Análise de Algoritmos

CLRS 3.1 e 3.2 AU 3.3, 3.4 e 3.6

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Notação O

Intuitivamente. . .

- O(f(n)) \approx funções que não crescem mais rápido que f(n) \approx funções menores ou iguais a
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

Intuitivamente...

```
O(f(n)) \approx funções que não crescem mais
rápido que f(n)
\approx funções menores ou iguais a
um múltiplo de f(n)
```

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

- $n^2 + 99n \in O(n^2)$
- ► $33n^2$ é $O(n^2)$
- ▶ $9n + 2 \in O(n^2)$
- $ightharpoonup 0,00001 n^3 200 n^2$ não é $O(n^2)$

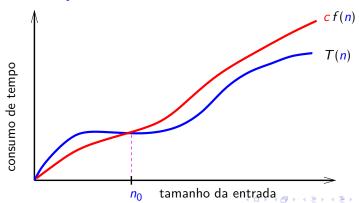
Definição

Sejam T(n) e f(n) funções dos inteiros nos reais.

Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.

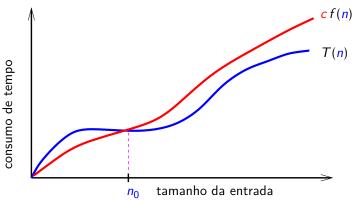


Mais informal

 $T(n) \in O(f(n))$ se existe c > 0 tal que

$$T(n) \leq c f(n)$$

para todo *n* suficientemente GRANDE.



Ordenação por inserção

```
ORDENA-POR-INSERÇÃO (A, n)
1 para j \leftarrow 2 até n faça
2 chave \leftarrow A[j] i \leftarrow j - 1
3 enquanto i \ge 1 e A[i] > chave faça
4 A[i+1] \leftarrow A[i] \triangleright desloca
5 i \leftarrow i - 1
6 A[i+1] \leftarrow chave \triangleright insere
```

Ordenação por inserção

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j] i \leftarrow j - 1

3 enquanto i \ge 1 e A[i] > chave faça

4 A[i+1] \leftarrow A[i] \triangleright desloca

5 i \leftarrow i - 1

6 A[i+1] \leftarrow chave \triangleright insere
```

linha	consumo de todas as execuções da linha
1	?
2	?
3	?
4	?
5	?
6	?
total	?

Ordenação por inserção

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j] i \leftarrow j - 1

3 enquanto i \ge 1 e A[i] > chave faça

4 A[i+1] \leftarrow A[i] \triangleright desloca

5 i \leftarrow i - 1

6 A[i+1] \leftarrow chave \triangleright insere
```

linha	consumo de todas as execuções da linha
1	O(<i>n</i>)
2	O(n)
3	$O(n^2)$
4	$O(n^2)$
5	$O(n^2)$
6	O(n)
total	$O(3n^2 + 3n) = O(n^2)$

Conclusão

O algoritmo ORDENA-POR-INSERÇÃO consome $O(n^2)$ unidades de tempo.

Também escreve-se

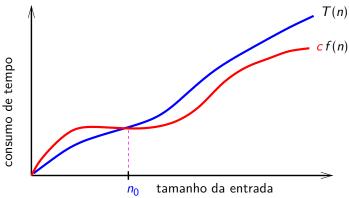
O algoritmo ORDENA-POR-INSERÇÃO consome tempo $O(n^2)$.

Notação Omega

Dizemos que T(n) é $\Omega(f(n))$ se existem constantes positivas c e n_0 tais que

$$c f(n) \leq T(n)$$

para todo $n \ge n_0$.

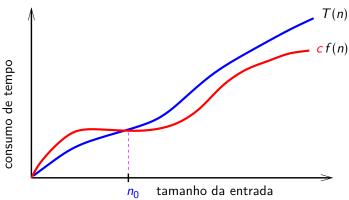


Mais informal

$$T(n) = \Omega(f(n))$$
 se existe $c > 0$ tal que

$$c f(n) \leq T(n)$$

para todo *n* suficientemente GRANDE.



Exemplos

Exemplo 1

Se $T(n) \ge 0.001n^2$ para todo $n \ge 8$, então T(n) é $\Omega(n^2)$.

