
O(n

2

log n) implementation of an approximation

for the Prize-Colle
ting Steiner Tree Problem

Paulo Feo�lo�

�

Cristina G. Fernandes

�y

Carlos E. Ferreira

�z

José Coelho de Pina

�

February 2002

Abstra
t

We give a low-level des
ription of an O(n

2

logn) implementation of Johnson, Minko� and

Phillips' approximation algorithm for the Prize-Colle
ting Steiner Tree Problem.

1 Introdu
tion

The Prize-Colle
ting Steiner Tree Problem is an extension of the Steiner Tree Problem where ea
h

vertex left out of the tree pays a penalty. The goal is to �nd a tree whi
h minimizes the sum

of its edge
osts and the penalties for the verti
es left out of the tree. Johnson, Minko� and

Phillips [2℄ presented a 2-approximation for the this problem based on the primal-dual s
heme. In

this manus
ript, we des
ribe in details an O(n

2

log n) implementation of this algorithm.

We adopt the notation used [1℄, whi
h is summarized below. We start with a formal de�nition of the

problem. Consider a graph G = (V;E), a fun
tion
 from E into Q

�

(non-negative rationals) and

a fun
tion � from V into Q

�

. For any subset F of E and any subset W of V , let
(F) :=

P

e2F

e

and �(W) :=

P

w2W

�

w

. The Prize-Colle
ting Steiner Tree Problem (p
st)
onsists of the

following: given G,
, and �, �nd a tree T in G su
h that

(E

T

) + �(V n V

T

) is minimum:

(V

H

and E

H

denote the vertex and edge sets of a graph H.)

An edge is internal to a partition P of V if both of its ends are in the same element of P. All

other edges are external to P. For any external edge, there are two elements of P
ontaining its

ends. We
all these two elements the extremes of the edge in P.

A
olle
tion L of subsets of V is laminar if, for any two elements L

1

and L

2

of L, either L

1

\L

2

= ;

or L

1

� L

2

or L

1

� L

2

. The
olle
tion of maximal elements of a laminar
olle
tion L will be denoted

by L

�

. So, L

�

is a
olle
tion of disjoint subsets of V . Let

S

L denote the union of all sets in L.

�

Departamento de Ciên
ia da Computação, Instituto de Matemáti
a e Estatísti
a, Universidade de São Paulo, Rua

do Matão 1010, 05508-090 São Paulo/SP, Brazil. E-mail: {pf,
ris,
ef,
oelho}�ime.usp.br. Resear
h supported

in part by PRONEX/CNPq 664107/1997-4 (Brazil).

y

Resear
h supported in part by CNPq Pro
. 301174/97-0 (Brazil).

z

Resear
h supported in part by CNPq Pro
. 300752/94-6 (Brazil).

1

For any
olle
tion L of subsets of V and any subset X of V , let X := V nX, L

X

:= fL 2 L : L � Xg

and L

X

:= fL 2 L : L � Xg. When X = fvg, we write L

v

and L

v

instead, and when X = V

T

or

X = V

T

, we write T or T instead. For any e in E, let L(e) := fL 2 L : e 2 Æ

G

Lg; where Æ

G

L stands

for the set of edges of G with one end in L and the other in L. For any fun
tion y from L into Q

�

and any sub
olle
tionM of L, let y(M) :=

P

L2M

y(L).

We say that y respe
ts a fun
tion
 de�ned on E (relative to L) if

y(L(e)) �

e

for ea
h e in E. (1)

An edge e is tight for y if equality holds in (1).

We say y respe
ts a fun
tion � de�ned on V (relative to L) if

y(L

L

) � �(L) for ea
h L in L. (2)

(3)

2 Johnson, Minko� and Phillips' algorithm

In its high-level des
ription below, we refer to an algorithm Pruning whose high-level des
ription

we omit. It
orresponds to the se
ond phase of the primal-dual s
heme, where edges are deleted

from the tree produ
ed in the �rst phase.

