Mais programação dinâmica

CLRS 15.5

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Buscas em conjunto conhecido

Dadas estimativas do número de acessos a cada elemento de v[1..n], qual é a melhor estrutura de dados para v?

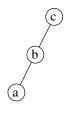
Buscas em conjunto conhecido

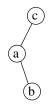
Dadas estimativas do número de acessos a cada elemento de v[1..n], qual é a melhor estrutura de dados para v?

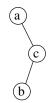
Árvore binária de busca (ABB)?

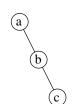
Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

Qual a melhor das ABBs?



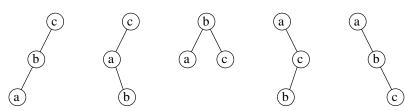






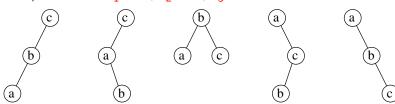
Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

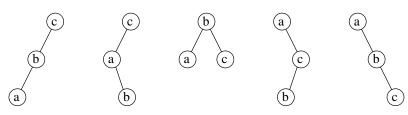


Número esperado de comparações:

- $ightharpoonup 10 \cdot 3 + 20 \cdot 2 + 40 \cdot 1 = 110$
- $ightharpoonup 10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$
- $ightharpoonup 10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$
- $ightharpoonup 10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$
- $ightharpoonup 10 \cdot 1 + 20 \cdot 2 + 40 \cdot 3 = 170$

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Número esperado de comparações:

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

$$ightharpoonup 10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$ightharpoonup 10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$$

$$ightharpoonup 10 \cdot 1 + 20 \cdot 2 + 40 \cdot 3 = 170$$

Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

$$\sum_{i=1}^n h_i \, \boldsymbol{e_i},$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

$$\sum_{i=1}^n h_i \, \mathbf{e_i},$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Problema (ABB Ótima): Dado e[1..n], encontrar uma árvore binária de busca ótima com respeito a e.

Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

```
c[i,j]: custo min de uma ABB para e[i..j]
```

s[i,j]: soma dos acessos em e[i...j]

Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

c[i,j]: custo min de uma ABB para e[i..j]

s[i,j]: soma dos acessos em e[i..j]

$$c[i,j] = \begin{cases} 0 & \text{se } i > j \\ \min_{i \le k \le j} \{c[i,k-1] + c[k+1,j] + s[i,j]\} & \text{se } i \le j \end{cases}$$

```
c[i,j]: custo min de uma ABB para e[i..j]

s[j]: soma dos acessos em e[1..j]

s[j] - s[i-1]: soma dos acessos em e[i..j]
```

$$c[i,j] = \begin{cases} 0 & \text{se } i > j \\ \min_{i \le k \le j} \{c[i,k-1] + c[k+1,j]\} + s[j] - s[i-1] & \text{se } i \le j \end{cases}$$

c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j] s[j] - s[i-1]: soma dos acessos em e[i..j]

$$c[i,j] = \begin{cases} 0 & \text{se } i > j \\ \min_{i \le k \le j} \{c[i,k-1] + c[k+1,j]\} + s[j] - s[i-1] & \text{se } i \le j \end{cases}$$

Para calcular s:

- 1 s[0] = 0
- 2 para $i \leftarrow 1$ até n faça
- $3 s[i] \leftarrow s[i-1] + e[i]$

c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j]s[j] - s[i-1]: soma dos acessos em e[i..j]

$$c[i,j] = \begin{cases} 0 & \text{se } i > j \\ \min_{i \le k \le j} \{c[i,k-1] + c[k+1,j]\} + s[j] - s[i-1] & \text{se } i \le j \end{cases}$$

Como preencher a matriz c? Em que ordem?

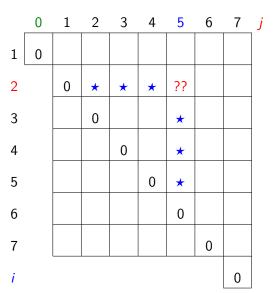
c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j]s[j] - s[i-1]: soma dos acessos em e[i..j]

$$c[i,j] = \begin{cases} 0 & \text{se } i > j \\ \min_{i \le k \le j} \{c[i,k-1] + c[k+1,j]\} + s[j] - s[i-1] & \text{se } i \le j \end{cases}$$

Como preencher a matriz *c*? Em que ordem?

Como no problema da parentização! Pelas diagonais!

