Complexidade computacional

Classifica os problemas em relação à dificuldade de resolvê-los algoritmicamente.

CLRS 34

Lista 8: dúvidas

Exercício 6: Escreva um algoritmo que encontre um arco cuja remoção causa o maior aumento na distância de um vértice s a um vértice t.

Exercício 10: Seja G = (V, E) um digrafo com pesos $w : E \rightarrow \{0, 1, ..., W\}$ para algum W. Modifique o algoritmo de Dijkstra para que compute os caminhos mínimos a partir de um vértice s em tempo $O((|V| + |E|) \lg W)$. (Dica: Quantas estimativas distintas de caminhos mínimos podem existir em V - S em cada iteração do algoritmo?)

Exercício 24: Dado um grafo com n vértices, pesos distintos nas arestas, e no máximo n+8 arestas, dê um algoritmo com complexidade O(n) para achar uma MST.

Da aula retrasada

Verifique que

Ciclo hamiltoniano \prec_P Caminho hamiltoniano entre u e v

Quem conseguiu fazer?

Uma 3-coloração de um grafo G = (V, E) é uma função $c: V \to \{1, 2, 3\}$ tal que $c(u) \neq c(v)$ para toda aresta $uu \in E$.

Um grafo G é 3-colorível se existe uma 3-coloração de G.

Uma 3-coloração de um grafo G = (V, E) é uma função $c: V \to \{1, 2, 3\}$ tal que $c(u) \neq c(v)$ para toda aresta $uu \in E$.

Um grafo G é 3-colorível se existe uma 3-coloração de G.

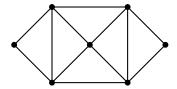
Problema: Dado um grafo *G*, *G* é 3-colorível?

Uma 3-coloração de um grafo G = (V, E) é uma função $c: V \to \{1, 2, 3\}$ tal que $c(u) \neq c(v)$ para toda aresta $uu \in E$.

Um grafo G é 3-colorível se existe uma 3-coloração de G.

Problema: Dado um grafo *G*, *G* é 3-colorível?

Exemplo:

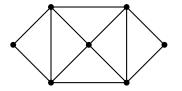


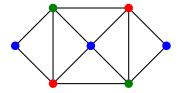
Uma 3-coloração de um grafo G = (V, E) é uma função $c: V \rightarrow \{1, 2, 3\}$ tal que $c(u) \neq c(v)$ para toda aresta $uu \in E$.

Um grafo G é 3-colorível se existe uma 3-coloração de G.

Problema: Dado um grafo *G*, *G* é 3-colorível?

Exemplo:





Uma 3-coloração de um grafo G = (V, E) é uma função $c: V \rightarrow \{1, 2, 3\}$ tal que $c(u) \neq c(v)$ para toda aresta $uu \in E$.

Um grafo G é 3-colorível se existe uma 3-coloração de G.

Problema: Dado um grafo *G*, *G* é 3-colorível?

Consegue mostrar que 3-coloração está em NP?

Uma 3-coloração de um grafo G = (V, E) é uma função $c: V \to \{1, 2, 3\}$ tal que $c(u) \neq c(v)$ para toda aresta $uu \in E$.

Um grafo G é 3-colorível se existe uma 3-coloração de G.

Problema: Dado um grafo *G*, *G* é 3-colorível?

Consegue mostrar que 3-coloração está em NP?

Consegue provar que 3-coloração é NP-completo?

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \dots, x_n em que cada cláusula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \dots, x_n em que cada cláusula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1 \vee \bar{x}_1 \vee \bar{x}_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\bar{x}_1 \vee \bar{x}_3 \vee \bar{x}_4)$$

3-Satisfatibilidade ≺_P 3-Coloração

3-Satisfatibilidade <_P 3-Coloração

Descreveremos um algoritmo polinomial que recebe uma fórmula booleana ϕ com exatamente 3 literais por cláusula, e devolve um grafo G tal que

 ϕ é satisfatível \Leftrightarrow G é 3-colorível.

