$O\left(n^{2} \log n\right)$ implementation of an approximation for the Prize-Collecting Steiner Tree Problem

Paulo Feofiloff * Cristina G. Fernandes * Carlos E. Ferreira * ${ }^{*} \quad$ José Coelho de Pina *

February 2002

Abstract

We give a low-level description of an $O\left(n^{2} \log n\right)$ implementation of Johnson, Minkoff and Phillips' approximation algorithm for the Prize-Collecting Steiner Tree Problem.

1 Introduction

The Prize-Collecting Steiner Tree Problem is an extension of the Steiner Tree Problem where each vertex left out of the tree pays a penalty. The goal is to find a tree which minimizes the sum of its edge costs and the penalties for the vertices left out of the tree. Johnson, Minkoff and Phillips [2] presented a 2-approximation for the this problem based on the primal-dual scheme. In this manuscript, we describe in details an $O\left(n^{2} \log n\right)$ implementation of this algorithm.

We adopt the notation used [1], which is summarized below. We start with a formal definition of the problem. Consider a graph $G=(V, E)$, a function c from E into \mathbb{Q}_{\geq}(non-negative rationals) and a function π from V into \mathbb{Q}_{\geq}. For any subset F of E and any subset W of V, let $c(F):=\sum_{e \in F} c_{e}$ and $\pi(W):=\sum_{w \in W} \pi_{w}$. The Prize-Collecting Steiner Tree Problem (PCST) consists of the following: given G, c, and π, find a tree T in G such that

$$
c\left(E_{T}\right)+\pi\left(V \backslash V_{T}\right) \text { is minimum. }
$$

(V_{H} and E_{H} denote the vertex and edge sets of a graph H.)
An edge is internal to a partition \mathcal{P} of V if both of its ends are in the same element of \mathcal{P}. All other edges are external to \mathcal{P}. For any external edge, there are two elements of \mathcal{P} containing its ends. We call these two elements the extremes of the edge in \mathcal{P}.

A collection \mathcal{L} of subsets of V is laminar if, for any two elements L_{1} and L_{2} of \mathcal{L}, either $L_{1} \cap L_{2}=\emptyset$ or $L_{1} \subseteq L_{2}$ or $L_{1} \supseteq L_{2}$. The collection of maximal elements of a laminar collection \mathcal{L} will be denoted by \mathcal{L}^{*}. So, \mathcal{L}^{*} is a collection of disjoint subsets of V. Let $\bigcup \mathcal{L}$ denote the union of all sets in \mathcal{L}.

[^0]For any collection \mathcal{L} of subsets of V and any subset X of V, let $\bar{X}:=V \backslash X, \mathcal{L}^{X}:=\{L \in \mathcal{L}: L \subseteq X\}$ and $\mathcal{L}_{X}:=\{L \in \mathcal{L}: L \supseteq X\}$. When $X=\{v\}$, we write \mathcal{L}^{v} and \mathcal{L}_{v} instead, and when $X=V_{T}$ or $X=\overline{V_{T}}$, we write T or \bar{T} instead. For any e in E, let $\mathcal{L}(e):=\left\{L \in \mathcal{L}: e \in \delta_{G} L\right\}$, where $\delta_{G} L$ stands for the set of edges of G with one end in L and the other in \bar{L}. For any function y from \mathcal{L} into \mathbb{Q}_{\geq} and any subcollection \mathcal{M} of \mathcal{L}, let $y(\mathcal{M}):=\sum_{L \in \mathcal{M}} y(L)$.
We say that y respects a function c defined on E (relative to \mathcal{L}) if

$$
\begin{equation*}
y(\mathcal{L}(e)) \leq c_{e} \quad \text { for each } e \text { in } E . \tag{1}
\end{equation*}
$$

An edge e is tight for y if equality holds in (1).
We say y respects a function π defined on V (relative to $\mathcal{L})$ if

$$
\begin{equation*}
y\left(\mathcal{L}^{L}\right) \leq \pi(L) \quad \text { for each } L \text { in } \mathcal{L} \tag{2}
\end{equation*}
$$

2 Johnson, Minkoff and Phillips' algorithm

In its high-level description below, we refer to an algorithm Pruning whose high-level description we omit. It corresponds to the second phase of the primal-dual scheme, where edges are deleted from the tree produced in the first phase.

