Mais programação dinâmica

CLRS 15.4

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Subsequências

 $\langle z_1, \dots, z_k \rangle$ é subsequência de $\langle x_1, \dots, x_m \rangle$ se existem índices $i_1 < \dots < i_k$ tais que

$$z_1 = x_{i_1} \quad \dots \quad z_k = x_{i_k}$$

EXEMPLOS:

(5,9,2,7) é subsequência de (9,5,6,9,6,2,7,3)

 $\langle A, A, D, A, A \rangle$ é subsequência de

 $\langle A, B, R, A, C, A, D, A, B, R, A \rangle$

Subsequência comum máxima

Z é subsequência comum de X e Y se Z é subsequência de X e de Y

ssco = subseq comum

Subsequência comum máxima

Z é subsequência comum de X e Y se Z é subsequência de X e de Y

ssco = subseq comum

Exemplos: X = A B C B D A B

Y = B D C A B A

ssco = B C A

Subsequência comum máxima

Z é subsequência comum de X e Y se Z é subsequência de X e de Y

ssco = subseq comum

Exemplos: X = ABCBDAB

Y = B D C A B A

ssco = B C A

Outra ssco = BDAB

Problema

Problema: Encontrar uma ssco máxima de X e Y.

Exemplos: X = ABCBDAB

Y = B D C A B A

ssco = B C A

ssco maximal = A B A

ssco $m \stackrel{\cdot}{a} x i m a = B C A B$

Outra ssco máxima = B D A B

LCS = Longest Common Subsequence

diff

> more abracadabra	> more yabbadabbadoo
A	Y
В	A
R	В
A	В
C	A
A	D
D	A
A	В
В	В
R	A
A	D
	D
	0

diff -u abracadabra yabbadabbadoo

+Y

Α

В

-R

-A

-C

+B

Α

D

Α

В

-R

+B

Α

+D

+0

+0

Suponha que Z[1..k] é ssco máxima de X[1..m] e Y[1..n].

ightharpoonup Se X[m] = Y[n],

```
► Se X[m] = Y[n],
então Z[k] = X[m] = Y[n] e
Z[1..k-1] é ssco máxima de X[1..m-1] e Y[1..n-1].
```

- ▶ Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1..k-1] é ssco máxima de X[1..m-1] e Y[1..n-1].
- ► Se $X[m] \neq Y[n]$,

- ► Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1..k-1] é ssco máxima de X[1..m-1] e Y[1..n-1].
- ► Se $X[m] \neq Y[n]$, então $Z[k] \neq X[m]$ implica que Z[1...k] é ssco máxima de X[1...m-1] e Y[1...n].

- ▶ Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1..k-1] é ssco máxima de X[1..m-1] e Y[1..n-1].
- ► Se $X[m] \neq Y[n]$, então $Z[k] \neq X[m]$ implica que Z[1...k] é ssco máxima de X[1...m-1] e Y[1...n].
- ► Se $X[m] \neq Y[n]$,

- ▶ Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1..k-1] é ssco máxima de X[1..m-1] e Y[1..n-1].
- ► Se $X[m] \neq Y[n]$, então $Z[k] \neq X[m]$ implica que Z[1..k] é ssco máxima de X[1..m-1] e Y[1..n].
- ► Se $X[m] \neq Y[n]$, então $Z[k] \neq Y[n]$ implica que Z[1...k] é ssco máxima de X[1...m] e Y[1...n-1].

Problema: encontrar o comprimento de uma ssco máxima.

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i,j] = \text{comprimento de uma ssco máxima}$$

 $\text{de } X[1...i] \text{ e } Y[1...j]$

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i,j] = \text{comprimento de uma ssco máxima}$$

 $\text{de } X[1...i] \text{ e } Y[1...j]$

Recorrência:

$$c[0,j] = c[i,0] = 0$$

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i,j] = \text{comprimento de uma ssco máxima}$$

 $\text{de } X[1..i] \text{ e } Y[1..j]$

Recorrência:

$$c[0,j] = c[i,0] = 0$$

 $c[i,j] = c[i-1,j-1] + 1 \text{ se } X[i] = Y[j]$

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i,j] = \text{comprimento de uma ssco máxima}$$