3-Satisfatibilidade <_P 3-Coloração

Descreveremos um algoritmo polinomial que recebe uma fórmula booleana ϕ com exatamente 3 literais por cláusula, e devolve um grafo G tal que

 ϕ é satisfatível \Leftrightarrow G é 3-colorível.

O conjunto de vértices de G contém $\{x_1, \ldots, x_n\}$ e $\{\bar{x}_1, \ldots, \bar{x}_n\}$. Além disso, contém três vértices especiais, TRUE, FALSE, RED, e cinco novos vértices por cláusula de ϕ .

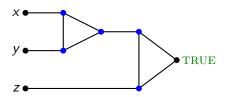
3-Satisfatibilidade $\langle P \rangle$ 3-Coloração

O conjunto de vértices de G contém $\{x_1,\ldots,x_n\}$ e $\{\bar{x}_1,\ldots,\bar{x}_n\}$. Além disso, contém três vértices especiais, TRUE, FALSE, RED, e cinco novos vértices por cláusula de ϕ .

3-Satisfatibilidade $\langle P \rangle$ 3-Coloração

O conjunto de vértices de G contém $\{x_1,\ldots,x_n\}$ e $\{\bar{x}_1,\ldots,\bar{x}_n\}$. Além disso, contém três vértices especiais, TRUE, FALSE, RED, e cinco novos vértices por cláusula de ϕ .

Gadget com cinco novos vértices para a cláusula $(x \lor y \lor z)$:



3-Satisfatibilidade ≺_P 3-Coloração

O conjunto de vértices de G contém $\{x_1, \ldots, x_n\}$ e $\{\bar{x}_1, \ldots, \bar{x}_n\}$. Além disso, contém três vértices especiais, TRUE, FALSE, RED, e cinco novos vértices por cláusula de ϕ .

Gadget com cinco novos vértices para a cláusula $(x \lor y \lor z)$:



Além destas arestas, temos um triângulo nos vértices especiais, e um triângulo em x_i , \bar{x}_i e o vértice RED, para todo i.

3-Satisfatibilidade $<_P$ 3-Coloração

Qual é o tamanho do grafo G construído a partir de ϕ ? Quantos vértices têm? Quantas arestas têm?

3-Satisfatibilidade $<_P$ 3-Coloração

Qual é o tamanho do grafo G construído a partir de ϕ ?

Quantos vértices têm? Quantas arestas têm?

Dado ϕ , podemos construir G em tempo polinomial?

3-Satisfatibilidade $<_P$ 3-Coloração

Qual é o tamanho do grafo G construído a partir de ϕ ?

Quantos vértices têm? Quantas arestas têm?

Dado ϕ , podemos construir G em tempo polinomial?

É verdade que ϕ é satisfatível $\Leftrightarrow G$ é 3-colorível?

Problema: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Problema: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Exemplo: Se t = 138457 e

 $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\},$

Problema: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Exemplo: Se t = 138457 e

 $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\},$ então o conjunto

$$S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$$

tem soma exatamente t.

Problema: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Exemplo: Se t = 138457 e $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\},$ então o conjunto

$$S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$$

tem soma exatamente t.

Problema: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Exemplo: Se t = 138457 e $S = \{1, 2, 7, 14, 49, 98, 343, 686, 2409, 2793, 16808, 17206, 117705, 117993\}$, então o conjunto

$$S' = \{1, 2, 7, 98, 343, 686, 2409, 17206, 117705\}$$

tem soma exatamente t.

Esse problema é um parente próximo do problema da mochila.

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Mochila: Dados inteiros W, V e valores $\{v_1, \ldots, v_n\}$ e pesos $\{w_1, \ldots, w_n\}$, existe um subconjunto I de [n] cuja soma $\sum_{i \in I} w_i \leq W$ e a soma $\sum_{i \in I} v_i \geq V$?