Johnson, Minkoff and Phillips' algorithm receives G, c, π and returns a tree T in G such that $c\left(E_{T}\right)+\pi\left(\overline{V_{T}}\right) \leq 2 \operatorname{opt}(\operatorname{PCST}(G, c, \pi))$. Each iteration starts with a spanning forest F in G, a laminar collection \mathcal{L} of subsets of V with $\bigcup \mathcal{L}=V$, a subcollection \mathcal{S} of \mathcal{L}, and a function y from \mathcal{L} into \mathbb{Q}_{\geq}. The first iteration starts with $F=(V, \emptyset), \mathcal{L}=\{\{v\}: v \in V\}, \mathcal{S}=\emptyset$, and $y=0$. Each iteration consists of the following:

Case 1: $\left|\mathcal{L}^{*} \backslash \mathcal{S}\right|>1$.
Let ε be the largest number in \mathbb{Q}_{\geq}such that the function y^{\prime} defined by

$$
y_{L}^{\prime}= \begin{cases}y_{L}+\varepsilon, & \text { if } L \in \mathcal{L}^{*} \backslash \mathcal{S} \\ y_{L}, & \text { otherwise }\end{cases}
$$

respects c and π.
Subcase 1A: some edge e external to \mathcal{L}^{*} is tight for y^{\prime}.
Let L_{1} and L_{2} be the extremes of e in \mathcal{L}^{*}. Set $y_{L_{1} \cup L_{2}}^{\prime}:=0$ and start a new iteration with $F+e, \mathcal{L} \cup\left\{L_{1} \cup L_{2}\right\}, \mathcal{S}, y^{\prime}$ in the roles of $F, \mathcal{L}, \mathcal{S}, y$ respectively.

Subcase 1B: some element L of $\mathcal{L}^{*} \backslash \mathcal{S}$ is tight for y^{\prime}.
Start a new iteration with $F, \mathcal{L}, \mathcal{S} \cup\{L\}, y^{\prime}$ in the roles of $F, \mathcal{L}, \mathcal{S}, y$ respectively.

Case 2: $\left|\mathcal{L}^{*} \backslash \mathcal{S}\right|=1$.
Let M be the only element of $\mathcal{L}^{*} \backslash \mathcal{S}$. Call subalgorithm Pruning with arguments $F \cap M, \mathcal{L}^{M}$, and \mathcal{S}^{M}. The subalgorithm returns a subcollection \mathcal{Z} of \mathcal{S}^{M}. Return $T:=(F \cap M)-\bigcup \mathcal{Z}$ and stop.

3 Data structures and basic functions

Here is the list of variables and functions used by the algorithm:

1. L_{1}, \ldots, L_{N} are nonempty subsets of V_{G} such that $L_{1} \cup \cdots \cup L_{N}=V_{G}$ and, for each pair $i<j$, either $L_{i} \subset L_{j}$ or $L_{i} \cap L_{j}=\emptyset$, whence $N<2 n$, where $n:=\left|V_{G}\right|$. Each L_{i} is represented by a bit vector as well as by a linked list. (In the high-level version of the algorithm given in [1], $\left\{L_{1}, \ldots, L_{N}\right\}$ is denoted by \mathcal{L}.)
2. A subset F of E_{G}, represented as a doubly-linked list (a bit vector would be too long). Since $\left(V_{G}, F\right)$ is a forest, $|F|<n$.
3. A bit vector $\mu[1 \ldots N]$ such that $\mu[i]=1$ iff L_{i} is a maximal element of $\left\{L_{1}, \ldots, L_{N}\right\}$. (In the high-level version of the algorithm, this set of maximal elements is denoted by \mathcal{L}^{*}.)
4. An array d indexed by V_{G} with values in $\mathbb{Q} \geq$. (In terms of the high-level notation, $d[v]:=$ $\mathcal{L}_{v} \equiv \sum_{L \in \mathcal{L}: v \in L} y_{L}$ for each vertex v.)
5. A function Residualcost that takes edges into $\mathbb{Q} \geq$: upon receiving an edge $u v$, the function returns the number $c_{u v}-d[u]-d[v]$. Of course this can be implemented to run in $O(1)$ time. (We do not treat ResidualCost as an array because we cannot afford to update ResidualCost every time d changes.)
6. An array $\Delta[1 \ldots N]$ with values in $\mathbb{Q}>.^{1}$ (In terms of the high-level notation, $\Delta[i]=$ $\left.\sum_{v \in L_{i}} \pi[v]-\sum_{S \subseteq L_{i}} y_{S}.\right)$
7. A bit vector $\lambda[1 \ldots N]$ such that if $\lambda[i]=0$ then $\Delta[i]=0$. We say that L_{i} is active iff $\lambda[i]=1$. (In terms of the high-level notation, $\lambda[i]=0$ iff $L_{i} \in \mathcal{S}$.)
8. A variable $m x A c t i v e$ records the cardinality of the set $\{i: 1 \leq i \leq N, \mu[i]=1, \lambda[i]=1\}$.
9. An array $A[1 \ldots N, 1 \ldots N]$ whose elements are sets of at most one edge each. More specifically, for $i \neq j$ such that $\mu(i)=\mu(j)=1$,
if $\delta\left(L_{i}\right) \cap \delta\left(L_{j}\right)=\emptyset$ then $A[i, j]=A[j, i]=\emptyset ;$
otherwise, $A[i, j]=A[j, i]=\{u v\}$ where $u v$ is an element of $\delta\left(L_{i}\right) \cap \delta\left(L_{j}\right)$ that minimizes ResidualCost(uv).
10. A function Key defined on $\{1, \ldots, N\} \times\{1, \ldots, N\}$ as follows: if $A[i, j]=\emptyset$ then $\operatorname{KeY}(i, j)=$ ∞; else $\operatorname{Key}(i, j)=\operatorname{ResidualCost}(u v)$, where $u v$ is the unique edge in $A[i, j]$. Of course this function can be implemented to run in $O(1)$ time.
11. For each i such that $\mu[i]=1$, there are two subsets of $\{1, \ldots, N\}$ denoted by $H_{0}[i]$ and $H_{1}[i]$. For each h, the set $H_{h}[i]$ consists of all $j \neq i$ such that

