Ordenação em tempo linear

AULA 8

CLRS cap 8

CLRS sec 8.2

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

```
COUNTINGSORT(A, n)
```

- 1 para $i \leftarrow 1$ até k faça
- $C[i] \leftarrow 0$
- 3 para $j \leftarrow 1$ até n faça
- 4 $C[A[j]] \leftarrow C[A[j]] + 1 \Rightarrow C[i]$: número de ocorrências de i em A

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

```
CountingSort(A, n)
```

```
1 para i \leftarrow 1 até k faça

2 C[i] \leftarrow 0

3 para j \leftarrow 1 até n faça

4 C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i]: número de ocorrências de i em A

5 para i \leftarrow 2 até k faça

6 C[i] \leftarrow C[i] + C[i-1] \triangleright C[i]: número de elementos \leq i em A
```

Recebe inteiros $n \in k$, e um vetor A[1..n] onde cada elemento é um inteiro entre $1 \in k$.

```
CountingSort(A, n)
      para i \leftarrow 1 até k faça
          C[i] \leftarrow 0
 3
     para i \leftarrow 1 até n faça
          C[A[i]] \leftarrow C[A[i]] + 1 > C[i]: número de ocorrências de i em A
 4
 5
     para i \leftarrow 2 até k faca
          C[i] \leftarrow C[i] + C[i-1] > C[i]: número de elementos \leq i em A
 6
      para i \leftarrow n decrescendo até 1 faca
 8
          B[C[A[i]]] \leftarrow A[i]
          C[A[i]] \leftarrow C[A[i]] - 1
      devolva B
10
```

```
COUNTINGSORT(A, n)
      para i \leftarrow 1 até k faça
           C[i] \leftarrow 0
 3
    para j \leftarrow 1 até n faça
           C[A[i]] \leftarrow C[A[i]] + 1
 5
     para i \leftarrow 2 até k faca
 6
           C[i] \leftarrow C[i] + C[i-1]
     para j \leftarrow n decrescendo até 1 faça
 8
           B[C[A[i]]] \leftarrow A[i]
           C[A[i]] \leftarrow C[A[i]] - 1
 9
10
     devolva B
```

Por que escrevemos as linhas 7-9 desta maneira?

```
COUNTINGSORT(A, n)
      para i \leftarrow 1 até k faça
           C[i] \leftarrow 0
 3
     para j \leftarrow 1 até n faça
           C[A[i]] \leftarrow C[A[i]] + 1
 5
     para i \leftarrow 2 até k faca
 6
           C[i] \leftarrow C[i] + C[i-1]
     para j \leftarrow n decrescendo até 1 faça
 8
           B[C[A[i]]] \leftarrow A[i]
           C[A[i]] \leftarrow C[A[i]] - 1
 9
10
     devolva B
```

Por que escrevemos as linhas 7-9 desta maneira?

Porque isso garante que o CountingSort seja estável.

Estabilidade

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Estabilidade

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Consumo de tempo

Quanto tempo consome o CountingSort em função do n e do k?

```
CountingSort(A, n)
      para i \leftarrow 1 até k faca
          C[i] \leftarrow 0
 3 para j \leftarrow 1 até n faça
           C[A[i]] \leftarrow C[A[i]] + 1
 5
     para i \leftarrow 2 até k faca
           C[i] \leftarrow C[i] + C[i-1]
 6
     para i \leftarrow n decrescendo até 1 faça
 8
           B[C[A[i]]] \leftarrow A[i]
           C[A[i]] \leftarrow C[A[i]] - 1
 9
10
     devolva B
```

Consumo de tempo

linha	consumo na linha
1	$\Theta(k)$
2	O(k)
3	$\Theta(n)$
4	O(n)
5	$\Theta(k)$
6	O(k)
7	$\Theta(n)$
8	O(<i>n</i>)
9	O(n)
10	$\Theta(1)$
total	????