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Mochila: Dados inteiros W, V e valores $\{v_1, \ldots, v_n\}$ e pesos $\{w_1, \ldots, w_n\}$, existe um subconjunto I de [n] cuja soma $\sum_{i \in I} w_i \leq W$ e a soma $\sum_{i \in I} v_i \geq V$?

Consegue mostrar que Mochila está em NP?

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Mochila: Dados inteiros W, V e valores $\{v_1, \ldots, v_n\}$ e pesos $\{w_1, \ldots, w_n\}$, existe um subconjunto I de [n] cuja soma $\sum_{i \in I} w_i \leq W$ e a soma $\sum_{i \in I} v_i \geq V$?

Consegue mostrar que Mochila está em NP?

Consegue mostrar que Subset Sum \prec_P Mochila?

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Mochila: Dados inteiros W, V e valores $\{v_1, \ldots, v_n\}$ e pesos $\{w_1, \ldots, w_n\}$, existe um subconjunto I de [n] cuja soma $\sum_{i \in I} w_i \leq W$ e a soma $\sum_{i \in I} v_i \geq V$?

Consegue mostrar que Mochila está em NP?

Consegue mostrar que Subset Sum \prec_P Mochila?

Fácil:

Para uma instância t e S do Subset Sum, onde $S = \{x_1, ..., x_n\}$, tome W = V = t e $w_i = v_i = x_i$ para i = 1, ..., n.

Subset Sum é NP-completo

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Subset Sum está em NP?

Subset Sum é NP-completo

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Subset Sum está em NP?

Vamos mostrar que 3-Satisfatibilidade $\langle P \rangle$ Subset Sum.

Subset Sum é NP-completo

Subset Sum: Dado um inteiro t e um conjunto S de inteiros, existe um subconjunto de S cuja soma é exatamente t?

Subset Sum está em NP?

Vamos mostrar que 3-Satisfatibilidade $\langle P \rangle$ Subset Sum.

Ou seja, descreveremos um algoritmo polinomial que recebe uma fórmula booleana ϕ com três literais por cláusula, e devolve um inteiro t e um conjunto S de inteiros tais que

 ϕ é satisfatível \Leftrightarrow existe $S' \subseteq S$ cuja soma é t.

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Podemos assumir que nenhum C_j contém x_i e \bar{x}_i .

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Podemos assumir que nenhum C_j contém x_i e \bar{x}_i . Por que?

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Podemos assumir que nenhum C_j contém x_i e \bar{x}_i . Por que?

E que cada variável aparece em alguma cláusula.

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}\$$

que torna ϕ verdadeira?

Podemos assumir que nenhum C_j contém x_i e \bar{x}_i . Por que?

E que cada variável aparece em alguma cláusula. Por que?

3-Satisfatibilidade < P Subset Sum

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

3-Satisfatibilidade <_P Subset Sum

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Vamos incluir em S dois números para cada variável x_i de ϕ , e dois números para cada cláusula C_i de ϕ .

3-Satisfatibilidade < P Subset Sum

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}$$

que torna ϕ verdadeira?

Vamos incluir em S dois números para cada variável x_i de ϕ , e dois números para cada cláusula C_i de ϕ .

Portanto total de números em S será 2n + 2m.

3-Satisfatibilidade < P Subset Sum

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada cláusula C_j , para $j=1,\ldots,m$, tem três literais, existe uma atribuição

$$t: \{x_1, \dots, x_n\} \rightarrow \{\text{VERDADE}, \text{FALSO}\}\$$

que torna ϕ verdadeira?

Vamos incluir em S dois números para cada variável x_i de ϕ , e dois números para cada cláusula C_i de ϕ .

Cada número terá n+m dígitos decimais sendo que cada dígito corresponde a uma variável x_i , ou a uma cláusula C_i .