$$
\mu[j]=1, \lambda[j]=h, A[i, j] \neq \emptyset .
$$

Each set $H_{h}[i]$ is organized as a min-heap, the key of each element j being $\operatorname{Key}(i, j) .{ }^{2}$ Hence, the first element of $H_{h}[i]$ minimizes $\operatorname{Key}(i, *)$.

[^1]12. For $h \in\{0,1\}$, we assume that we can decide in time $O(1)$ whether or not a statement like " $p \in H_{h}[i]$ " is true or false. Moreover, if the statement is true, we assume that the deletion of p from $H_{h}[i]$ can de carried out in $O(\log n)$ time. (This is easy to implement: for each i, each h, and each p in $\{1, \ldots, N\}$, maintain the location of p in $\left.H_{h}[i].\right)$

4 Main functions

The core of the algorithm is given by the next functions.

```
PCST-LOW-LEVEL \((G, c, \pi)\)
1 Inicialization()
\(N \leftarrow m x A c t i v e \leftarrow n\)
3 while \(m x\) Active \(>1\) do \(\triangleright\) at most \(2 n\) iterations
    OneIteration()
    \((X, F) \leftarrow \operatorname{Pruning}()\)
    return \(X\) and \(F\)
```

The number of iterations is $\leq 2 n$ because the sum $2 \times m x$ Active $+m x$ Inactive, where mxInactive is the cardinality of $\{i: 1 \leq i \leq N, \mu[i]=1, \lambda[i]=0\}$, starts at $2 n$ and strictly decreases with each iteration.

```
Inicialization()
\(01 \quad n \leftarrow\left|V_{G}\right|\)
\(02 \quad i \leftarrow 0\)
\(04 \quad d[v] \leftarrow 0\)
06
07
08
09
10
11
```

03 for each v in V_{G} do

```
03 for each \(v\) in \(V_{G}\) do
\(05 \quad i \leftarrow i+1\)
\(05 \quad i \leftarrow i+1\)
```