Consumo de tempo

linha	consumo na linha
1	$\Theta(k)$
2	O(k)
3	$\Theta(n)$
4	O(n)
5	$\Theta(k)$
6	O(k)
7	$\Theta(n)$
8	O(<i>n</i>)
9	O(<i>n</i>)
10	$\Theta(1)$
total	$\Theta(k+n)$

```
COUNTINGSORT(A, n)
      para i \leftarrow 1 até k faça
           C[i] \leftarrow 0
     para i \leftarrow 1 até n faça
           C[A[j]] \leftarrow C[A[j]] + 1
 5
     para i \leftarrow 2 até k faça
 6
           C[i] \leftarrow C[i] + C[i-1]
     para j \leftarrow n decrescendo até 1 faça
 8
           B[C[A[i]]] \leftarrow A[i]
           C[A[i]] \leftarrow C[A[i]] - 1
     devolva B
10
```

Consumo de tempo: $\Theta(k+n)$

Se k = O(n), o consumo de tempo é $\Theta(n)$.

Radixsort

CLRS sec 8.3

Algoritmo usado para ordenar

- ▶ inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

Algoritmo usado para ordenar

- inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

campo 1: menos significativo campo d: mais significativo

Algoritmo usado para ordenar

- inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

```
campo 1: menos significativo campo d: mais significativo
```

```
RADIXSORT(A, n, d)

1 para i \leftarrow 1 até d faça
```

ORDENE (A, n, i)

Algoritmo usado para ordenar

- inteiros não-negativos com d dígitos
- cartões perfurados (Hollerith!)
- registros cuja chave tem vários campos

```
campo 1: menos significativo campo d: mais significativo
```

```
RADIXSORT(A, n, d)
```

- 1 para $i \leftarrow 1$ até d faça
- ORDENE (A, n, i)

ORDENE (A, n, i): ordena A[1...n] pelo i-ésimo campo dos registros em A por meio de um algoritmo estável.

Estabilidade

Um algoritmo de ordenação é estável se sempre que, inicialmente, A[i] = A[j] para i < j, a cópia A[i] termina em uma posição menor do vetor que a cópia A[j].

Isso só é relevante quando temos informação satélite.

Quais dos algoritmos que vimos são estáveis?

- inserção direta? seleção direta? bubblesort?
- mergesort?
- quicksort?
- heapsort?
- countingsort?

Depende do algoritmo ORDENE.

Depende do algoritmo ORDENE.

Se cada campo é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Depende do algoritmo ORDENE.

Se cada campo é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Neste caso, o consumo de tempo é $\Theta(d(k+n))$.

Depende do algoritmo ORDENE.

Se cada campo é um inteiro de 1 a k, então podemos usar o COUNTINGSORT.

Neste caso, o consumo de tempo é $\Theta(d(k+n))$.

Se d é limitado por uma constante (ou seja, se d = O(1)) e k = O(n), então o consumo de tempo é O(n).

Bucketsort

CLRS sec 8.4

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

A .47 .93 .82 .12 .42 .03 .62 .38 .77 .91

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

.47 | .93 | .82 | .12 | .42 | .03 | .62 | .38 | .77 | .91

.47 .93 .82 .12 .42	03 .62 .38 .77 .91
-----------------------------	----------------------------

B[0]:	.03	
B[1]:	.12	
B[2]:		
<i>B</i> [3]:	.38	
<i>B</i> [4]:	.47	.42
<i>B</i> [5]:		
<i>B</i> [6]:	.62	
<i>B</i> [7]:	.77	
<i>B</i> [8]:	.82	
<i>B</i> [9]:	.93	.91

.47 .93 .82 .12 .42	03 .62 .38 .77 .91
-----------------------------	----------------------------

B[0]:	.03	
B[1]:	.12	
<i>B</i> [2]:		
<i>B</i> [3]:	.38	
B[4]:	.42	.47
<i>B</i> [5]:		
<i>B</i> [6]:	.62	
<i>B</i> [7]:	.77	
<i>B</i> [8]:	.82	
<i>B</i> [9]:	.91	.93

.47	.93	.82	.12	.42	.03	.62	.38	.77	.91	Ì
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---

B[0]:	.03	
B[1]:	.12	
<i>B</i> [2]:		
<i>B</i> [3]:	.38	
<i>B</i> [4]:	.42	.47
<i>B</i> [5]:		
<i>B</i> [6]:	.62	
<i>B</i> [7]:	.77	
<i>B</i> [8]:	.82	
<i>B</i> [9]:	.91	.93