Programação dinâmica



$$e[1]=10$$
 $e[2]=20$ $e[3]=30$ $e[4]=15$ $e[5]=30$

0

6

5

i

$$c[1,1-1] + e[1] + c[1+1,1] = 0+10+0 = 10$$

$$c[2,2-1] + e[2] + c[2+1,2] = 0+20+0 = 20$$

i

$$c[3,3-1] + e[3] + c[3+1,3] = 0+30+0 = 30$$

i

$$c[4,4+1] + e[4] + c[4+1,4] = 0+15+0 = 15$$

~ 1111011013 of 0								
e[1]=10		e[2]=20	e[3]=	e[3]=30 $e[4]$		e[5]=15 $e[5]=30$		
	0	1	2	3	4	5	j	
1	0	10						
2		0	20					
3			0	30				
4				0	15			
5					0	??		
6						0		

$$c[5,5+1] + e[5] + c[5+1,5] = 0+30+0 = 30$$

i

$$c[1,2-1]+(e[1]+e[2])+c[2+1,2]=10+30+0=40$$

300								
e[1]=10		e[2]=20	e[3]=	e[3]=30 e[4]=1		e[5]=30		
	0	1	2	3	4	5	j	
1	0	10	40					
2		0	20	??				
3			0	30				
4				0	15			
5					0	30		
6						0		

$$c[2,2-1]+(e[2]+e[3])+c[2+1,3]=0+50+30=\frac{80}{2}$$

$$c[2,3-1]+(e[2]+e[3])+c[3+1,3]=20+50+0=70$$

e[1]=10 e[2]=20 e[3]=30 e[4]=15 e[5]=30							
<i>e</i> [1]=10		e[2]=20	e[3]=	30 <i>e</i> [4]=15	e[5]=30	
	0	1	2	3	4	5	j
1	0	10	40				
2		0	20	70			
3			0	30	??		
4				0	15		
5					0	30	
6						0	

$$c[3,3-1]+(e[3]+e[4])+c[3+1,4]=0+45+15=\frac{60}{4}$$

$$c[3,4-1]+(e[3]+e[4])+c[4+1,4]=30+45+0=75$$

i

$$c[4,4-1]+(e[4]+e[5])+c[4+1,5]=0+45+30=75$$

$$c[4,5-1] + (e[4] + e[5]) + c[5+1,5] = 15+45+0 = \frac{60}{4} = \frac{60}$$

е	[1]=10	e[2]=20) e[3]=	30 e[4]=15 6	e[5]=30	
	0	1	2	3	4	5	, <i>j</i>
1	0	10	40	??			
2		0	20	70			
3			0	30	60		
4				0	15	60	
5					0	30	
6						0	

$$c[1,1-1] + (e[1] + e[2] + e[3]) + c[1+1,3] = 0 + 60 + 70 = 130$$

$$c[1,2-1] + (e[1]) + e[2] + e[3]) + c[2+1,3] = 10+60+30 = 100$$

$$c[1,3-1] + (e[1] + e[2] + e[3]) + c[3+1,3] = 40 + 60 + 0 = 100$$

e	[1]=10	e[2]=20	e[3]=	30 e[4]=15	e[5]=30	
	0	1	2	3	4	5	j
1	0	10	40	100			
2		0	20	70	??		
3			0	30	60		
4				0	15	60	
5					0	30	
6						0	

$$c[2,2-1] + (e[2] + e[3] + e[4]) + c[2+1,4] = 0 + 65 + 60 = 125$$

$$c[2,3-1]+(e[2]+e[3]+e[4])+c[3+1,4]=20+65+15=100$$

$$c[2,4-1]+(e[2]+e[3]+e[4])+c[4+1,4]=70+65+0=135$$

e[1]=10 e[2]=20 e[3]=30 e[4]=15 e[5]=30							
е	[1]=10	e[2]=20	e[3]=	30 <i>e</i> [4]=15	e[5]=30	
	0	1	2	3	4	5	j
1	0	10	40	100			
2		0	20	70	100		
3			0	30	60	??	
4				0	15	60	
5					0	30	
6						0	

i

$$c[3,3-1]+(e[3]+e[4]+e[5])+c[3+1,5]=0+75+60=135$$

$$c[3,4-1] + (e[3] + e[4] + e[5]) + c[4+1,5] = 30+75+30 = \frac{135}{20} =$$

$$c[3,5-1]+(e[3]+e[4]+e[5])+c[5+1,5]=60+75+0=135$$

e[1]=10 $e[2]=20$ $e[3]$				=30 e[4]=15 e[5]=30			
	0	1	2	3	4	5	j
1	0	10	40	100			
2		0	20	70	100		
3			0	30	60	135	
4				0	15	60	
5					0	30	
6						0	

ı

Exercício: Preencha o que falta!

