$O(n^2 \log n)$ implementation of an approximation for the Prize-Collecting Steiner Tree Problem

Paulo Feofiloff * Cristina G. Fernandes *† Carlos E. Ferreira *‡ José Coelho de Pina *

February 2002

Abstract

We give a low-level description of an $O(n^2 \log n)$ implementation of Johnson, Minkoff and Phillips' approximation algorithm for the Prize-Collecting Steiner Tree Problem.

1 Introduction

The Prize-Collecting Steiner Tree Problem is an extension of the Steiner Tree Problem where each vertex left out of the tree pays a penalty. The goal is to find a tree which minimizes the sum of its edge costs and the penalties for the vertices left out of the tree. Johnson, Minkoff and Phillips [2] presented a 2-approximation for the this problem based on the primal-dual scheme. In this manuscript, we describe in details an $O(n^2 \log n)$ implementation of this algorithm.

We adopt the notation used [1], which is summarized below. We start with a formal definition of the problem. Consider a graph G = (V, E), a function c from E into \mathbb{Q}_{\geq} (non-negative rationals) and a function π from V into \mathbb{Q}_{\geq} . For any subset F of E and any subset W of V, let $c(F) := \sum_{e \in F} c_e$ and $\pi(W) := \sum_{w \in W} \pi_w$. The **Prize-Collecting Steiner Tree Problem** (PCST) consists of the following: given G, c, and π , find a tree T in G such that

$$c(E_T) + \pi(V \setminus V_T)$$
 is minimum.

 $(V_H \text{ and } E_H \text{ denote the vertex and edge sets of a graph } H.)$

An edge is **internal to** a partition \mathcal{P} of V if both of its ends are in the same element of \mathcal{P} . All other edges are **external to** \mathcal{P} . For any external edge, there are two elements of \mathcal{P} containing its ends. We call these two elements the **extremes** of the edge in \mathcal{P} .

A collection \mathcal{L} of subsets of V is **laminar** if, for any two elements L_1 and L_2 of \mathcal{L} , either $L_1 \cap L_2 = \emptyset$ or $L_1 \subseteq L_2$ or $L_1 \supseteq L_2$. The collection of maximal elements of a laminar collection \mathcal{L} will be denoted by \mathcal{L}^* . So, \mathcal{L}^* is a collection of disjoint subsets of V. Let $\bigcup \mathcal{L}$ denote the union of all sets in \mathcal{L} .

^{*}Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo/SP, Brazil. E-mail: {pf,cris,cef,coelho}@ime.usp.br. Research supported in part by PRONEX/CNPq 664107/1997-4 (Brazil).

 $^{^\}dagger \text{Research supported in part by CNPq Proc. 301174/97-0 (Brazil)}.$

[‡]Research supported in part by CNPq Proc. 300752/94-6 (Brazil).

For any collection \mathcal{L} of subsets of V and any subset X of V, let $\overline{X} := V \setminus X$, $\mathcal{L}^X := \{L \in \mathcal{L} : L \subseteq X\}$ and $\mathcal{L}_X := \{L \in \mathcal{L} : L \supseteq X\}$. When $X = \{v\}$, we write \mathcal{L}^v and \mathcal{L}_v instead, and when $X = V_T$ or $X = \overline{V_T}$, we write T or \overline{T} instead. For any e in E, let $\mathcal{L}(e) := \{L \in \mathcal{L} : e \in \delta_G L\}$, where $\delta_G L$ stands for the set of edges of G with one end in L and the other in \overline{L} . For any function y from \mathcal{L} into \mathbb{Q}_{\geq} and any subcollection \mathcal{M} of \mathcal{L} , let $y(\mathcal{M}) := \sum_{L \in \mathcal{M}} y(L)$.

We say that y respects a function c defined on E (relative to \mathcal{L}) if

$$y(\mathcal{L}(e)) \leq c_e \quad \text{for each } e \text{ in } E.$$
 (1)

An edge e is **tight for** y if equality holds in (1).

We say y respects a function π defined on V (relative to \mathcal{L}) if

$$y(\mathcal{L}^L) \leq \pi(L) \quad \text{for each } L \text{ in } \mathcal{L}.$$
 (2)

(3)

2 Johnson, Minkoff and Phillips' algorithm

In its high-level description below, we refer to an algorithm PRUNING whose high-level description we omit. It corresponds to the second phase of the primal-dual scheme, where edges are deleted from the tree produced in the first phase.