Para
$$C_1 = (x_1 \lor \bar{x}_2 \lor \bar{x}_3),$$

 $C_2 = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3),$
 $C_3 = (\bar{x}_1 \lor \bar{x}_2 \lor x_3),$
 $C_4 = (x_1 \lor x_2 \lor x_3).$

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
<i>V</i> ₃	=	0	0	1	0	0	1	1
V_3^{\prime}	=	0	0	1	1	1	0	0

Para
$$C_1 = (x_1 \lor \bar{x}_2 \lor \bar{x}_3),$$

 $C_2 = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3),$
 $C_3 = (\bar{x}_1 \lor \bar{x}_2 \lor x_3),$
 $C_4 = (x_1 \lor x_2 \lor x_3).$

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
<i>V</i> ₃	=	0	0	1	0	0	1	1
v_3'	=	0	0	1	1	1	0	0

 v_i refere-se às ocorrências de x_i nas cláusulas e v_i' refere-se às ocorrências de \bar{x}_i .

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
$v_1 \ v_1'$	=	1	0	0	0	1	1	1 0
	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
V₂V₂'V₃	=	0	0	1	0	0	1	1
v_3^{\prime}	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
$s_1 \\ s_1'$	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0 0
<i>s</i> ₃	=	0	0	0	0	0	1	0
s ₃ s ₃ '	=	0	0	0	0	0	2	0
<i>S</i> ₄	=	0	0	0	0	0	0	1
s ₄ s ₄ '	=	0	0	0	0	0	0	2

		x_1	<i>x</i> ₂	<i>X</i> 3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1 0
v_1'	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1 0
V_2'	=	0	1	0	1	1	1	0
<i>V</i> ₃	=	0	0	1	0	0	1	1
$v'_1 \\ v_2 \\ v'_2 \\ v_3 \\ v'_3$	=	0	0	1	1	1	0	0
	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>5</i> 3	=	0	0	0	0	0	1	0
\$\frac{s_1}{s_1'}\$ \$\frac{s_2}{s_2'}\$ \$\frac{s_2}{s_3'}\$ \$\frac{s_3}{s_4'}\$ \$\frac{s_4}{s_4'}\$	=	0	0	0	0	0	2	0
<i>s</i> ₄	=	0	0	0	0	0	0	1 2
s_4'	=	0	0	0	0	0	0	2

Cada par s_j e s_j' está associado à cláusula C_j .

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
$\overline{v_1}$	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	1 0
v_2	=	0	1	0	0	0	0	1 0
v_2'	=	0	1	0	1	1	1	0
<i>V</i> 3	=	0	0	1	0	0	1	1
V1 V1 V2 V2 V3 V3 V3 S1 S1'1 S2'2 S3'3 S4 S4'4	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>5</i> 3	=	0	0	0	0	0	1	0
s_3^{\prime}	=	0	0	0	0	0	2	0 0 0 1
<i>5</i> 4	=	0	0	0	0	0	0	
$s_{\!\scriptscriptstyle A}^{\prime}$	=	0	0	0	0	0	0	2

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	<i>C</i> ₃	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	1 0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
V3	=	0	0	1	0	0	1	1
v ₁ ' v ₂ v ₂ ' v ₃ v ₃ '	=	0	0	1	1	1	0	0
	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0 0
s_2'	=	0	0	0	0	2	0	0
<i>s</i> ₃	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0 1
<i>5</i> 4	=	0	0	0	0	0	0	1
51 52 52 53 53 54 54	=	0	0	0	0	0	0	2

Para indicar se x_i é verdadeiro ou falso, queremos escolher ou v_i ou v_i' para cada i.

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	<i>C</i> ₃	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	1 0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
V3	=	0	0	1	0	0	1	1
v ₁ ' v ₂ v ₂ ' v ₃ v ₃ '	=	0	0	1	1	1	0	0
	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0 0
s_2'	=	0	0	0	0	2	0	0
<i>s</i> ₃	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0 1
<i>5</i> 4	=	0	0	0	0	0	0	1
51 52 52 53 53 54 54	=	0	0	0	0	0	0	2

Para indicar se x_i é verdadeiro ou falso, queremos escolher ou v_i ou v_i' para cada i. Quais os n primeiros dígitos de t?