 $\text{de } X[1..i] \text{ e } Y[1..j]$

Recorrência:

$$c[0,j] = c[i,0] = 0$$

 $c[i,j] = c[i-1,j-1] + 1$ se $X[i] = Y[j]$
 $c[i,j] = \max(c[i,j-1], c[i-1,j])$ se $X[i] \neq Y[j]$

REC-LCS-LENGTH
$$(X, i, Y, j)$$

1 se $i = 0$ ou $j = 0$ então devolva 0

```
REC-LCS-LENGTH (X, i, Y, j)

1 se i = 0 ou j = 0 então devolva 0

2 se X[i] = Y[j]

3 então c \leftarrow \text{Rec-LCS-Length}(X, i-1, Y, j-1) + 1
```

```
REC-LCS-LENGTH (X, i, Y, j)

1 se i = 0 ou j = 0 então devolva 0

2 se X[i] = Y[j]

3 então c \leftarrow \text{Rec-LCS-LengTH } (X, i-1, Y, j-1) + 1

4 senão q_1 \leftarrow \text{Rec-LCS-LengTH } (X, i, Y, j-1)

5 q_2 \leftarrow \text{Rec-LCS-LengTH } (X, i, Y, j-1)
```

```
REC-LCS-LENGTH (X,i,Y,j)

1 se i=0 ou j=0 então devolva 0

2 se X[i]=Y[j]

3 então c \leftarrow \text{Rec-LCS-Length}\ (X,i-1,Y,j-1)+1

4 senão q_1 \leftarrow \text{Rec-LCS-Length}\ (X,i-1,Y,j)

5 q_2 \leftarrow \text{Rec-LCS-Length}\ (X,i,Y,j-1)

6 se q_1 \geq q_2

então c \leftarrow q_1

8 senão c \leftarrow q_2

9 devolva c
```

Devolve o comprimento de uma ssco máxima de X[1..i] e Y[1..j].

```
Rec-LCS-Length (X, i, Y, j)
    se i = 0 ou j = 0 então devolva 0
    se X[i] = Y[i]
         então c \leftarrow \text{Rec-LCS-Length}(X, i-1, Y, i-1) + 1
4
         senão q_1 \leftarrow \text{Rec-LCS-Length}(X, i-1, Y, j)
5
                 q_2 \leftarrow \text{Rec-LCS-LENGTH}(X, i, Y, i-1)
6
                 se q_1 \ge q_2
                      então c \leftarrow q_1
8
                      senão c \leftarrow q_2
9
    devolva c
```

T(m, n) := número de comparações feitas por REC-LCS-LENGTH (X, m, Y, n) no pior caso

Consumo de tempo

```
T(m, n) := número de comparações feitas por 
REC-LCS-LENGTH (X, m, Y, n) no pior caso
```

Consumo de tempo

$$T(m, n) :=$$
número de comparações feitas por
REC-LCS-LENGTH (X, m, Y, n) no pior caso

Recorrência

$$T(0, n) = 0$$

 $T(m, 0) = 0$
 $T(m, n) \ge T(m-1, n) + T(m, n-1) + 1$ para $n \ge 1$ e $m \ge 1$

Consumo de tempo

$$T(m, n) := n$$
úmero de comparações feitas por REC-LCS-LENGTH (X, m, Y, n) no pior caso

Recorrência

$$T(0, n) = 0$$

 $T(m, 0) = 0$
 $T(m, n) \ge T(m-1, n) + T(m, n-1) + 1$ para $n \ge 1$ e $m \ge 1$

A que classe Ω pertence T(m, n)?

Note que T(m, n) = T(n, m) para n = 0, 1, ... e m = 0, 1, ...

Note que T(m, n) = T(n, m) para n = 0, 1, ... e m = 0, 1, ...Seja $k := \min\{m, n\}$. Temos que

$$T(m,n) \geq T(k,k) \geq S(k),$$

onde

$$S(0) = 0$$

 $S(k) = 2S(k-1)+1$ para $k = 1,2,...$

Note que T(m, n) = T(n, m) para n = 0, 1, ... e m = 0, 1, ...

