2 yε(L \ L{o}) ,

since yε differs from y only in A. Hence, (i6) remains true at the beginning of the next iteration.

Now suppose Subcase I.1.B occurs. At the end of the subcase, let L′ := L ∪ {L1 ∪ L2}, let

o be any vertex, and let T be an L′-connected tree that has no bridge in S and is not wrapped

in S. Since T is L-connected, (3) holds. We must show that (3) remains true when yε and L′ are

substituted for y and L respectively. Let P := L∗, A := L∗ \ S, and B := L∗ ∩ S. Since |A{o}| ≤ 1,

Lemma 5.1 implies
∑

A∈A |δTA| ε+2 |A[T]| ε ≤ 2 |A \A{o}| ε, as in the previous case. The addition

of this inequality to (3) produces

∑

e∈ET

yε(L′(e)) + 2 yε(L′[T]) ≤ 2 yε(L′ \ L′
{o}) ,

6

since yε
L1∪L2

= 0 and yε differs from y only in A. Hence, (i6) remains true at the beginning of the

next iteration.

Proof of (i7). Suppose we are at the beginning of the first iteration of phase II. Let L be

an element of L such that L ∩ VT 6= ∅. Since VT = M ∈ L∗, we have L ⊆ VT and therefore

T [VT ∩L] = T [L] = F [L]. Since F [L] is connected by virtue of (i1), so is T [VT ∩L]. This argument

shows that T is L-connected. In particular, T is M -connected and therefore T is a tree. Hence,

(i7) holds at the beginning of the first iteration.

Now suppose (i7) holds at the beginning of some iteration where Case II.1 occurs. Let L be an

element of L and let u and v be vertices in L∩ (VT \Z). Let P be the unique path from u to v in T .

We may assume that P never leaves L. Moreover, P never enters Z, given that |δTZ| = 1. Hence,

T − Z is L-connected. For the same reason, T − Z is a tree. Hence (i7) holds at the beginning of

the next iteration.

Proof of (i8). At the beginning of the first iteration of phase II, (i8) holds because VT = M .

Now consider an iteration where Case II.1 occurs. We may assume that there is a partition U of

M \ VT into elements of S. If Z ⊆ VT then U ∪ {Z} is a partition of M \ (VT \ Z) into elements

of S. Otherwise, Z includes some of the elements of U and is disjoint from all the others. Hence,

{Z} ∪ {U ∈ U : U ∩ Z = ∅} is a partition of M \ (VT \ Z) into elements of S. This shows that (i8)

holds at the beginning of the next iteration.

References

[1] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms for

prize-collecting Steiner tree and TSP. In 50th Annual Symposium on Foundations of Computer

Science, 2009.

[2] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest

problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[3] D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing,

1997.

[4] D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory

and practice. In Symposium on Discrete Algorithms, pages 760–769, 2000.

7

	1 Introduction
	2 Notation and preliminaries
	3 Johnson, Minkoff and Phillips' algorithm
	4 Analysis of the algorithm
	5 Proofs of the invariants