Árvore de busca ótima

```
ABB-ÓTIMA (e, n)
      s[0] = 0
      para i \leftarrow 1 até n faca
           s[i] \leftarrow s[i-1] + e[i]
      para i \leftarrow 1 até n+1 faça
 5
           c[i, i-1] \leftarrow 0
      para \ell \leftarrow 1 até n faça
           para i \leftarrow 1 até n-\ell+1 faca
 8
                i \leftarrow i + \ell - 1
 9
                q \leftarrow c[i+1, j]
                para k \leftarrow i+1 até j faça
10
                     se c[i, k-1] + c[k+1, i] < q
11
                     então q \leftarrow c[i, k-1] + c[k+1.i]
12
13
                c[i, j] \leftarrow q + s[j] - s[i-1]
      devolva c[1, n]
14
```

Árvore de busca ótima

Exercício: Como fazer para obter uma ABB ótima e não apenas o seu custo? Complete o serviço!

Mais programação dinâmica

KT 6.4

Aproveite para olhar todo o Cap 6 do KT, que é sobre programação dinâmica.

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Mochila

Dados dois vetores x[1..n] e w[1..n], denotamos por $x \cdot w$ o produto escalar

$$w[1]x[1] + w[2]x[2] + \cdots + w[n]x[n].$$

Mochila

Dados dois vetores x[1..n] e w[1..n], denotamos por $x \cdot w$ o produto escalar

$$w[1]x[1] + w[2]x[2] + \cdots + w[n]x[n].$$

Suponha dado um número inteiro não-negativo W e vetores positivos w[1..n] e v[1..n].

Uma mochila é qualquer vetor x[1..n] tal que

$$x \cdot w \le W$$
 e $0 \le x[i] \le 1$ para todo i

Mochila

Dados dois vetores x[1..n] e w[1..n], denotamos por $x \cdot w$ o produto escalar

$$w[1]x[1] + w[2]x[2] + \cdots + w[n]x[n].$$

Suponha dado um número inteiro não-negativo W e vetores positivos w[1..n] e v[1..n].

Uma mochila é qualquer vetor x[1..n] tal que

$$x \cdot w \le W$$
 e $0 \le x[i] \le 1$ para todo i

O valor de uma mochila é o número $x \cdot v$.

Uma mochila é ótima se tem valor máximo.

Problema booleano da mochila

Uma mochila x[1..n] tal que x[i] = 0 ou x[i] = 1 para todo i é dita booleana.

Problema (Knapsack Problem):

Dados (w, v, n, W), encontrar uma mochila booleana ótima.

Problema booleano da mochila

Uma mochila x[1..n] tal que x[i] = 0 ou x[i] = 1 para todo i é dita booleana.

Problema (Knapsack Problem):

Dados (w, v, n, W), encontrar uma mochila booleana ótima.

Exemplo: W = 50, n = 4

	1	2	3	4
W	40	30	20	10
V	840	600	400	100
X	1	0	0	0
X	1	0	0	1
X	0	1	1	0

valor = 840 valor = 940 valor = 1000

Suponha que x[1..n] é mochila booleana ótima para o problema (w, v, n, W).

Suponha que x[1..n] é mochila booleana ótima para o problema (w, v, n, W).

Se
$$x[n] = 1$$

então
$$x[1..n-1]$$
 é mochila booleana ótima para $(w, v, n-1, W-w[n])$

Suponha que x[1..n] é mochila booleana ótima para o problema (w, v, n, W).

Se
$$x[n] = 1$$

então
$$x[1..n-1]$$
 é mochila booleana ótima para $(w, v, n-1, W-w[n])$

senão
$$x[1..n-1]$$
 é mochila booleana ótima para $(w, v, n-1, W)$

Suponha que x[1..n] é mochila booleana ótima para o problema (w, v, n, W).

Se
$$x[n] = 1$$

então $x[1..n-1]$ é mochila booleana ótima
para $(w, v, n-1, W - w[n])$
senão $x[1..n-1]$ é mochila booleana ótima
para $(w, v, n-1, W)$

NOTA. Não há nada de especial acerca do índice *n*. Uma afirmação semelhante vale para qualquer índice *i*.

Problema:

encontrar o valor de uma mochila booleana ótima.

Problema:

encontrar o valor de uma mochila booleana ótima.

t[i, Y] = valor de uma mochila booleana ótimapara (w, v, i, Y)

Problema:

encontrar o valor de uma mochila booleana ótima.