Seja $k := \min\{m, n\}$. Temos que

$$T(m,n) \geq T(k,k) \geq S(k),$$

onde

$$S(0) = 0$$

 $S(k) = 2S(k-1)+1$ para $k = 1,2,...$

$$S(k) \in \Theta(2^k) \Rightarrow T(m,n) \in \Omega(2^{\min\{m,n\}}).$$

Note que T(m, n) = T(n, m) para n = 0, 1, ... e m = 0, 1, ...

Seja $k := \min\{m, n\}$. Temos que

$$T(m, n) \geq T(k, k) \geq S(k),$$

onde

$$S(0) = 0$$

 $S(k) = 2S(k-1)+1$ para $k = 1,2,...$

$$S(k) \in \Theta(2^k) \Rightarrow T(m,n) \in \Omega(2^{\min\{m,n\}}).$$

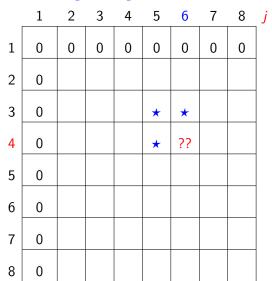
T(m, n) é exponecial.

Conclusão

O consumo de tempo do algoritmo REC-LCS-LENGTH é $\Omega(2^{\min\{m,n\}})$.

Programação dinâmica

Cada subproblema, comprimento de uma ssco máxima de


$$X[1..i]$$
 e $Y[1..j]$,

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela c?

Para calcular c[4,6] preciso de ...?

Programação dinâmica

Programação dinâmica

Cada subproblema, comprimento de uma ssco máxima de

$$X[1..i]$$
 e $Y[1..j]$,

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela c?

Para calcular c[4,6] preciso de . . .

$$c[4,5]$$
, $c[3,6]$ e de $c[3,5]$.

Programação dinâmica

Cada subproblema, comprimento de uma ssco máxima de

$$X[1..i]$$
 e $Y[1..i]$,

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela c?

Para calcular c[4,6] preciso de ... c[4,5], c[3,6] e de c[3,5].

Calcule todos os c[i,j] com i=1 e j=0,1,...,n, depois todos com i=2 e j=0,1,...,n, depois todos com i=3 e j=0,1,...,n, etc.

X	Y	0	В 1	D 2	C 3	A 4	В 5	A 6	j
	0	0	0	0	0	0	0	0	
A	1	0	??						
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

X	Y	0	В 1	D 2	C 3	A 4	В 5	A 6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	??					
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	??				
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	??			
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	??		
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	??	
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
R	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	??						
C	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	??					
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	??				
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	??			
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	??		
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	??	
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	??						
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	??					
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	??				
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	??			
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	??		
В	4	0							
D	5	0							
A	6	0							
В	7	0							

X	Y	0	В 1	D 2	C 3	A 4	B 5	A 6	
^						-		· ·	, <i>J</i> 1
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	??	
В	4	0							
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	2	
В	4	0	??						
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	??					
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	??				
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	??			
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	??		
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	??	
D	5	0							
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	??						
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	??					
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	??				
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	??			
A	6	0							
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	??		
A	6	0							
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	??	
A	6	0							
В	7	0							

	Y	•	В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	??						
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	??					
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	??				
В	7	0							

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	??			
В	7	0							

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	??		
В	7	0							

					3				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	??	
В	7	0							

	Y		В	D	С	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	??						

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	??					

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	??				

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	, <i>j</i>
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	22			

					_				
	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
P	7	0	1	2	2	2	22		

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	3	4	22	

	Y		В	D	C	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	3	4	4	

```
LCS-LENGTH (X, m, Y, n)

1 para i \leftarrow 0 até m faça c[i, 0] \leftarrow 0

2 para j \leftarrow 1 até n faça c[0, j] \leftarrow 0
```

```
LCS-LENGTH (X, m, Y, n)

1 para i \leftarrow 0 até m faça c[i, 0] \leftarrow 0

2 para j \leftarrow 1 até n faça c[0, j] \leftarrow 0

3 para i \leftarrow 1 até m faça

4 para j \leftarrow 1 até n faça
```

```
LCS-LENGTH (X, m, Y, n)
1 para i \leftarrow 0 até m faça c[i, 0] \leftarrow 0
2 para j \leftarrow 1 até n faça c[0, j] \leftarrow 0
3 para i \leftarrow 1 até m faça
4 para j \leftarrow 1 até n faça
5 se X[i] = Y[j]
6 então c[i, j] \leftarrow c[i-1, j-1] + 1
```