Johnson, Minkoff and Phillips' algorithm receives G, c, π and returns a tree T in G such that $c(E_T) + \pi(\overline{V_T}) \leq 2 \operatorname{opt}(\operatorname{PCST}(G, c, \pi))$. Each iteration starts with a spanning forest F in G, a laminar collection $\mathcal L$ of subsets of V with $\bigcup \mathcal L = V$, a subcollection $\mathcal S$ of $\mathcal L$, and a function y from $\mathcal L$ into $\mathbb Q_{\geq}$. The first iteration starts with $F = (V, \emptyset)$, $\mathcal L = \{\{v\} : v \in V\}$, $\mathcal S = \emptyset$, and y = 0. Each iteration consists of the following:

Case 1: $|\mathcal{L}^* \setminus \mathcal{S}| > 1$.

Let ε be the largest number in \mathbb{Q}_{\geq} such that the function y' defined by

$$y_L' = \begin{cases} y_L + \varepsilon, & \text{if } L \in \mathcal{L}^* \setminus \mathcal{S} \\ y_L, & \text{otherwise} \end{cases}$$

respects c and π .

Subcase 1A: some edge e external to \mathcal{L}^* is tight for y'.

Let L_1 and L_2 be the extremes of e in \mathcal{L}^* . Set $y'_{L_1 \cup L_2} := 0$ and start a new iteration with F + e, $\mathcal{L} \cup \{L_1 \cup L_2\}$, \mathcal{S} , y' in the roles of F, \mathcal{L} , \mathcal{S} , y respectively.

Subcase 1B: some element L of $\mathcal{L}^* \setminus \mathcal{S}$ is tight for y'.

Start a new iteration with F, \mathcal{L} , $\mathcal{S} \cup \{L\}$, y' in the roles of F, \mathcal{L} , \mathcal{S} , y respectively.

Case 2: $|\mathcal{L}^* \setminus \mathcal{S}| = 1$.

Let M be the only element of $\mathcal{L}^* \setminus \mathcal{S}$. Call subalgorithm PRUNING with arguments $F \cap M$, \mathcal{L}^M , and \mathcal{S}^M . The subalgorithm returns a subcollection \mathcal{Z} of \mathcal{S}^M . Return $T := (F \cap M) - \bigcup \mathcal{Z}$ and stop.

3 Data structures and basic functions

Here is the list of variables and functions used by the algorithm:

- 1. L_1, \ldots, L_N are nonempty subsets of V_G such that $L_1 \cup \cdots \cup L_N = V_G$ and, for each pair i < j, either $L_i \subset L_j$ or $L_i \cap L_j = \emptyset$, whence N < 2n, where $n := |V_G|$. Each L_i is represented by a bit vector as well as by a linked list. (In the high-level version of the algorithm given in [1], $\{L_1, \ldots, L_N\}$ is denoted by \mathcal{L} .)
- 2. A subset F of E_G , represented as a doubly-linked list (a bit vector would be too long). Since (V_G, F) is a forest, |F| < n.
- 3. A bit vector $\mu[1..N]$ such that $\mu[i] = 1$ iff L_i is a maximal element of $\{L_1, \ldots, L_N\}$. (In the high-level version of the algorithm, this set of maximal elements is denoted by \mathcal{L}^* .)
- 4. An array d indexed by V_G with values in \mathbb{Q}_{\geq} . (In terms of the high-level notation, $d[v] := \mathcal{L}_v \equiv \sum_{L \in \mathcal{L}: v \in L} y_L$ for each vertex v.)
- 5. A function RESIDUALCOST that takes edges into \mathbb{Q}_{\geq} : upon receiving an edge uv, the function returns the number $c_{uv} d[u] d[v]$. Of course this can be implemented to run in O(1) time. (We do not treat RESIDUALCOST as an array because we cannot afford to update RESIDUALCOST every time d changes.)
- 6. An array $\Delta[1..N]$ with values in \mathbb{Q}_{\geq} . (In terms of the high-level notation, $\Delta[i] = \sum_{v \in L_i} \pi[v] \sum_{S \subset L_i} y_{S.}$)
- 7. A bit vector $\lambda[1..N]$ such that if $\lambda[i] = 0$ then $\Delta[i] = 0$. We say that L_i is active iff $\lambda[i] = 1$. (In terms of the high-level notation, $\lambda[i] = 0$ iff $L_i \in \mathcal{S}$.)
- 8. A variable mxActive records the cardinality of the set $\{i: 1 \leq i \leq N, \mu[i] = 1, \lambda[i] = 1\}$.
- 9. An array A[1...N, 1...N] whose elements are sets of at most one edge each. More specifically, for $i \neq j$ such that $\mu(i) = \mu(j) = 1$,
 - if $\delta(L_i) \cap \delta(L_j) = \emptyset$ then $A[i,j] = A[j,i] = \emptyset$; otherwise, $A[i,j] = A[j,i] = \{uv\}$ where uv is an element of $\delta(L_i) \cap \delta(L_j)$ that minimizes RESIDUALCOST(uv).
- 10. A function KEY defined on $\{1, ..., N\} \times \{1, ..., N\}$ as follows: if $A[i, j] = \emptyset$ then KEY $(i, j) = \infty$; else KEY(i, j) = RESIDUALCOST(uv), where uv is the unique edge in A[i, j]. Of course this function can be implemented to run in O(1) time.
- 11. For each i such that $\mu[i] = 1$, there are two subsets of $\{1, \ldots, N\}$ denoted by $H_0[i]$ and $H_1[i]$. For each h, the set $H_h[i]$ consists of all $j \neq i$ such that

$$\mu[j] = 1, \ \lambda[j] = h, \ A[i,j] \neq \emptyset$$
.

