O(n?logn) implementation of an approximation
for the Prize-Collecting Steiner Tree Problem

Paulo Feofiloff * Cristina G. Fernandes *! Carlos E. Ferreira *f José Coelho de Pina *

February 2002

Abstract

We give a low-level description of an O(n?logn) implementation of Johnson, Minkoff and
Phillips’ approximation algorithm for the Prize-Collecting Steiner Tree Problem.

1 Introduction

The Prize-Collecting Steiner Tree Problem is an extension of the Steiner Tree Problem where each
vertex left out of the tree pays a penalty. The goal is to find a tree which minimizes the sum
of its edge costs and the penalties for the vertices left out of the tree. Johnson, Minkoff and
Phillips [2]| presented a 2-approximation for the this problem based on the primal-dual scheme. In
this manuscript, we describe in details an O(n?logn) implementation of this algorithm.

We adopt the notation used [1], which is summarized below. We start with a formal definition of the
problem. Consider a graph G = (V, E), a function ¢ from E into Qs (non-negative rationals) and
a function m from V into Q5. For any subset F' of E and any subset W of V, let ¢(F) := 3 .pce
and m(W) := > ci mw. The Prize-Collecting Steiner Tree Problem (PCST) consists of the
following: given G, ¢, and 7, find a tree T' in G such that

c¢(Er) + n(V \ Vr) is minimum.
(Vi and E denote the vertex and edge sets of a graph H.)

An edge is internal to a partition P of V if both of its ends are in the same element of P. All
other edges are external to P. For any external edge, there are two elements of P containing its
ends. We call these two elements the extremes of the edge in P.

A collection L of subsets of V is laminar if, for any two elements Ly and Ly of £, either L1 N Ly = ()
or L1 C Ly or Ly D Ly. The collection of maximal elements of a laminar collection £ will be denoted
by L*. So, L* is a collection of disjoint subsets of V. Let |J £ denote the union of all sets in L.

“Departamento de Ciéncia da Computagio, Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Rua
do Matao 1010, 05508-090 Sao Paulo/SP, Brazil. E-mail: {pf,cris,cef,coelho}@ime.usp.br. Research supported
in part by PRONEX/CNPq 664107/1997-4 (Brazil).

"Research supported in part by CNPq Proc. 301174/97-0 (Brazil).

tResearch supported in part by CNPq Proc. 300752/94-6 (Brazil).

For any collection £ of subsets of V and any subset X of V., let X :=V\X, LY :={L € L:LC X}
and Lx :={L € L: LD X}. When X = {v}, we write L and L, instead, and when X = V¢ or
X = Vr, we write T or T instead. For any e in E, let L(e) := {L € L : e € 6L}, where §gL stands
for the set of edges of G with one end in L and the other in L. For any function y from £ into Qs
and any subcollection M of L, let y(M) :=>"; -\ y(L).

We say that y respects a function ¢ defined on E (relative to £) if

y(L(e)) < ¢ foreachein E. (1)
An edge e is tight for y if equality holds in (1).
We say y respects a function 7 defined on V' (relative to L) if

y(LY) < w(L) foreach L in L. (2)

2 Johnson, Minkoff and Phillips’ algorithm

In its high-level description below, we refer to an algorithm PRUNING whose high-level description
we omit. It corresponds to the second phase of the primal-dual scheme, where edges are deleted
from the tree produced in the first phase.

Johnson, Minkoff and Phillips’ algorithm receives G, ¢, m and returns a tree T in G such that
c(Er) + n(Vr) < 2o0pt(PcsT(G,c,m)). Each iteration starts with a spanning forest F in G, a
laminar collection £ of subsets of V' with |J£ = V, a subcollection S of £, and a function y from
L into Q. The first iteration starts with F = (V,0), L = {{v} : v € V}, S =0, and y = 0. Each
iteration consists of the following:

Case 1: |[£*\ S| > 1.

Let ¢ be the largest number in Qs such that the function y’ defined by

. [y,te, fLeL\S
o = Y otherwise

respects ¢ and .

Subcase 1A: some edge e external to £* is tight for y'.

Let L; and Lo be the extremes of e in L*. Set y}JlUI& := 0 and start a new
iteration with F+e, LU{L1UL>}, S, v in the roles of F', L, S, y respectively.

Subcase 1B: some element L of £*\ S is tight for y'.

Start a new iteration with F, £, S U{L}, ¢ in the roles of F, L, S, y
respectively.

Case 2: |[£*\ S| =1.