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
$\overline{v_1}$	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	1 0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	1 0
<i>V</i> 3	=	0	0	1	0	0	1	1
V'1 V2 V2 V3 V3 V3 S1 S1 S2 S2 S3 S3 S4 S4 S4	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s ₂	=	0	0	0	0	1	0	0 0 0
s_2'	=	0	0	0	0	2	0	0
<i>5</i> 3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0 0
<i>5</i> 4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2

Cada cláusula deve ter pelo menos um literal verdadeiro:

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	1 0
v_2	=	0	1	0	0	0	0	1 0
v_2'	=	0	1	0	1	1	1	
<i>V</i> 3	=	0	0	1	0	0	1	1
V1 V1 V2 V2 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
s ₂	=	0	0	0	0	1	0	0 0 0
s_2'	=	0	0	0	0	2	0	0
<i>5</i> 3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0 0
<i>5</i> 4	=	0	0	0	0	0	0	1
s_4'	=	0	0	0	0	0	0	2

Cada cláusula deve ter pelo menos um literal verdadeiro: um, dois ou três literais verdadeiros por cláusula.

		x_1	<i>x</i> ₂	<i>x</i> ₃	C_1	C_2	C_3	C_4
$\overline{v_1}$	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	1 0
v_2	=	0	1	0	0	0	0	1 0
v_2'	=	0	1	0	1	1	1	0
<i>V</i> 3	=	0	0	1	0	0	1	1 0
V1 V1 V2 V2 V3 V3 V3 S1 S1'1 S2 S2 S3 S4 S4 S4	=	0	0	1	1	1	0	
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>5</i> 3	=	0	0	0	0	0	1	0
s_3'	=	0	0	0	0	0	2	0 0 0 0 0
<i>5</i> 4	=	0	0	0	0	0	0	1
s_{4}^{\prime}	=	0	0	0	0	0	0	2

Cada cláusula deve ter pelo menos um literal verdadeiro: um, dois ou três literais verdadeiros por cláusula.

Quais os últimos m dígitos de t?

Números em S e valor de t

		x_1	x_2	<i>X</i> ₃	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v_1'	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
<i>V</i> ₃	=	0	0	1	0	0	1	1
v_3 v_3'	=	0	0	1	1	1	0	0
s_1	=	0	0	0	1	0	0	0
s_1'	=	0	0	0	2	0	0	0
	=	0	0	0	0	1	0	0
s_2'	=	0	0	0	0	2	0	0
<i>s</i> ₃	=	0	0	0	0	0	1	0
s ₃ s ₃ '	=	0	0	0	0	0	2	0
s_4	=	0	0	0	0	0	0	1
s ₄ s ₄ '	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

Subset Sum é NP-completo

3-Satisfatibilidade \prec_P Subset Sum.

A construção destes números pode ser feita em tempo O(nm). Portanto é polinomial no tamanho de ϕ .

Assim descrevemos um algoritmo polinomial que recebe uma fórmula booleana ϕ com três literais por cláusula, e devolve um inteiro t e um conjunto S de inteiros tais que

 ϕ é satisfatível \Leftrightarrow existe $S' \subseteq S$ cuja soma é t.

Subset Sum é NP-completo

3-Satisfatibilidade \prec_P Subset Sum.

A construção destes números pode ser feita em tempo O(nm). Portanto é polinomial no tamanho de ϕ .

Assim descrevemos um algoritmo polinomial que recebe uma fórmula booleana ϕ com três literais por cláusula, e devolve um inteiro t e um conjunto S de inteiros tais que

 ϕ é satisfatível \Leftrightarrow existe $S' \subseteq S$ cuja soma é t.

Portanto Subset Sum é NP-completo.