Each set $H_h[i]$ is organized as a min-heap, the key of each element j being Key(i, j).² Hence, the first element of $H_h[i]$ minimizes Key(i, *).

Johnson, Minkoff and Phillips say this is the "surplus" of L_i .

² Johnson, Minkoff and Phillips say that the key of j is the "deficit" of the only edge in A[i, j].

12. For $h \in \{0,1\}$, we assume that we can decide in time O(1) whether or not a statement like " $p \in H_h[i]$ " is true or false. Moreover, if the statement is true, we assume that the deletion of p from $H_h[i]$ can de carried out in $O(\log n)$ time. (This is easy to implement: for each i, each h, and each p in $\{1, \ldots, N\}$, maintain the location of p in $H_h[i]$.)

4 Main functions

The core of the algorithm is given by the next functions.

```
PCST-LOW-LEVEL (G, c, \pi)

1 INICIALIZATION()

2 N \leftarrow mxActive \leftarrow n

3 while mxActive > 1 do \triangleright at most 2n iterations

4 ONEITERATION()

5 (X, F) \leftarrow PRUNING()

6 return X and F
```

The number of iterations is $\leq 2n$ because the sum $2 \times mxActive + mxInactive$, where mxInactive is the cardinality of $\{i: 1 \leq i \leq N, \mu[i] = 1, \lambda[i] = 0\}$, starts at 2n and strictly decreases with each iteration.

```
INICIALIZATION()
01
       n \leftarrow |V_G|
       i \leftarrow 0
02
03
       for each v in V_G do
             d[v] \leftarrow 0
04
             i \leftarrow i + 1
05
             L_i \leftarrow \{v\}
06
             o[v] \leftarrow i
07
             \mu[i] \leftarrow \lambda[i] \leftarrow 1
08
09
             \Delta[i] \leftarrow \pi_v
       for each i in \{2, \ldots, n\} do
10
             for each j in \{1, \ldots, i-1\} do
11
                   A[i,j] \leftarrow \emptyset
12
                   Key(i, j) = \infty
13
       for each i in \{2, \ldots, n\} do
14
             for each uv in \delta(L_i) do
15
                   if o[u] = i
16
                         then j \leftarrow o[v]
17
                         else j \leftarrow o[u]
18
                   if Key(i, j) > ResidualCost(uv)
19
                         then A[i,j] \leftarrow A[j,i] \leftarrow \{uv\}
20
```

```
21 F \leftarrow \emptyset

22 H_0[i] \leftarrow \emptyset

23 for each i in \{1, ..., n\} do

24 H_1[i] \leftarrow \emptyset

25 for each j in \{1, ..., n\} - \{i\} do

26 if A[i, j] \neq \emptyset then H_1[i] \leftarrow H_1[i] \cup \{j\}
```

The total time spent executing lines 14–20 is $O(m) = O(n^2)$. The total time spent building the heap $H_1[i]$ in lines 20–21 is O(n). The total spent by INICIALIZATION is $O(n^2)$.

```
ONEITERATION()
                               \triangleright each call takes O(n \log n) time
        \varepsilon' \leftarrow \varepsilon'' \leftarrow \infty
01
        for each p in \{1, ..., N\} such that \mu[p] = \lambda[p] = 1 do
02
03
               if \varepsilon' > \Delta[p]
                      then \varepsilon' \leftarrow \Delta[p]
04
05
                              p' \leftarrow p
06
               if H_0[p] \neq \emptyset
                      then let q be the first element of H_0[p]
07
                              if \varepsilon'' > \text{Key}(p,q)
08
                                     then \varepsilon'' \leftarrow \text{Key}(p, q)
09
                                             p'' \leftarrow p
10
                                             q'' \leftarrow q
11
12
               if H_1[p] \neq \emptyset
13
                      then let q be the first element of H_1[p]
                              if \varepsilon'' > \frac{1}{2} \text{Key}(p, q)
then \varepsilon'' \leftarrow \frac{1}{2} \text{Key}(p, q)
14
15
                                             p'' \leftarrow p
16
                                             q'' \leftarrow q
17
        \varepsilon \leftarrow \min(\varepsilon', \varepsilon'')
18
        for each p in \{1,\ldots,N\} such that \mu[p]=\lambda[p]=1 do
19
20
               \Delta[p] \leftarrow \Delta[p] - \varepsilon
               for each v in L_p do
21
                      d[v] \leftarrow d[v] + \varepsilon
22
23
                      \triangleright no need to rebuild heaps H_0 and H_1
        if \varepsilon = \varepsilon'
24
25
               then SubCase1B(p') \triangleright takes time O(n \log n)
               else SubCase1A(p'', q'') \triangleright takes time O(n \log n)
26
```