Let M be the only element of £*\ S. Call subalgorithm PRUNING with arguments
FnM, LM and SM. The subalgorithm returns a subcollection Z of S™. Return
T:=(FNM)—-JZ and stop.

3 Data structures and basic functions

Here is the list of variables and functions used by the algorithm:

10.

11.

. Li,..., Ly are nonempty subsets of Viz such that L; U---U Ly = Vi and, for each pair 7 < 7,

either Ly C Lj or L; N Lj = (), whence N < 2n, where n := |V|. Each L; is represented by a
bit vector as well as by a linked list. (In the high-level version of the algorithm given in [1],
{L1,...,Ln} is denoted by L.)

. A subset F' of Eg, represented as a doubly-linked list (a bit vector would be too long). Since

(Vg, F) is a forest, |F| < n.

. A bit vector u[l..N] such that p[i] = 1 iff L; is a maximal element of {Lq,...,Ly}. (In the

high-level version of the algorithm, this set of maximal elements is denoted by L£*.)

. An array d indexed by Vi with values in Q. (In terms of the high-level notation, d[v] :=

Ly = 1cr.ver yr for each vertex v.)

. A function RESIDUALCOST that takes edges into Q> : upon receiving an edge uv, the function

returns the number ¢y, — d[u] — d[v]. Of course this can be implemented to run in O(1)
time. (We do not treat RESIDUALCOST as an array because we cannot afford to update
RESIDUALCOST every time d changes.)

. An array A[l..N] with values in Q>." (In terms of the high-level notation, Ali] =

EueLi m[v] — EsgLi Ys-)

. A bit vector A[1..N] such that if A[i] = 0 then A[i] = 0. We say that L; is active iff A[i] = 1.

(In terms of the high-level notation, A[{] =0 iff L; € S.)

. A variable mzActive records the cardinality of the set {i : 1 <i < N, pu[i] =1, A[{] = 1}.

. An array A[l..N,1..N] whose elements are sets of at most one edge each. More specifically,

for i # 7 such that p(i) = u(j) =1,

if §(L;) NO(L;) = 0 then A[i, 5] = A[j,i] = 0;
otherwise, A[i,j] = A[j,i] = {uv} where uv is an element of §(L;) N §(L;) that
minimizes RESIDUALCOST (uv).

A function KEY defined on {1,..., N} x {1,..., N} as follows: if A[4,j] = () then KEY(4,j) =
oo; else KEY(4,7) = RESIDUALCOST(uv), where uv is the unique edge in A[s, j]. Of course
this function can be implemented to run in O(1) time.

For each 7 such that u[i] = 1, there are two subsets of {1,..., N} denoted by Hy[i] and H;[i].
For each h, the set Hpy[i] consists of all j # i such that

plil =1, A[j] = h, Ali,j] # 0.

Each set Hy[i] is organized as a min-heap, the key of each element j being KEY (i, 5).2 Hence,
the first element of Hj[i] minimizes KEY(4, *).

! Johnson, Minkoff and Phillips say this is the “surplus” of L;.
? Johnson, Minkoff and Phillips say that the key of j is the “deficit” of the only edge in A, j].

12. For h € {0,1}, we assume that we can decide in time O(1) whether or not a statement like
“p € Hpli]" is true or false. Moreover, if the statement is true, we assume that the deletion of
p from Hp[i] can de carried out in O(logn) time. (This is easy to implement: for each 4, each
h, and each p in {1,..., N}, maintain the location of p in Hp[i].)

4 Main functions

The core of the algorithm is given by the next functions.

PCST-LOW-LEVEL (G, ¢,)

INICTALIZATION()

N « mzActive + n

while mzActive > 1 do > at most 2n iterations
ONEITERATION()

(X, F) + PRUNING()

return X and F

S O = W N

The number of iterations is < 2n because the sum 2 x mzActive + mzInactive, where malnactive
is the cardinality of {i : 1 < i < N, ul[i] =1, A[i] = 0}, starts at 2n and strictly decreases with each
iteration.

INICIALIZATION()

01 n < |Vg|

02 ++0

03 for each v in Vg do

04 d[v] + 0

05 i—i+1

06 Li — {U}

07 o[v] <1

08 pli] < Ali] < 1

09 Ali] « 7,

10 for each ¢ in {2,...,n} do

11 for each jin {1,...,i—1} do
12 Ali,j] 0

13 KEY(i,7) = 00

14 for each ¢ in {2,...,n} do

15 for each wv in §(L;) do

16 if o[u] =i

17 then j < o[v]

18 else j + o[u]

19 if KEY(7,7) > RESIDUALCOST (uv)
20 then Ali, j] < A[j,1] + {uv}

21 F+0

22 Hgli] < 0

23 foreachiin {1,...,n} do

24 Hili] < 0

25 for each j in {1,...,n} — {i} do

26 if Afi, 5] # 0 then Hy[i] « Hy[i] U {j}

The total time spent executing lines 14-20 is O(m) = O(n?). The total time spent building the
heap H;[i] in lines 20-21 is O(n). The total spent by INICIALIZATION is O(n?).