.03	.12	.38	.42	.47	.62	.77	.82	.91	.93

Recebe um inteiro n e um vetor A[1..n] onde cada elemento é um número no intervalo [0,1).

```
BUCKETSORT(A, n)

1 para i \leftarrow 0 até n-1 faça

2 B[i] \leftarrow_{\text{NIL}}

3 para i \leftarrow 1 até n faça

4 INSIRA(B[\lfloor nA[i] \rfloor], A[i])

5 para i \leftarrow 0 até n-1 faça

6 ORDENELISTA(B[i])

7 C \leftarrow_{\text{CONCATENE}}(B, n)

8 devolva C
```

```
BUCKETSORT(A, n)

1 para i \leftarrow 0 até n-1 faça

2 B[i] \leftarrow_{\text{NIL}}

3 para i \leftarrow 1 até n faça

4 INSIRA(B[\lfloor nA[i] \rfloor], A[i])

5 para i \leftarrow 0 até n-1 faça

6 ORDENELISTA(B[i])

7 C \leftarrow_{\text{CONCATENE}}(B, n)

8 devolva C
```

INSIRA(p,x): insere x na lista apontada por p

ORDENELISTA(p): ordena a lista apontada por p

CONCATENE(B, n): devolve a lista obtida da concatenação das listas apontadas por $B[0], \ldots, B[n-1]$.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Seja X_i o número de elementos na lista B[i].

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Observe que $X_i = \sum_j X_{ij}$.

Suponha que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Suponha que o ORDENELISTA seja o INSERTIONSORT.

Seja X_i o número de elementos na lista B[i].

Seja

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Observe que $X_i = \sum_j X_{ij}$.

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= E[\sum_{i} X_{ij}^{2} + \sum_{i} \sum_{k \neq i} X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-}\text{\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-}\text{\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= E[\sum_{i} X_{ij}^{2}] + E[\sum_{i} \sum_{k \neq i} X_{ij} X_{ik}]$$

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Logo
$$E[Y_i] \le E[X_i^2] = E[(\sum_j X_{ij})^2].$$

$$E[(\sum_{j} X_{ij})^{2}] = E[\sum_{j} \sum_{k} X_{ij} X_{ik}]$$
$$= \sum_{i} E[X_{ij}^{2}] + \sum_{i} \sum_{k \neq i} E[X_{ij} X_{ik}]$$

Primeiro vamos calcular $E[X_{ij}^2]$.

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Primeiro vamos calcular $E[X_{ij}^2]$.

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Lembre-se que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Primeiro vamos calcular $E[X_{ij}^2]$.

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Lembre-se que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Observe que X_{ij}^2 é uma variável aleatória binária.

Primeiro vamos calcular $E[X_{ij}^2]$.

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

Lembre-se que os números em A[1..n] são uniformemente distribuídos no intervalo [0,1).

Observe que X_{ij}^2 é uma variável aleatória binária. Então

$$E[X_{ij}^2] = Pr[X_{ij}^2 = 1] = Pr[X_{ij} = 1] = \frac{1}{n}.$$

Voltando...

 X_i : número de elementos na lista B[i]

$$X_{ij} = \left\{ \begin{array}{ll} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{array} \right\}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$E[Y_i] \le \sum_j E[X_{ij}^2] + \sum_j \sum_{k \neq j} E[X_{ij}X_{ik}]$$

Voltando...

 X_i : número de elementos na lista B[i]

$$X_{ij} = \begin{cases} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{cases}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$E[Y_i] \leq \sum_{j} E[X_{ij}^2] + \sum_{j} \sum_{k \neq j} E[X_{ij} X_{ik}]$$
$$= \sum_{i} \frac{1}{n} + \sum_{j} \sum_{k \neq i} E[X_{ij} X_{ik}]$$

Voltando...

 X_i : número de elementos na lista B[i]

$$X_{ij} = \left\{ \begin{array}{ll} 1 & \text{se o } j\text{-\'esimo elemento foi para a lista } B[i] \\ 0 & \text{se o } j\text{-\'esimo elemento n\~ao foi para a lista } B[i]. \end{array} \right\}$$

 Y_i : número de comparações para ordenar a lista B[i].