 \(L_{i} \leftarrow\{v\}\)
    ```
    \(L_{i} \leftarrow\{v\}\)
    \(o[v] \leftarrow i\)
    \(o[v] \leftarrow i\)
    \(\mu[i] \leftarrow \lambda[i] \leftarrow 1\)
    \(\mu[i] \leftarrow \lambda[i] \leftarrow 1\)
    \(\Delta[i] \leftarrow \pi_{v}\)
    \(\Delta[i] \leftarrow \pi_{v}\)
    for each \(i\) in \(\{2, \ldots, n\}\) do
    for each \(i\) in \(\{2, \ldots, n\}\) do
    for each \(j\) in \(\{1, \ldots, i-1\}\) do
    for each \(j\) in \(\{1, \ldots, i-1\}\) do
        \(A[i, j] \leftarrow \emptyset\)
        \(A[i, j] \leftarrow \emptyset\)
        \(\operatorname{KEY}(i, j)=\infty\)
        \(\operatorname{KEY}(i, j)=\infty\)
    for each \(i\) in \(\{2, \ldots, n\}\) do
    for each \(i\) in \(\{2, \ldots, n\}\) do
    for each \(u v\) in \(\delta\left(L_{i}\right)\) do
    for each \(u v\) in \(\delta\left(L_{i}\right)\) do
        if \(o[u]=i\)
        if \(o[u]=i\)
            then \(j \leftarrow o[v]\)
            then \(j \leftarrow o[v]\)
            else \(j \leftarrow o[u]\)
            else \(j \leftarrow o[u]\)
        if \(\operatorname{Key}(i, j)>\operatorname{REsidualCost}(u v)\)
        if \(\operatorname{Key}(i, j)>\operatorname{REsidualCost}(u v)\)
            then \(A[i, j] \leftarrow A[j, i] \leftarrow\{u v\}\)
```

 then \(A[i, j] \leftarrow A[j, i] \leftarrow\{u v\}\)
    ```

21
22
```

$F \leftarrow \emptyset$
$H_{0}[i] \leftarrow \emptyset$
for each i in $\{1, \ldots, n\}$ do
$H_{1}[i] \leftarrow \emptyset$
for each j in $\{1, \ldots, n\}-\{i\}$ do
if $A[i, j] \neq \emptyset$ then $H_{1}[i] \leftarrow H_{1}[i] \cup\{j\}$

```

The total time spent executing lines \(14-20\) is \(O(m)=O\left(n^{2}\right)\). The total time spent building the heap \(H_{1}[i]\) in lines \(20-21\) is \(O(n)\). The total spent by Inicialization is \(O\left(n^{2}\right)\).
```

OneIteration() \triangleright each call takes $O(n \log n)$ time
$01 \quad \varepsilon^{\prime} \leftarrow \varepsilon^{\prime \prime} \leftarrow \infty$
02 for each p in $\{1, \ldots, N\}$ such that $\mu[p]=\lambda[p]=1$ do
03 if $\varepsilon^{\prime}>\Delta[p]$
$04 \quad$ then $\varepsilon^{\prime} \leftarrow \Delta[p]$
$05 \quad p^{\prime} \leftarrow p$
06
07
if $H_{0}[p] \neq \emptyset$
then let q be the first element of $H_{0}[p]$
if $\varepsilon^{\prime \prime}>\operatorname{KEY}(p, q)$
then $\varepsilon^{\prime \prime} \leftarrow \operatorname{KEy}(p, q)$
$p^{\prime \prime} \leftarrow p$
$q^{\prime \prime} \leftarrow q$
if $H_{1}[p] \neq \emptyset$
then let q be the first element of $H_{1}[p]$
if $\varepsilon^{\prime \prime}>\frac{1}{2} \operatorname{KEY}(p, q)$
then $\varepsilon^{\prime \prime} \leftarrow \frac{1}{2} \operatorname{KEY}(p, q)$
$p^{\prime \prime} \leftarrow p$
$q^{\prime \prime} \leftarrow q$
$\varepsilon \leftarrow \min \left(\varepsilon^{\prime}, \varepsilon^{\prime \prime}\right)$
for each p in $\{1, \ldots, N\}$ such that $\mu[p]=\lambda[p]=1$ do
$\Delta[p] \leftarrow \Delta[p]-\varepsilon$
for each v in L_{p} do
$d[v] \leftarrow d[v]+\varepsilon$
\triangleright no need to rebuild heaps H_{0} and H_{1}
if $\varepsilon=\varepsilon^{\prime}$
then SubCase1B $\left(p^{\prime}\right) \quad \triangleright$ takes time $O(n \log n)$
else SubCase1A $\left(p^{\prime \prime}, q^{\prime \prime}\right) \quad \triangleright$ takes time $O(n \log n)$

```

Taken together, all executions of line 22 consume \(O(n)\) time. The total spent by OneIteration is \(O(n \log n)\).
```