Johnson, Minko� and Phillips' algorithm re
eives G,
, � and returns a tree T in G su
h that

(E

T

) + �(V

T

) � 2 opt(p
st(G;
; �)): Ea
h iteration starts with a spanning forest F in G, a

laminar
olle
tion L of subsets of V with

S

L = V , a sub
olle
tion S of L, and a fun
tion y from

L into Q

�

. The �rst iteration starts with F = (V; ;), L = ffvg : v 2 V g, S = ;, and y = 0. Ea
h

iteration
onsists of the following:

Case 1: jL

�

n Sj > 1.

Let " be the largest number in Q

�

su
h that the fun
tion y

0

de�ned by

y

0

L

=

�

y

L

+ " ; if L 2 L

�

n S

y

L

; otherwise

respe
ts
 and �.

Sub
ase 1A: some edge e external to L

�

is tight for y

0

.

Let L

1

and L

2

be the extremes of e in L

�

. Set y

0

L

1

[L

2

:= 0 and start a new

iteration with F +e, L[fL

1

[L

2

g, S, y

0

in the roles of F , L, S, y respe
tively.

Sub
ase 1B: some element L of L

�

n S is tight for y

0

.

Start a new iteration with F , L, S [fLg, y

0

in the roles of F , L, S, y

respe
tively.

Case 2: jL

�

n Sj = 1.

Let M be the only element of L

�

n S. Call subalgorithm Pruning with arguments

F \ M , L

M

, and S

M

. The subalgorithm returns a sub
olle
tion Z of S

M

. Return

T := (F \M)�

S

Z and stop.

2

3 Data stru
tures and basi
 fun
tions

Here is the list of variables and fun
tions used by the algorithm:

1. L

1

; : : : ; L

N

are nonempty subsets of V

G

su
h that L

1

[� � � [L

N

= V

G

and, for ea
h pair i < j,

either L

i

� L

j

or L

i

\ L

j

= ;, when
e N < 2n, where n := jV

G

j. Ea
h L

i

is represented by a

bit ve
tor as well as by a linked list. (In the high-level version of the algorithm given in [1℄,

fL

1

; : : : ; L

N

g is denoted by L.)

2. A subset F of E

G

, represented as a doubly-linked list (a bit ve
tor would be too long). Sin
e

(V

G

; F) is a forest, jF j < n.

3. A bit ve
tor �[1 : : N ℄ su
h that �[i℄ = 1 i� L

i

is a maximal element of fL

1

; : : : ; L

N

g. (In the

high-level version of the algorithm, this set of maximal elements is denoted by L

�

.)

4. An array d indexed by V

G

with values in Q

�

. (In terms of the high-level notation, d[v℄ :=

L

v

�

P

L2L : v2L

y

L

for ea
h vertex v.)

5. A fun
tion ResidualCost that takes edges into Q

�

: upon re
eiving an edge uv, the fun
tion

returns the number

uv

� d[u℄ � d[v℄. Of
ourse this
an be implemented to run in O(1)

time. (We do not treat ResidualCost as an array be
ause we
annot a�ord to update

ResidualCost every time d
hanges.)

6. An array �[1 : : N ℄ with values in Q

�

.

1

(In terms of the high-level notation, �[i℄ =

P

v2L

i

�[v℄�

P

S�L

i

y

S

.)

7. A bit ve
tor �[1 : : N ℄ su
h that if �[i℄ = 0 then �[i℄ = 0. We say that L

i

is a
tive i� �[i℄ = 1.

(In terms of the high-level notation, �[i℄ = 0 i� L

i

2 S.)

8. A variable mxA
tive re
ords the
ardinality of the set fi : 1 � i � N;�[i℄ = 1; �[i℄ = 1g.

9. An array A[1 : : N; 1 : : N ℄ whose elements are sets of at most one edge ea
h. More spe
i�
ally,

for i 6= j su
h that �(i) = �(j) = 1,

if Æ(L

i

) \ Æ(L

j

) = ; then A[i; j℄ = A[j; i℄ = ;;

otherwise, A[i; j℄ = A[j; i℄ = fuvg where uv is an element of Æ(L

i

) \ Æ(L

j

) that

minimizes ResidualCost(uv).