Exemplos

Exemplo 1

Se $T(n) \ge 0.001n^2$ para todo $n \ge 8$, então T(n) é $\Omega(n^2)$.

Prova: Aplique a definição com c = 0.001 e $n_0 = 8$.

Exemplo 2

O consumo de tempo do ORDENA-POR-INSERÇÃO é $O(n^2)$ e é $\Omega(n)$.

Exemplo 2

O consumo de tempo do ORDENA-POR-INSERÇÃO é $O(n^2)$ e é $\Omega(n)$.

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] \triangleright desloca

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave \triangleright insere
```

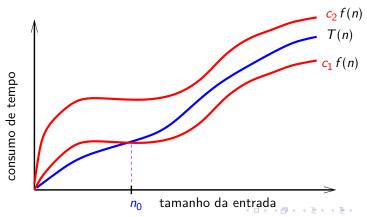
Exemplo 2

O consumo de tempo do ORDENA-POR-INSERÇÃO é $O(n^2)$ e é $\Omega(n)$.

linha	todas as execuções da linha			
1	=	n		
2-3	=	<i>n</i> − 1		
4	\geq	<i>n</i> − 1		
5-6	\geq	0		
7	=	<i>n</i> – 1		
total	≥	$4n-3=\Omega(n)$		

Notação Theta

Sejam T(n) e f(n) funções dos inteiros no reais. Dizemos que T(n) é $\Theta(f(n))$ se T(n) é O(f(n)) e T(n) é $\Omega(f(n))$.

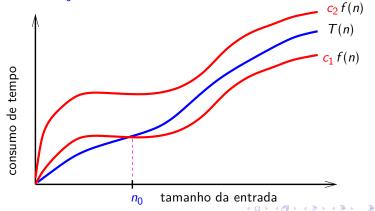


Notação Theta

Dizemos que T(n) é $\Theta(f(n))$ se se existem constantes positivas c_1, c_2 e n_0 tais que

$$c_1 f(n) \le T(n) \le c_2 f(n)$$

para todo $n \ge n_0$.



Intuitivamente

Comparação assintótica, ou seja, para n ENORME.

comparação	comparação assintótica
$T(n) \leq f(n)$	$T(n) \in \mathcal{O}(f(n))$
$T(n) \geq f(n)$	$T(n) \in \mathcal{O}(f(n))$ $T(n) \in \mathcal{\Omega}(f(n))$
T(n) = f(n)	$T(n) \in \Theta(f(n))$

Tamanho máximo de problemas

Suponha que cada operação consome 1 microsegundo $(1\mu s)$.

consumo de	Tamanho máximo de problemas (n)			
tempo (μs)	1 segundo	1 minuto	1 hora	
400 <i>n</i>	2500	150000	9000000	
20 <i>n</i> [lg <i>n</i>]	4096	166666	7826087	
2 <i>n</i> ²	707	5477	42426	
n ⁴	31	88	244	
2 ⁿ	19	25	31	

Michael T. Goodrich e Roberto Tamassia, *Projeto de Algoritmos*, Bookman.

Crescimento de algumas funções

n	lg n	\sqrt{n}	nlgn	n^2	n ³	2 ⁿ
2	1	1,4	2	4	8	4
4	2	2	8	16	64	16
8	3	2,8	24	64	512	256
16	4	4	64	256	4096	65536
32	5	5,7	160	1024	32768	4294967296
64	6	8	384	4096	262144	$1,8 \ 10^{19}$
128	7	11	896	16384	2097152	$3,4 \ 10^{38}$
256	8	16	1048	65536	16777216	1,1 10 ⁷⁷
512	9	23	4608	262144	134217728	$1,3 \ 10^{154}$
1024	10	32	10240	1048576	$1,1 \ 10^9$	1,7 10 ³⁰⁸

Nomes de classes ⊖

classe	nome
$\Theta(1)$	constante
$\Theta(\log n)$	logarítmica
$\Theta(n)$	linear
$\Theta(n \log n)$	nlog n
$\Theta(n^2)$	quadrática
$\Theta(n^3)$	cúbica
$\Theta(n^k) \text{ com } k \ge 1$	polinomial
$\Theta(2^n)$	exponencial
$\Theta(a^n)$ com $a > 1$	exponencial

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" 100 n e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

100 n é $\Theta(n)$ e $n \log_{10} n$ é $\Theta(n \lg n)$. Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B} .

Suponha que \mathcal{A} e \mathcal{B} são algoritmos para um mesmo problema. Suponha que o consumo de tempo de \mathcal{A} é "essencialmente" $100 \, n$ e que o consumo de tempo de \mathcal{B} é "essencialmente" $n \log_{10} n$.