ONEITERATION() D each call takes O(nlogn) time
01 &+ &+
02 for each pin {1,..., N} such that ulp] = Alp] =1 do

03 if ' > Alp]

04 then ¢’ « A[p]

05 p—p

06 if Holp] # 0

07 then let ¢ be the first element of Hy|[p]
08 if " > KeY(p,q)

09 then ¢’ <+ KEY(p, q)

10 p’" <+ p

11 q"+—q

12 if Hy[p] # 0

13 then let ¢ be the first element of H[p]
14 if & > 1KEY(p, q)

15 then & + IKEY(p, q)

16 p" <+ p

17 q" +q

18 &« min(e,e")
19 for each pin {1,..., N} such that u[p] = A[p] =1 do

20 Alp] < Alp] — ¢

21 for each v in L, do

22 d[v] < d[v] + ¢

23 > no need to rebuild heaps Hy and H;

24 ife=¢

25 then SUBCASE1B(p') > takes time O(nlogn)
26 else SUBCASELA(p”,¢") > takes time O(nlogn)

Taken together, all executions of line 22 consume O(n) time. The total spent by ONEITERATION is
O(nlogn).

SUBCASE1A(p,q) > merge L, and Lg; takes time O(nlogn)
01 let uv be the unique element of A[p, ¢]

02 F « FU{uv}

03 Ln41 ¢ Lp U Lq

04 pl[p] < plgl <0 > L, and L, are no longer maximal
05 wp[N+1]+1 > now Ly4; is maximal

06 if A[g] =1 then mzActive < mzActive — 1

07 A[N +1] + Alp] + Alq]

08 A[N+1]+ 1 > now Ly, is active

09 for each 4 in {1,..., N} such that p[i] =1 do

10 if KeY(p,i) < KEY(q,1)

11 then A[N +1,i] < A[i, N + 1] < Alp, 1]

12 else A[N +1,i] < A[i, N + 1] < Alg, 1]

13 for each h in {0,1} do

14 Hy[N + 1] < Hplp] © time O(1)

15 Hp[N + 1] < Hy[N + 1] — {q} > time O(logn)

16 for each 7 in Hp[q] do

17 if i ¢ Hy[N +1]

18 then Hp[N + 1] <~ Hp[N +1]U{i} > time O(logn)
19 if i € Hy[N + 1] and KEY(N + 1,4) > KEY(q,1)
20 then DECREASE-KEY (H,[N + 1],4, KEY(q,1))
21 for each i in {1,..., N} such that u[i] =1 do

22 Hyli] <+ Ho[i] — {¢q} © time O(logn)

23 H.[i] < Hi[i] — {p,q} > time O(logn)

24 if KEY(i, N +1) < o0

25 then Hy[i] «+ Hi[{]| U{N +1} © time O(logn)

26 N+ N+1

SUBCASE1B(p) > deactivate Ly,

01 Alp] « 0

02 mzActive < maxActive — 1

03 foreachiin {1,...,N} —{p} do

04 if p € Hyli]
05 then H1[i] < Hi[i] — {p} > time O(logn)
06 Hyli] <+ Ho[i]U{p} © time O(logn)

PRUNING () > O(n?) time

01 for i< N down to1do D “reverse delete’
02 if A\[{] =0 > L; is inactive
03 then degree < 0
04 for each uv in F do > O(n) time
05 if {u,v}NL;j=1 > O(1) time
06 then degree < degree + 1
07 > degreee is the cardinality of F' N d(L;)
08 if degree <'1
09 then for each uv in F' do
10 if {u,v}NL;|>1
11 then F < F — {uv}
12 if F#0
13 then let X be the set of vertices of G[F]
14 else let x be a vertex that maximizes 7,
15 X « {z}
16 return (X, F)
References

[1] P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J. de Pina. Approximation algorithms for
the prize-collecting Steiner tree problem. Available at http://www.ime.usp.br/ cris/publ/.
Submitted, 2004.

[2] D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory
and practice. In Symposium on Discrete Algorithms, pages 760-769, 2000.