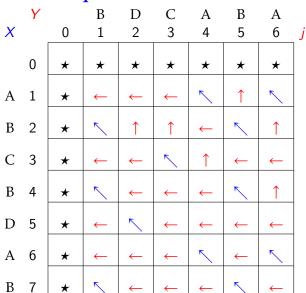
```
LCS-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faca c[i,0] \leftarrow 0
      para i \leftarrow 1 até n faca c[0,i] \leftarrow 0
 3
      para i \leftarrow 1 até m faça
 4
          para i \leftarrow 1 até n faça
 5
               se X[i] = Y[i]
 6
                    então c[i,j] \leftarrow c[i-1,j-1]+1
                    senão se c[i-1,j] \ge c[i,j-1]
                                 então c[i,j] \leftarrow c[i-1,j]
 8
 9
                                 senão c[i,j] \leftarrow c[i,j-1]
10
     devolva c[m, n]
```

Devolve o comprimento de uma ssco máxima de X[1..m] e Y[1..n].

```
LCS-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i,0] \leftarrow 0
      para i \leftarrow 1 até n faca c[0,i] \leftarrow 0
 3
      para i \leftarrow 1 até m faça
 4
          para i \leftarrow 1 até n faça
 5
               se X[i] = Y[i]
 6
                    então c[i,j] \leftarrow c[i-1,j-1]+1
                    senão se c[i-1,j] \ge c[i,j-1]
                                 então c[i,j] \leftarrow c[i-1,j]
 8
 9
                                 senão c[i,j] \leftarrow c[i,j-1]
10
     devolva c[m, n]
```

Consumo de tempo: $\Theta(mn)$

Conclusão


O consumo de tempo do algoritmo LCS-LENGTH é $\Theta(mn)$.

Conclusão

O consumo de tempo do algoritmo LCS-LENGTH é $\Theta(mn)$.

E como encontrar uma subsequência comum máxima?

Subsequência comum máxima


```
LCS-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i,0] \leftarrow 0
      para i \leftarrow 1 até n faca c[0,i] \leftarrow 0
      para i \leftarrow 1 até m faca
 4
           para i \leftarrow 1 até n faça
 5
                se X[i] = Y[i]
 6
                     então c[i, j] \leftarrow c[i-1, j-1] + 1
                               b[i,i] \leftarrow "\\\"
                     senão se c[i-1,j] \ge c[i,j-1]
 8
 9
                                    então c[i,j] \leftarrow c[i-1,j]
                                             b[i,i] \leftarrow "\uparrow"
10
                                    senão c[i,j] \leftarrow c[i,j-1]
11
                                             b[i,j] \leftarrow "\leftarrow"
12
13
      devolva c e b
```

```
LCS-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i,0] \leftarrow 0
      para i \leftarrow 1 até n faca c[0,i] \leftarrow 0
      para i \leftarrow 1 até m faca
 4
           para i \leftarrow 1 até n faça
 5
                se X[i] = Y[i]
 6
                     então c[i, j] \leftarrow c[i-1, j-1] + 1
                               b[i,i] \leftarrow "\\\"
                     senão se c[i-1,j] \ge c[i,j-1]
  8
 9
                                    então c[i,j] \leftarrow c[i-1,j]
                                             b[i,i] \leftarrow "\uparrow"
10
                                    senão c[i,j] \leftarrow c[i,j-1]
11
                                             b[i,j] \leftarrow "\leftarrow"
12
13
      devolva c e b
```

Consumo de tempo: $\Theta(mn)$

```
LCS-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i,0] \leftarrow 0
      para i \leftarrow 1 até n faca c[0,i] \leftarrow 0
      para i \leftarrow 1 até m faca
 4
           para i \leftarrow 1 até n faça
 5
                se X[i] = Y[i]
 6
                     então c[i,j] \leftarrow c[i-1,j-1]+1
                               b[i,i] \leftarrow "\\\"
                     senão se c[i-1, j] \ge c[i, j-1]
  8
 9
                                    então c[i,j] \leftarrow c[i-1,j]
                                             b[i,i] \leftarrow "\uparrow"
10
11
                                    senão c[i,j] \leftarrow c[i,j-1]
                                             b[i, j] \leftarrow "\leftarrow"
12
13
      devolva c e b
```

Como obter uma ssco máxima a partir da matriz b?