Observe que $Y_i \leq X_i^2$. Ademais,

$$\begin{split} \mathbf{E}[Y_i] & \leq \sum_{j} \mathbf{E}[X_{ij}^2] + \sum_{j} \sum_{k \neq j} \mathbf{E}[X_{ij} X_{ik}] \\ & = \sum_{j} \frac{1}{n} + \sum_{j} \sum_{k \neq j} \mathbf{E}[X_{ij} X_{ik}] \\ & = 1 + \sum_{j} \sum_{k \neq j} \mathbf{E}[X_{ij} X_{ik}]. \end{split}$$

Para calcular $E[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto, $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$

Ademais, $E[X_{ij}] = Pr[X_{ij} = 1] = \frac{1}{n}$.

Para calcular $E[X_{ij}X_{ik}]$ para $j \neq k$, primeiro note que X_{ij} e X_{ik} são variáveis aleatórias independentes.

Portanto, $E[X_{ij}X_{ik}] = E[X_{ij}]E[X_{ik}].$

Ademais, $E[X_{ij}] = Pr[X_{ij} = 1] = \frac{1}{n}$.

Logo,

$$\begin{split} \mathrm{E}[Y_i] & \leq & 1 + \sum_j \sum_{k \neq j} \frac{1}{n^2} \\ & = & 1 + n(n-1) \frac{1}{n^2} \\ & = & 1 + (n-1) \frac{1}{n} \\ & = & 2 - \frac{1}{n}. \end{split}$$

Agora, seja $Y = \sum_{i} Y_{i}$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim E[Y] é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

Agora, seja $Y = \sum_{i} Y_{i}$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim $\mathrm{E}[Y]$ é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

$$E[Y] = \sum_{i} E[Y_{i}] \le 2n-1 = O(n).$$

Agora, seja $Y = \sum_{i} Y_{i}$.

Note que Y é o número de comparações realizadas pelo BUCKETSORT no total.

Assim E[Y] é o número esperado de comparações realizadas pelo algoritmo, e tal número determina o consumo assintótico de tempo do BUCKETSORT.

$$E[Y] = \sum_{i} E[Y_{i}] \le 2n-1 = O(n).$$

O consumo de tempo esperado do BUCKETSORT quando os números em A[1..n] são uniformemente distribuídos no intervalo [0,1) é O(n).

Mergesort

Onde declarar o vetor auxiliar?

- Onde declarar o vetor auxiliar?
- ► Alternância entre dois vetores

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado
- Inserção direta para vetores pequenos

Mergesort

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado
- Inserção direta para vetores pequenos

Mergesort

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado
- Inserção direta para vetores pequenos

Quicksort

Elementos repetidos: partição ternária

Mergesort

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado
- Inserção direta para vetores pequenos

- Elementos repetidos: partição ternária
- Mediana de três

Mergesort

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado
- Inserção direta para vetores pequenos

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda

Mergesort

- Onde declarar o vetor auxiliar?
- Alternância entre dois vetores
- ► Teste se já ordenado
- Inserção direta para vetores pequenos

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda
- Inserção direta para vetores pequenos

Rearranja A[p..r] em ordem crescente.

```
MERGESORT (A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT (A, p, q)

4 MERGESORT (A, q+1, r)

5 INTERCALA (A, p, q, r)
```

▶ Onde declarar o vetor auxiliar usado no INTERCALA?

```
MERGESORT (A, n) \leftarrow aqui

1 MERGESORTREC (A, 1, n)

MERGESORTREC (A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORTREC (A, p, q)

4 MERGESORTREC (A, q+1, r)

5 INTERCALA (A, p, q, r)
```

Onde declarar o vetor auxiliar usado no INTERCALA?

```
MERGESORT (A, n)

1 MERGESORTREC (A, 1, n)

MERGESORTREC (A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORTREC (A, p, q)

4 MERGESORTREC (A, q+1, r)

5 INTERCALA (A, p, q, r)
```

- Onde declarar o vetor auxiliar usado no INTERCALA?
- Alternância entre dois vetores

```
MERGESORT (A, n)

1 B \leftarrow A

2 MERGESORTREC (B, A, 1, n)

MERGESORTREC (A, B, p, r)

1 \mathbf{se} \ p < r

2 \mathbf{então} \ q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORTREC (B, A, p, q)

4 MERGESORTREC (B, A, p, q, r)

5 INTERCALA (A, B, p, q, r)
```