$\operatorname{SubCase} 1 \mathrm{~A}(p, q) \quad \triangleright$ merge L_{p} and L_{q}; takes time $O(n \log n)$
01 let $u v$ be the unique element of $A[p, q]$
$N \leftarrow N+1$
$\operatorname{SubCase1B}(p) \quad \triangleright$ deactivate L_{p}
$01 \lambda[p] \leftarrow 0$
$02 \quad m x A c t i v e \leftarrow m x A c t i v e-1$
03 for each i in $\{1, \ldots, N\}-\{p\}$ do
04 if $p \in H_{1}[i]$
05
06

```
\(F \leftarrow F \cup\{u v\}\)
\(L_{N+1} \leftarrow L_{p} \cup L_{q}\)
\(\mu[N+1] \leftarrow 1 \quad \triangleright\) now \(L_{N+1}\) is maximal
if \(\lambda[q]=1\) then \(m x A c t i v e ~ \leftarrow m x A c t i v e ~-1\)
\(\Delta[N+1] \leftarrow \Delta[p]+\Delta[q]\)
\(\lambda[N+1] \leftarrow 1 \quad \triangleright\) now \(L_{N+1}\) is active
for each \(i\) in \(\{1, \ldots, N\}\) such that \(\mu[i]=1\) do
if \(\operatorname{KEy}(p, i) \leq \operatorname{KEY}(q, i)\)
then \(A[N+1, i] \leftarrow A[i, N+1] \leftarrow A[p, i]\)
else \(A[N+1, i] \leftarrow A[i, N+1] \leftarrow A[q, i]\)
for each \(h\) in \(\{0,1\}\) do
\(H_{h}[N+1] \leftarrow H_{h}[p] \quad \triangleright\) time \(O(1)\)
for each \(i\) in \(H_{h}[q]\) do
if \(i \notin H_{h}[N+1]\)
for each \(i\) in \(\{1, \ldots, N\}\) such that \(\mu[i]=1\) do
\(H_{0}[i] \leftarrow H_{0}[i]-\{q\} \quad \triangleright\) time \(O(\log n)\)
\(H_{1}[i] \leftarrow H_{1}[i]-\{p, q\} \quad \triangleright\) time \(O(\log n)\)
if \(\operatorname{KEy}(i, N+1)<\infty\)
\(N \leftarrow N+1\)
\(\operatorname{SubCase1B}(p) \quad \triangleright\) deactivate \(L_{p}\)
\(\lambda[p] \leftarrow 0\)
\(m x A c t i v e \leftarrow m x A c t i v e-1\)
for each \(i\) in \(\{1, \ldots, N\}-\{p\}\) do
if \(p \in H_{1}[i]\)
```

$\mu[p] \leftarrow \mu[q] \leftarrow 0 \quad \triangleright L_{p}$ and L_{q} are no longer maximal
$H_{h}[N+1] \leftarrow H_{h}[N+1]-\{q\} \quad \triangleright$ time $O(\log n)$ then $H_{h}[N+1] \leftarrow H_{h}[N+1] \cup\{i\} \quad \triangleright$ time $O(\log n)$ if $i \in H_{h}[N+1]$ and $\operatorname{KEy}(N+1, i)>\operatorname{KEY}(q, i)$
then Decrease-Key $\left(H_{h}[N+1], i, \operatorname{Key}(q, i)\right)$
then $H_{1}[i] \leftarrow H_{1}[i] \cup\{N+1\} \quad \triangleright$ time $O(\log n)$

$$
\text { then } H_{1}[i] \leftarrow H_{1}[i]-\{p\} \quad \triangleright \text { time } O(\log n)
$$

$$
H_{0}[i] \leftarrow H_{0}[i] \cup\{p\} \quad \triangleright \text { time } O(\log n)
$$

```

Pruning () \(\triangleright O\left(n^{2}\right)\) time
01 for \(i \leftarrow N\) down to 1 do \(\triangleright\) "reverse delete"

02

16 return \((X, F)\)

\section*{References}
[1] P. Feofiloff, C.G. Fernandes, C.E. Ferreira, and J. de Pina. Approximation algorithms for the prize-collecting Steiner tree problem. Available at http://www.ime.usp.br/~cris/publ/. Submitted, 2004.
[2] D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory and practice. In Symposium on Discrete Algorithms, pages 760-769, 2000.```


[^0]:    *Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo/SP, Brazil. E-mail: \{pf,cris, cef, coelho\}@ime.usp.br. Research supported in part by PRONEX/CNPq 664107/1997-4 (Brazil).
    ${ }^{\dagger}$ Research supported in part by CNPq Proc. 301174/97-0 (Brazil).
    ${ }^{\ddagger}$ Research supported in part by CNPq Proc. 300752/94-6 (Brazil).

[^1]:    ${ }^{1}$ Johnson, Minkoff and Phillips say this is the "surplus" of $L_{i}$.
    ${ }^{2}$ Johnson, Minkoff and Phillips say that the key of $j$ is the "deficit" of the only edge in $A[i, j]$.