Get-LCS

Como obter uma ssco máxima a partir da matriz b?

```
GET-LCS (X, m, n, b, \text{máxcomp})
 1 k \leftarrow \text{máxcomp}
 2 \quad i \leftarrow m \qquad j \leftarrow n
 3 enquanto i > 0 e j > 0 faça
           se b[i, j] = " ""
 5
                então Z[k] \leftarrow X[i]
                          k \leftarrow k-1 i \leftarrow i-1 j \leftarrow j-1
 6
                senão se b[i, j] = "\leftarrow"
                                   então i \leftarrow i - 1
 8
 9
                                   senão i \leftarrow i - 1
10
      devolva Z
```

Get-LCS

Como obter uma ssco máxima a partir da matriz b?

```
GET-LCS (X, m, n, b, \text{máxcomp})
 1 k \leftarrow \text{máxcomp}
 2 \quad i \leftarrow m \qquad j \leftarrow n
 3 enquanto i > 0 e j > 0 faça
           se b[i, j] = " ""
 5
                então Z[k] \leftarrow X[i]
                          k \leftarrow k-1 i \leftarrow i-1 i \leftarrow i-1
 6
                senão se b[i, j] = "\leftarrow"
                                   então i \leftarrow i - 1
 8
 9
                                   senão i \leftarrow i - 1
10
      devolva Z
```

Consumo de tempo é O(m+n) e $\Omega(\min\{m,n\})$.

Exercícios

Exercício 20.A

Escreva um algoritmo para decidir se $\langle z_1, ..., z_k \rangle$ é subsequência de $\langle x_1, ..., x_m \rangle$. Prove rigorosamente que o seu algoritmo está correto.

Exercício 20.B

Suponha que os elementos de uma sequência $\langle a_1, ..., a_n \rangle$ são distintos dois a dois. Quantas subsequências tem a sequência?

Exercício 20.C

Uma subsequência crescente Z de uma sequência X e é $m\'{a}xima$ se não existe outra subsequência crescente mais longa. A subsequência $\langle 5,6,9 \rangle$ de $\langle 9,5,6,9,6,2,7 \rangle$ é m\'{a}xima? Dê uma sequência crescente m\'{a}xima de $\langle 9,5,6,9,6,2,7 \rangle$. Mostre que o algoritmo "guloso" óbvio não é capaz, em geral, de encontrar uma subsequência crescente m\'{a}xima de uma sequência dada. (Algoritmo guloso óbvio: escolha o menor elemento de X; a partir daí, escolha sempre o próximo elemento de X que seja maior ou igual ao último escolhido.)

Exercício 20.D

Escreva um algoritmo de programação dinâmica para resolver o problema da subsequência crescente máxima.

Mais exercícios

Exercício 20.E [CLRS 15.4-5]

Mostre como o algoritmo da subsequência comum máxima pode ser usado para resolver o problema da subsequência crescente máxima de uma sequência numérica. Dê uma delimitação justa, em notação Θ , do consumo de tempo de sua solução.