10. A fun
tion Key de�ned on f1; : : : ; Ng�f1; : : : ; Ng as follows: if A[i; j℄ = ; then Key(i; j) =

1; else Key(i; j) = ResidualCost(uv), where uv is the unique edge in A[i; j℄. Of
ourse

this fun
tion
an be implemented to run in O(1) time.

11. For ea
h i su
h that �[i℄ = 1, there are two subsets of f1; : : : ; Ng denoted by H

0

[i℄ and H

1

[i℄.

For ea
h h, the set H

h

[i℄
onsists of all j 6= i su
h that

�[j℄ = 1; �[j℄ = h; A[i; j℄ 6= ; :

Ea
h set H

h

[i℄ is organized as a min-heap, the key of ea
h element j being Key(i; j).

2

Hen
e,

the �rst element of H

h

[i℄ minimizes Key(i; �).

1

Johnson, Minko� and Phillips say this is the �surplus� of L

i

.

2

Johnson, Minko� and Phillips say that the key of j is the �de�
it� of the only edge in A[i; j℄.

3

12. For h 2 f0; 1g, we assume that we
an de
ide in time O(1) whether or not a statement like

�p 2 H

h

[i℄� is true or false. Moreover, if the statement is true, we assume that the deletion of

p from H

h

[i℄
an de
arried out in O(log n) time. (This is easy to implement: for ea
h i, ea
h

h, and ea
h p in f1; : : : ; Ng, maintain the lo
ation of p in H

h

[i℄.)

4 Main fun
tions

The
ore of the algorithm is given by the next fun
tions.

PCST-low-level (G;
; �)

1 Ini
ialization()

2 N mxA
tive n

3 while mxA
tive > 1 do � at most 2n iterations

4 OneIteration()

5 (X;F) Pruning()

6 return X and F

The number of iterations is � 2n be
ause the sum 2 �mxA
tive +mxIna
tive, where mxIna
tive

is the
ardinality of fi : 1 � i � N;�[i℄ = 1; �[i℄ = 0g, starts at 2n and stri
tly de
reases with ea
h

iteration.

Ini
ialization()

01 n jV

G

j

02 i 0

03 for ea
h v in V

G

do

04 d[v℄ 0

05 i i+ 1

06 L

i

 fvg

07 o[v℄ i

08 �[i℄ �[i℄ 1

09 �[i℄ �

v

10 for ea
h i in f2; : : : ; ng do

11 for ea
h j in f1; : : : ; i� 1g do

12 A[i; j℄ ;

13 Key(i; j) =1

14 for ea
h i in f2; : : : ; ng do

15 for ea
h uv in Æ(L

i

) do

16 if o[u℄ = i

17 then j o[v℄

18 else j o[u℄

19 if Key(i; j) > ResidualCost(uv)

20 then A[i; j℄ A[j; i℄ fuvg

4

21 F ;

22 H

0

[i℄ ;

23 for ea
h i in f1; : : : ; ng do

24 H

1

[i℄ ;

25 for ea
h j in f1; : : : ; ng � fig do

26 if A[i; j℄ 6= ; then H

1

[i℄ H

1

[i℄ [fjg

The total time spent exe
uting lines 14�20 is O(m) = O(n

2

). The total time spent building the

heap H

1

[i℄ in lines 20�21 is O(n). The total spent by Ini
ialization is O(n

2

).

OneIteration() � ea
h
all takes O(n logn) time

01 "

0

 "

00

 1

02 for ea
h p in f1; : : : ; Ng su
h that �[p℄ = �[p℄ = 1 do

03 if "

0

> �[p℄

04 then "

0

 �[p℄

05 p

0

 p

06 if H

0

[p℄ 6= ;

07 then let q be the �rst element of H

0

[p℄

08 if "

00

> Key(p; q)

09 then "

00

 Key(p; q)

10 p

00

 p

11 q

00

 q

12 if H

1

[p℄ 6= ;

13 then let q be the �rst element of H

1

[p℄

14 if "

00

>

1

2

Key(p; q)

15 then "

00

1

2

Key(p; q)