- ▶ Onde declarar o vetor auxiliar usado no INTERCALA?
- Alternância entre dois vetores

Dicas de implementação: Mergesort

```
INTERCALA (A, B, p, q, r)

1 i \leftarrow p j \leftarrow q+1 k \leftarrow p

2 enquanto i \leq q e j \leq r faça

3 \text{se } A[i] \leq A[j]

4 \text{então } B[k] \leftarrow A[i] k \leftarrow k+1 i \leftarrow i+1

5 \text{senão } B[k] \leftarrow A[j] k \leftarrow k+1 j \leftarrow j+1

6 enquanto i \leq q faça

7 B[k] \leftarrow A[i] k \leftarrow k+1 i \leftarrow i+1

8 enquanto j \leq r faça

9 B[k] \leftarrow A[j] k \leftarrow k+1 j \leftarrow j+1
```

- ▶ Onde declarar o vetor auxiliar usado no INTERCALA?
- Alternância entre dois vetores

Dicas de implementação: Mergesort

```
INTERCALA (A, p, q, r)

1 para i \leftarrow p até q faça B[i] \leftarrow A[i]

2 para j \leftarrow q+1 até r faça B[r+q+1-j] \leftarrow A[j]

3 i \leftarrow p j \leftarrow r

4 para k \leftarrow p até r faça

5 se B[i] \leq B[j]

6 então A[k] \leftarrow B[i]

7 i \leftarrow i+1

8 senão A[k] \leftarrow B[j]

9 j \leftarrow j-1
```

- Onde declarar o vetor auxiliar usado no INTERCALA?
- Alternância entre dois vetores
- Teste se já ordenado

Dicas de implementação: Mergesort

```
INTERCALA (A, p, q, r)
    se A[q] > A[q+1] então \leftarrow aqui
         para i \leftarrow p até q faça B[i] \leftarrow A[i]
1
         para j \leftarrow q+1 até r faça B[r+q+1-i] \leftarrow A[i]
         i \leftarrow p \quad i \leftarrow r
4
         para k \leftarrow p até r faca
5
              se B[i] \leq B[i]
                   então A[k] \leftarrow B[i]
6
                             i \leftarrow i + 1
8
                   senão A[k] \leftarrow B[i]
                            i \leftarrow i - 1
9
```

- Onde declarar o vetor auxiliar usado no INTERCALA?
- Alternância entre dois vetores
- ► Teste se já ordenado

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \text{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r)
```

```
QUICKSORT (A, p, r)

1 se p < r

2 então (q, t) \leftarrow \text{TriParticione}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, t + 1, r)
```

Elementos repetidos: partição ternária

```
Particione-Alea(A, p, r)
```

- 1 $i \leftarrow \mathsf{RANDOM}(p, r)$
- 2 $A[i] \leftrightarrow A[r]$
- 3 **devolva** Particione (A, p, r)
- ► Elementos repetidos: partição ternária
- Mediana de três

Particione-Alea(A, p, r)

- 1 $i \leftarrow \mathsf{RANDOM}(p, r)$
- 2 $A[i] \leftrightarrow A[r]$
- 3 **devolva** Particione (A, p, r)
- ► Elementos repetidos: partição ternária
- Mediana de três

Em vez de escolher um pivô aleatoriamente, escolhe três elementos do vetor aleatoriamente, e usa como pivô a mediana dos três.

Particione-Alea(A, p, r)

- 1 $i \leftarrow \mathsf{RANDOM}(p, r)$
- 2 $A[i] \leftrightarrow A[r]$
- 3 **devolva** Particione (A, p, r)
- Elementos repetidos: partição ternária
- Mediana de três

Em vez de escolher um pivô aleatoriamente, escolhe três elementos do vetor aleatoriamente, e usa como pivô a mediana dos três.

Aproveite para colocar o menor dos três no extremo esquerdo, e o maior dos três no extremo direito, e use-os de sentinela na partição!

Particione

```
Rearranja A[p..r] de modo que p \le q \le r e A[p..q-1] \le A[q] < A[q+1..r] Supõe que A[p] \le A[r] \le A[r-1] e use A[r] como pivô.
```