```
100 n é \Theta(n) e n \log_{10} n é \Theta(n \lg n).
Logo, \mathcal{A} é assintoticamente mais eficiente que \mathcal{B}.
```

 \mathcal{A} é mais eficiente que \mathcal{B} para $n \ge 10^{100}$.

```
10<sup>100</sup> = um googol

≈ número de átomos no universo observável
= número ENORME
```

Conclusão:

Lembre das constantes e termos de baixa ordem que estão "escondidos" na notação assintótica.

Em geral um algoritmo que consome tempo $\Theta(n \lg n)$, e com fatores constantes razoáveis, é bem eficiente.

Um algoritmo que consome tempo $\Theta(n^2)$ pode, algumas vezes, ser satisfatório.

Um algoritmo que consome tempo $\Theta(2^n)$ é dificilmente aceitável.

Do ponto de vista de AA, eficiente = polinomial.

Consideremos que a entrada do algoritmo é uma permutação de 1 a *n* escolhida com probabilidade uniforme.

Consideremos que a entrada do algoritmo é uma permutação de 1 a n escolhida com probabilidade uniforme.

Qual é o número esperado de execuções da linha 4?

Consideremos que a entrada do algoritmo é uma permutação de 1 a n escolhida com probabilidade uniforme.

Qual é o número esperado de execuções da linha 4?

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > desloca

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave > insere
```

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] \triangleright desloca

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave \triangleright insere
```

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > desloca

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave > insere
```

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > desloca

6 i \leftarrow i - 1

7 A[i+1] \leftarrow chave > insere
```

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

Esta probabilidade é 1/j. (Explicação na aula.)

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

Esta probabilidade é 1/j.

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

Esta probabilidade é 1/j.

Portanto o número esperado de execuções da linha 4 é

$$\sum_{t=1}^{j} t \frac{1}{j} = \frac{1}{j} \sum_{t=1}^{j} t = \frac{1}{j} \frac{(j+1)j}{2} = \frac{j+1}{2}.$$

Para cada valor de j, a linha 4 é executada de 1 a j vezes.

Qual é a probabilidade dela ser executada t vezes?

Esta probabilidade é 1/j.

Portanto o número esperado de execuções da linha 4 é

$$\sum_{t=1}^{j} t \frac{1}{j} = \frac{1}{j} \sum_{t=1}^{j} t = \frac{1}{j} \frac{(j+1)j}{2} = \frac{j+1}{2}.$$

E o número esperado de execuções da linha 4 no total é

$$\sum_{i=2}^{n} \frac{j+1}{2} = \frac{1}{2} \sum_{i=2}^{n} (j+1) = \frac{(n+4)(n-1)}{4} = \Theta(n^2).$$

A[1..n] é crescente se $A[1] \le \cdots \le A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

A[1..n] é crescente se $A[1] \le \cdots \le A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

ORDENA-POR-INSERÇÃO consome tempo $\mathrm{O}(n^2)$ no pior caso e $\Theta(n^2)$ no caso médio.

A[1..n] é crescente se $A[1] \le \cdots \le A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

ORDENA-POR-INSERÇÃO consome tempo $O(n^2)$ no pior caso e $\Theta(n^2)$ no caso médio.

Conseguimos fazer melhor?

A[1..n] é crescente se $A[1] \le \cdots \le A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

ORDENA-POR-INSERÇÃO consome tempo $O(n^2)$ no pior caso e $\Theta(n^2)$ no caso médio.

Conseguimos fazer melhor?

Sim! Usando divisão e conquista!