16 p

00

 p

17 q

00

 q

18 " min("

0

; "

00

)

19 for ea
h p in f1; : : : ; Ng su
h that �[p℄ = �[p℄ = 1 do

20 �[p℄ �[p℄� "

21 for ea
h v in L

p

do

22 d[v℄ d[v℄ + "

23 � no need to rebuild heaps H

0

and H

1

24 if " = "

0

25 then SubCase1B(p

0

) � takes time O(n log n)

26 else SubCase1A(p

00

; q

00

) � takes time O(n log n)

Taken together, all exe
utions of line 22
onsume O(n) time. The total spent by OneIteration is

O(n log n).

5

SubCase1A(p; q) � merge L

p

and L

q

; takes time O(n log n)

01 let uv be the unique element of A[p; q℄

02 F F [fuvg

03 L

N+1

 L

p

[L

q

04 �[p℄ �[q℄ 0 � L

p

and L

q

are no longer maximal

05 �[N + 1℄ 1 � now L

N+1

is maximal

06 if �[q℄ = 1 then mxA
tive mxA
tive � 1

07 �[N + 1℄ �[p℄ + �[q℄

08 �[N + 1℄ 1 � now L

N+1

is a
tive

09 for ea
h i in f1; : : : ; Ng su
h that �[i℄ = 1 do

10 if Key(p; i) � Key(q; i)

11 then A[N + 1; i℄ A[i;N + 1℄ A[p; i℄

12 else A[N + 1; i℄ A[i;N + 1℄ A[q; i℄

13 for ea
h h in f0; 1g do

14 H

h

[N + 1℄ H

h

[p℄ � time O(1)

15 H

h

[N + 1℄ H

h

[N + 1℄� fqg � time O(log n)

16 for ea
h i in H

h

[q℄ do

17 if i =2 H

h

[N + 1℄

18 then H

h

[N + 1℄ H

h

[N + 1℄ [fig � time O(log n)

19 if i 2 H

h

[N + 1℄ and Key(N + 1; i) > Key(q; i)

20 then De
rease-Key(H

h

[N + 1℄; i;Key(q; i))

21 for ea
h i in f1; : : : ; Ng su
h that �[i℄ = 1 do

22 H

0

[i℄ H

0

[i℄� fqg � time O(log n)

23 H

1

[i℄ H

1

[i℄� fp; qg � time O(log n)

24 if Key(i;N + 1) <1

25 then H

1

[i℄ H

1

[i℄ [fN + 1g � time O(log n)

26 N N + 1

SubCase1B(p) � dea
tivate L

p

01 �[p℄ 0

02 mxA
tive mxA
tive � 1

03 for ea
h i in f1; : : : ; Ng � fpg do

04 if p 2 H

1

[i℄

05 then H

1

[i℄ H

1

[i℄� fpg � time O(logn)

06 H

0

[i℄ H

0

[i℄ [fpg � time O(logn)

6

Pruning () � O(n

2

) time

01 for i N down to 1 do � �reverse delete�

02 if �[i℄ = 0 � L

i

is ina
tive

03 then degree 0

04 for ea
h uv in F do � O(n) time

05 if jfu; vg \ L

i

j = 1 � O(1) time

06 then degree degree + 1

07 � degreee is the
ardinality of F \ Æ(L

i

)

08 if degree � 1

09 then for ea
h uv in F do

10 if jfu; vg \ L

i

j � 1

11 then F F � fuvg

12 if F 6= ;

13 then let X be the set of verti
es of G[F ℄

14 else let x be a vertex that maximizes �

x

15 X fxg

16 return (X;F)

Referen
es

[1℄ P. Feo�lo�, C.G. Fernandes, C.E. Ferreira, and J. de Pina. Approximation algorithms for

the prize-
olle
ting Steiner tree problem. Available at http://www.ime.usp.br/�
ris/publ/.

Submitted, 2004.

[2℄ D.S. Johnson, M. Minko�, and S. Phillips. The prize
olle
ting Steiner tree problem: theory

and pra
ti
e. In Symposium on Dis
rete Algorithms, pages 760�769, 2000.

7