```
PARTICIONE (A, p, r)

1  x \leftarrow A[r]  \triangleright x \in o "pivô"

2  i \leftarrow p+1  j \leftarrow r-2

3  enquanto i \le j faça

4  enquanto A[i] \le x faça i \leftarrow i+1

5  enquanto A[j] \ge x faça j \leftarrow j-1

6  se i < j então A[i] \leftrightarrow A[j]

7  A[i] \leftrightarrow A[r]

8  devolva i
```

```
QUICKSORT (A, p, r)

1 se p < r

2 então q \leftarrow \text{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 QUICKSORT (A, q + 1, r) \leftarrow \text{aqui}
```

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda

```
QUICKSORT (A, p, r)

1 enquanto p < r faça \leftarrow virou enquanto aqui!

2 q \leftarrow \text{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 p \leftarrow q + 1 \leftarrow ajusta os parâmetros!
```

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda
 Substitua essa chamada recursiva por um enquanto.

```
QUICKSORT (A, p, r)

1 enquanto p < r faça \leftarrow virou enquanto aqui!

2 q \leftarrow \text{PARTICIONE}(A, p, r)

3 QUICKSORT (A, p, q - 1)

4 p \leftarrow q + 1 \leftarrow ajusta os parâmetros!
```

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda

Correto: substitua a chamada da maior metade!

```
QUICKSORT (A, p, r)

1 enquanto p < r \leftarrow virou enquanto aqui!

2 q \leftarrow \text{PARTICIONE}(A, p, r)

3 se q - p < r - q

4 então QUICKSORT (A, p, q - 1)

5 p \leftarrow q + 1

6 senão QUICKSORT (A, q + 1, r)

7 r \leftarrow q - 1
```

- Elementos repetidos: partição ternária
- Mediana de três
- ► Recursão de cauda

Correto: substitua a chamada da maior metade!

```
QUICKSORT (A, p, r)

1 enquanto p < r \leftarrow virou enquanto aqui!

2 q \leftarrow \text{PARTICIONE}(A, p, r)

3 se q - p < r - q

4 então QUICKSORT (A, p, q - 1)

5 p \leftarrow q + 1

6 senão QUICKSORT (A, q + 1, r)

7 r \leftarrow q - 1
```

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda
 Correto: substitua a chamada da maior metade!
 Profundidade da pilha da recursão: O(lg n).

Dicas de implementação

Inserção direta para vetores pequenos.

Mergesort

- Onde declarar o vetor auxiliar usado no INTERCALA?
- Alternância entre dois vetores
- ► Teste se já ordenado

Quicksort

- Elementos repetidos: partição ternária
- Mediana de três
- Recursão de cauda

Heapsort

Desce tudo sem comparar, depois sobe o que precisa.

Comparação entre os algoritmos

Mergesort:

Entre $\frac{1}{2}$ $n \lg n$ e $n \lg n$ comparações. Usa espaço extra linear.

Comparação entre os algoritmos

Mergesort:

Entre $\frac{1}{2}$ $n \lg n$ e $n \lg n$ comparações. Usa espaço extra linear.

Quicksort:

Em média, $2n \lg n$ comparações (e $\frac{1}{3} n \lg n$ trocas). Espaço extra logarítmico.

Comparação entre os algoritmos

Mergesort:

Entre $\frac{1}{2}$ $n \lg n$ e $n \lg n$ comparações. Usa espaço extra linear.

Quicksort:

Em média, $2n \lg n$ comparações (e $\frac{1}{3} n \lg n$ trocas). Espaço extra logarítmico.

Heapsort:

Menos de $2n \lg n + 2n$ comparações.

(Em média, cai para metade disso com a melhora.)

Espaço extra constante.

Performance de cache ruim.

Primeira prova

Data: 9 de setembro (terça), às 10h.

Duração: 2 horas (reserve mais um pouco).

Matéria da prova: tudo que vimos até a aula passada.

Material coberto pelas listas de 1 a 4.

Primeira prova

Data: 9 de setembro (terça), às 10h.

Duração: 2 horas (reserve mais um pouco).

Matéria da prova: tudo que vimos até a aula passada.

Material coberto pelas listas de 1 a 4.

Dúvidas? Perguntas?