- t[i, Y] = valor de uma mochila booleana ótimapara (w, v, i, Y)
 - = valor da expressão $x \cdot v$ sujeito às restrições

$$x \cdot w \leq Y$$
,

onde x é uma mochila booleana ótima para $\{1, \ldots, i\}$

Problema:

encontrar o valor de uma mochila booleana ótima.

$$t[i, Y] = \text{valor de uma mochila booleana ótima}$$

para (w, v, i, Y)

= valor da expressão $x \cdot v$ sujeito às restrições

$$x \cdot w \leq Y$$
,

onde x é uma mochila booleana ótima para $\{1, \ldots, i\}$

Possíveis valores de Y: 0,1,2,...,W

Recorrência

$$t[i, Y]$$
 = valor da expressão $x \cdot v$ sujeito à restrição

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima para $\{1,\ldots,i\}$

Recorrência

$$t[i, Y]$$
 = valor da expressão $x \cdot v$ sujeito à restrição

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima para $\{1, \ldots, i\}$

$$t[0, Y] = 0$$
 para todo Y

Recorrência

$$t[i, Y]$$
 = valor da expressão $x \cdot v$ sujeito à restrição

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima para $\{1, \ldots, i\}$

$$t[0, Y] = 0$$
 para todo Y

$$t[i,0] = 0$$
 para todo i

Recorrência

$$t[i, Y]$$
 = valor da expressão $x \cdot v$ sujeito à restrição

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima para $\{1, \ldots, i\}$

$$t[0, Y] = 0$$
 para todo Y

$$t[i,0] = 0$$
 para todo i

$$t[i, Y] = t[i-1, Y] \text{ se } w[i] > Y$$

Recorrência

$$t[i, Y]$$
 = valor da expressão $x \cdot v$ sujeito à restrição

$$x \cdot w \leq Y$$

onde x é uma mochila booleana ótima para $\{1, \ldots, i\}$

$$t[0, Y] = 0$$
 para todo Y

$$t[i,0] = 0$$
 para todo i

$$t[i, Y] = t[i-1, Y]$$
 se $w[i] > Y$

$$t[i, \mathbf{Y}] = \max\{t[i-1, \mathbf{Y}], t[i-1, \mathbf{Y}-w[i]] + v[i]\} \text{ se } w[i] \leq \mathbf{Y}$$

Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow \text{REC-MOCHILA } (w, v, n-1, W)

6 b \leftarrow \text{REC-MOCHILA } (w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow \text{REC-MOCHILA}(w, v, n-1, W)

6 b \leftarrow \text{REC-MOCHILA}(w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Consumo de tempo no pior caso é $\Omega(2^n)$.

Solução recursiva

Devolve o valor de uma mochila ótima para (w, v, n, W).

```
REC-MOCHILA (w, v, n, W)

1 se n = 0 ou W = 0

2 então devolva 0

3 se w[n] > W

4 então devolva REC-MOCHILA (w, v, n-1, W)

5 a \leftarrow \text{REC-MOCHILA } (w, v, n-1, W)

6 b \leftarrow \text{REC-MOCHILA } (w, v, n-1, W-w[n]) + v[n]

7 devolva \max\{a, b\}
```

Consumo de tempo no pior caso é $\Omega(2^n)$.

Por que demora tanto?

O mesmo subproblema é resolvido muitas vezes.

Programação dinâmica

Cada subproblema, valor de uma mochila ótima para

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela t?

Programação dinâmica

Cada subproblema, valor de uma mochila ótima para

é resolvido uma só vez.

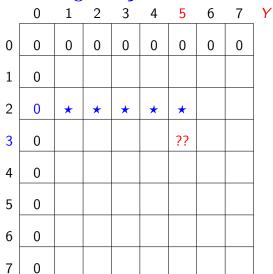
Em que ordem calcular os componentes da tabela t?

Olhe a recorrência e pense...

$$t[i, Y] = t[i-1, Y]$$
 se $w[i] > Y$

$$t[i, Y] = \max\{t[i-1, Y], t[i-1, Y-w[i]] + v[i]\}\ \text{se } w[i] \le Y$$

Programação dinâmica



$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0						
2	0						
3	0						
4	0						
i	,	•					

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0					
2	0						
3	0						
4	0						
i		•				•	,

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0				
2	0						
3	0						
4	0						
i	,						

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	_	_	_	_	_	_	
	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0			
2	0						
3	0						
4	0						
i		•					,

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500		
2	0						
3	0						
4	0						
							,

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0						
3	0						
4	0						
i		•					

$$W = 5 e n = 4$$

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0					
3	0						
4	0						
7		•					'

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400				
3	0						
4	0						
i							