Exercício 20.F [Printing neatly. CLRS 15-2]

Considere a sequência P_1, P_2, \ldots, P_n de palavras que constitui um parágrafo de texto. A palavra P_i tem I_i caracteres. Queremos imprimir as palavras em linhas, na ordem dada, de modo que cada linha tenha no máximo M caracteres. Se uma determinada linha contém as palavras $P_i, P_{i+1}, \ldots, P_j$ (com $i \leq j$) e há exatamente um espaço entre cada par de palavras consecutivas, o número de espaços no fim da linha é

$$M - (I_i + 1 + I_{i+1} + 1 + \cdots + 1 + I_j).$$

É claro que não devemos permitir que esse número seja negativo. Queremos minimizar, com relação a todas as linhas exceto a última, a soma dos cubos dos números de espaços no fim de cada linha. (Assim, se temos linhas $1,2,\ldots,L$ e b_p espaços no fim da linha p, queremos minimizar $b_1^3+b_2^3+\cdots+b_{L-1}^3$.) Dê um exemplo para mostrar que algoritmos inocentes não resolvem o problema. Dê um algoritmo de programação dinâmica que resolva o problema. Qual a "optimal substructure property" para esse problema? Faça uma análise do consumo de tempo do algoritmo.

Mais programação dinâmica

CLRS 15.5

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Considere um inteiro n e um vetor v[1..n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada elemento está ou não em v.

Considere um inteiro n e um vetor v[1..n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada elemento está ou não em v.

Se k é grande, como devemos armazenar o v?

Considere um inteiro n e um vetor v[1..n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada elemento está ou não em v.

Se k é grande, como devemos armazenar o v?

E se v armazena um conjunto bem conhecido, que tem uma ordem, como por exemplo as palavras de uma língua? (A ser usado por um tradutor, ou um speller.)

Considere um inteiro n e um vetor v[1..n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada elemento está ou não em v.

Se k é grande, como devemos armazenar o v?

E se v armazena um conjunto bem conhecido, que tem uma ordem, como por exemplo as palavras de uma língua? (A ser usado por um tradutor, ou um speller.)

Podemos ordenar v e aplicar busca binária.

Podemos fazer algo melhor?

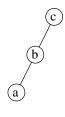
Dadas estimativas do número de acessos a cada elemento de v[1..n], qual é a melhor estrutura de dados para v?

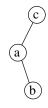
Dadas estimativas do número de acessos a cada elemento de v[1..n], qual é a melhor estrutura de dados para v?

Árvore de busca binária (ABB)?

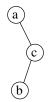
Dadas estimativas do número de acessos a cada elemento de v[1..n], qual é a melhor estrutura de dados para v?

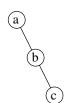
Árvore de busca binária (ABB)?

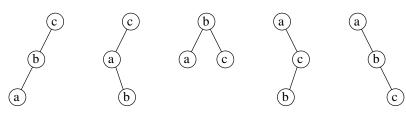

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.


Dadas estimativas do número de acessos a cada elemento de v[1..n], qual é a melhor estrutura de dados para v?

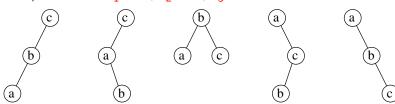
Árvore de busca binária (ABB)?


Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.


Qual a melhor das ABBs?



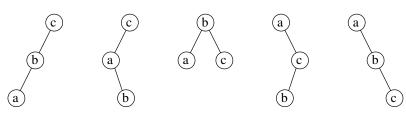
Exemplo


Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

Qual a melhor das ABBs?

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Número esperado de comparações:

- $ightharpoonup 10 \cdot 3 + 20 \cdot 2 + 40 \cdot 1 = 110$
- $ightharpoonup 10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$
- $ightharpoonup 10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$
- $ightharpoonup 10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$
- $ightharpoonup 10 \cdot 1 + 20 \cdot 2 + 40 \cdot 3 = 170$

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

Número esperado de comparações:

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$ightharpoonup 10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$$

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 3 = 170$$

Exercício das bandeiras

No dia da Bandeira na Rússia o proprietário de uma loja decidiu decorar a vitrine de sua loja com faixas de tecido das cores branca, azul e vermelha.

Ele deseja satisfazer as seguintes codições: faixas da mesma cor não podem ser colocadas uma ao lado da outra. Uma faixa azul sempre está entre uma branca e uma vermelha, ou uma vermelha e uma branca.

Escreva um programa que, dado o número n de faixas a serem colocadas na vitrine, calcule o número de maneiras de satisfazer as condições do proprietário.

Exemplo: Para n = 3, o resultado são as seguintes combinações: BVB, VBV, BAV, VAB.