Taken together, all executions of line 22 consume O(n) time. The total spent by ONEITERATION is $O(n \log n)$.

```
SUBCASE1A(p,q) \triangleright merge L_p and L_q; takes time O(n \log n)
       let uv be the unique element of A[p,q]
01
        F \leftarrow F \cup \{uv\}
02
03
       L_{N+1} \leftarrow L_p \cup L_q
       \mu[p] \leftarrow \mu[q] \leftarrow 0 \quad \rhd L_p \text{ and } L_q \text{ are no longer maximal}
04
05
       \mu[N+1] \leftarrow 1 \quad \triangleright \text{ now } L_{N+1} \text{ is maximal}
       if \lambda[q] = 1 then mxActive \leftarrow mxActive - 1
06
       \Delta[N+1] \leftarrow \Delta[p] + \Delta[q]
07
       \lambda[N+1] \leftarrow 1 \quad \triangleright \text{ now } L_{N+1} \text{ is active}
08
       for each i in \{1, \ldots, N\} such that \mu[i] = 1 do
09
10
             if Key(p, i) \leq Key(q, i)
                   then A[N+1,i] \leftarrow A[i,N+1] \leftarrow A[p,i]
11
                   else A[N+1,i] \leftarrow A[i,N+1] \leftarrow A[q,i]
12
       for each h in \{0, 1\} do
13
             H_h[N+1] \leftarrow H_h[p] \quad \triangleright \text{ time } O(1)
14
             H_h[N+1] \leftarrow H_h[N+1] - \{q\} \quad \triangleright \text{ time } O(\log n)
15
16
             for each i in H_h[q] do
                   if i \notin H_h[N+1]
17
                        then H_h[N+1] \leftarrow H_h[N+1] \cup \{i\} \triangleright time O(\log n)
18
                   if i \in H_h[N+1] and KEY(N+1,i) > KEY(q,i)
19
                        then Decrease-Key(H_h[N+1], i, \text{Key}(q, i))
20
       for each i in \{1, ..., N\} such that \mu[i] = 1 do
21
             H_0[i] \leftarrow H_0[i] - \{q\} \quad \triangleright \text{ time } O(\log n)
22
23
             H_1[i] \leftarrow H_1[i] - \{p, q\} \quad \triangleright \text{ time } O(\log n)
24
             if \text{Key}(i, N+1) < \infty
                   then H_1[i] \leftarrow H_1[i] \cup \{N+1\}  \triangleright time O(\log n)
25
26
        N \leftarrow N + 1
SubCase1B(p)
                           \triangleright deactivate L_p
        \lambda[p] \leftarrow 0
01
02
       mxActive \leftarrow mxActive - 1
       for each i in \{1, ..., N\} - \{p\} do
03
04
             if p \in H_1[i]
                   then H_1[i] \leftarrow H_1[i] - \{p\} \triangleright time O(\log n)
05
                          H_0[i] \leftarrow H_0[i] \cup \{p\} \quad \triangleright \text{ time } O(\log n)
06
```

```
PRUNING () \triangleright O(n^2) time
01
       for i \leftarrow N down to 1 do
                                           ⊳ "reverse delete"
02
            if \lambda[i] = 0 \quad \triangleright L_i is inactive
03
                 then degree \leftarrow 0
04
                        for each uv in F do \triangleright O(n) time
                              if |\{u, v\} \cap L_i| = 1 \quad \triangleright O(1) time
05
                                   then degree \leftarrow degree + 1
06
                        \triangleright degreee is the cardinality of F \cap \delta(L_i)
07
                        if degree \leq 1
08
                              then for each uv in F do
09
                                          if |\{u, v\} \cap L_i| \ge 1
10
                                               then F \leftarrow F - \{uv\}
11
       if F \neq \emptyset
12
13
            then let X be the set of vertices of G[F]
14
            else let x be a vertex that maximizes \pi_x
                  X \leftarrow \{x\}
15
16
       return (X, F)
```

References

- [1] P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J. de Pina. Approximation algorithms for the prize-collecting Steiner tree problem. Available at http://www.ime.usp.br/~cris/publ/. Submitted, 2004.
- [2] D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory and practice. In *Symposium on Discrete Algorithms*, pages 760–769, 2000.