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400	400			
3	0						
4	0						
	,						

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400	400	500		
3	0						
4	0						
	,						

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400	400	500	500	
3	0						
4	0						
i		•				•	

	1	2	3	4
W	4	2	1	3
V	500	400	300	450

	0	1	2	3	4	5	Y
0	0	0	0	0	0	0	
1	0	0	0	0	500	500	
2	0	0	400	400	500	500	
3	0	300	400	700	700	800	
4	0	300	400	700	700	850	
i		•				•	

Algoritmo de programação dinâmica

Devolve o valor de uma mochila booleana ótima para (w, v, n, W).

```
MOCHILA-BOOLEANA (w, v, n, W)
      para Y \leftarrow 0 até W faça
           t[0, Y] \leftarrow 0
  3
           para i \leftarrow 1 até n faça
  4
               a \leftarrow t[i-1, Y]
  5
               se w[i] > Y
  6
                    então b \leftarrow 0
                    senão b \leftarrow t[i-1, Y-w[i]] + v[i]
  8
                t[i, Y] \leftarrow \max\{a, b\}
  9
      devolva t[n, W]
```

Algoritmo de programação dinâmica

Devolve o valor de uma mochila booleana ótima para (w, v, n, W).

```
MOCHILA-BOOLEANA (w, v, n, W)
      para Y \leftarrow 0 até W faça
           t[0, Y] \leftarrow 0
  3
           para i \leftarrow 1 até n faça
  4
               a \leftarrow t[i-1, Y]
  5
               se w[i] > Y
                    então b \leftarrow 0
  6
                    senão b \leftarrow t[i-1, Y-w[i]] + v[i]
  8
                t[i, Y] \leftarrow \max\{a, b\}
  9
      devolva t[n, W]
```

Consumo de tempo é $\Theta(nW)$.

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

NOTA:

O consumo $\Theta(n2^{\lg W})$ é exponencial!

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

NOTA:

O consumo $\Theta(n2^{\lg W})$ é exponencial!

```
Explicação: o "tamanho" de W é \lg W e não W (tente multiplicar w[1],...,w[n] e W por 1000)
```

O consumo de tempo do algoritmo MOCHILA-BOOLEANA é $\Theta(nW)$.

NOTA:

O consumo $\Theta(n2^{\lg W})$ é exponencial!

Explicação: o "tamanho" de W é $\lg W$ e não W (tente multiplicar w[1],...,w[n] e W por 1000)

Se $W \in \Omega(2^n)$ o consumo de tempo é $\Omega(n2^n)$, mais lento que o algoritmo força bruta!

Obtenção da mochila

Como obter uma mochila ótima?

Obtenção da mochila

Como obter uma mochila ótima?

```
MOCHILA (w, n, W, t)

1 Y \leftarrow W

2 para i \leftarrow n decrescendo até 1 faça

3 se t[i, Y] = t[i-1, Y]

4 então x[i] \leftarrow 0

5 senão x[i] \leftarrow 1

6 Y \leftarrow Y - w[i]

7 devolva x
```

Obtenção da mochila

Como obter uma mochila ótima?

```
MOCHILA (w, n, W, t)

1 Y \leftarrow W

2 para i \leftarrow n decrescendo até 1 faça

3 se t[i, Y] = t[i-1, Y]

4 então x[i] \leftarrow 0

5 senão x[i] \leftarrow 1

6 Y \leftarrow Y - w[i]

7 devolva x
```

Consumo de tempo é $\Theta(n)$.

Versão recursiva

Como é a versão memoizada?

Versão recursiva

Como é a versão memoizada?

```
MEMOIZED-MOCHILA-BOOLEANA (w, v, n, W)

1 para i \leftarrow 0 até n faça

2 para Y \leftarrow 0 até W faça

3 t[i, Y] \leftarrow \infty

3 devolva LOOKUP-MOC (w, v, n, W)
```

Versão recursiva

```
LOOKUP-MOC (w, v, i, Y)
   se t[i, Y] < \infty
       então devolva t[i, Y]
3
   se i = 0 ou Y = 0 então t[i, Y] \leftarrow 0
    senão
4
       se w[i] > Y
           então
              t[i, Y] \leftarrow LOOKUP-MOC(w, v, i-1, Y)
5
           senão
6
              a \leftarrow LOOKUP-MOC(w, v, i-1, Y)
              b \leftarrow \text{LOOKUP-MOC}(w, v, i-1, Y-w[i]) + v[i]
8
              t[i, Y] \leftarrow \max\{a, b\}
9
    devolva t[i, Y]
```