Introdução

CLRS 1.1, 1.2, 2.1 e 2.2 AU 3.3, 3.4 e 3.6

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

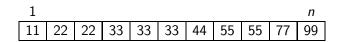
Ordenação

A[1..n] é crescente se $A[1] \le \cdots \le A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

Entra:

Ordenação


A[1..n] é crescente se $A[1] \le \cdots \le A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

Entra:

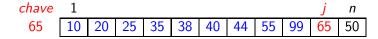
1										n
33	55	33	44	33	22	11	99	22	55	77

Sai:

chave = 38

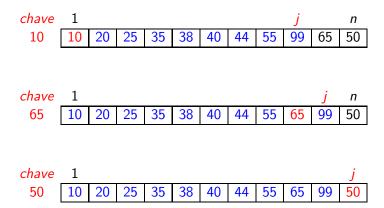
1					i	j				n
20	25	35	40	44	55	38	99	10	65	50

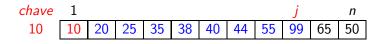
chave = 3899 65 99 65

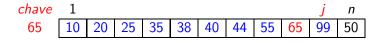

chave = 38

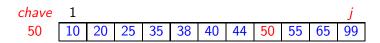
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50

chave	1								j		n	
10	20	25	35	38	40	44	55	99	10	65	50	


chave	_								j		n	
10	10	20	25	35	38	40	44	55	99	65	50	


chave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50




chave	1								j		n
10	10	20	25	35	38	40	44	55	99	65	50

chave	_									j	n
65	10	20	25	35	38	40	44	55	65	99	50

Algoritmo rearranja A[1..n] em ordem crescente.

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

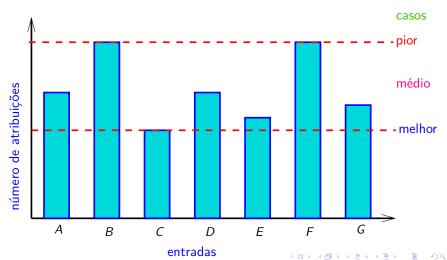
2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] \triangleright desloca

6 i \leftarrow i - 1


7 A[i+1] \leftarrow chave \triangleright insere
```

Algoritmo rearranja A[1...n] em ordem crescente

```
ORDENA-POR-INSERÇÃO (A, n)
0 \quad i \leftarrow 2
1 enquanto i \leq n faça
2 chave \leftarrow A[i]
        i \leftarrow i - 1
         enquanto i \ge 1 e A[i] > chave faça
              A[i+1] \leftarrow A[i]  \triangleright desloca
6
             i \leftarrow i - 1
        A[i+1] \leftarrow chave > insere
8 \quad i \leftarrow i+1
```

Quantas atribuições (←) algoritmo faz?

Número mínimo, médio ou máximo? Melhor caso, caso médio, pior caso?

LINHAS 3–6 (*A, j, chave*)

$$3 \qquad i \leftarrow j-1 \qquad \triangleright \quad 2 \leq j \leq n$$

4 enquanto
$$i \ge 1$$
 e $A[i] > chave$ faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i-1$$

linha	atribuições (número máximo)
3	?
4	?
5	?
6	?

LINHAS 3–6 (*A, j, chave*)

$$3 \qquad i \leftarrow j-1 \qquad \triangleright \ 2 \leq j \leq n$$

4 enquanto
$$i \ge 1$$
 e $A[i] > chave$ faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

atribuições (número máximo)
= 1
= 0
?
?

LINHAS 3–6 (A, j, chave)

$$3 \qquad i \leftarrow j-1 \qquad \triangleright \ 2 \leq j \leq n$$

4 enquanto
$$i \ge 1$$
 e $A[i] > chave$ faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	$\leq j-1$
6	?

LINHAS 3–6 (*A, j, chave*)

$$3 \qquad i \leftarrow j-1 \qquad \triangleright \ 2 \leq j \leq n$$

4 enquanto
$$i \ge 1$$
 e $A[i] > chave$ faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	$\leq j-1$
6	$\leq j-1$

total
$$\leq 2j-1 \leq 2n-1$$

ORDENA-POR-INSERÇÃO (A, n)

- 1 para $j \leftarrow 2$ até n faça $\triangleright j \leftarrow j + 1$ escondido
- 2 $chave \leftarrow A[j]$
- 3 LINHAS 3–6 (A, j, chave)
- 7 $A[i+1] \leftarrow chave$

linha	atribuições (número máximo)
1	?
2	?
3–6	?
7	?

ORDENA-POR-INSERÇÃO (A, n)

- 1 para $j \leftarrow 2$ até n faça $\triangleright j \leftarrow j + 1$ escondido
- 2 $chave \leftarrow A[j]$
- 3 LINHAS 3–6 (A, j, chave)
- 7 $A[i+1] \leftarrow chave$

linha	atribuições (número máximo)
1	= n-1+1
2	= n-1
3–6	$\leq (n-1)(2n-1)$
7	= n-1

total
$$\leq 2n^2 - 1$$

Análise mais fina

linha	atribuições (número máximo)
1	= n-1+1
2	= n-1
3-6	$\leq 3+5+\cdots+(2n-1)=(n+1)(n-1)=n^2-1$
7	= n-1

total
$$\leq n^2 + 3n - 3$$

n	$n^2 + 3n - 3$	n^2
1	1	1
2	7	4

n	$n^2 + 3n - 3$	n ²
1	1	1
2	7	4
3	15	9
10	127	100

n	$n^2 + 3n - 3$	n^2
1	1	1
2	7	4
3	15	9
10	127	100
100	10297	10000
1000	1002997	1000000

n	$n^2 + 3n - 3$	n^2
1	1	1
2	7	4
3	15	9
10	127	100
100	10297	10000
1000	1002997	1000000
10000	100029997	10000000
100000	10000299997	1000000000

 n^2 domina os outros termos

Exercício 1.B

Se a execução de cada linha de código consome 1 unidade de tempo, qual o consumo total?

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > desloca
6 i \leftarrow i-1

7 A[i+1] \leftarrow chave > insere
```

Solução

linha	todas as execuções da linha			
1	=	n		
2	=	n-1		
3	=	n-1		
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$		
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$		
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$		
7	=	n-1		
total	<u> </u>	$(3/2)n^2 + (7/2)n - 4$		

Exercício 1.C

Se a execução da linha i consome t_i unidades de tempo, para i = 1, ..., 7, qual o consumo total?

```
ORDENA-POR-INSERÇÃO (A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 i \leftarrow j - 1

4 enquanto i \ge 1 e A[i] > chave faça

5 A[i+1] \leftarrow A[i] > desloca

6 i \leftarrow i - 1
```

Solução para $t_i = 1$

linha	todas as execuções da linha		
1	=	n	
2	=	n-1	
3	=	n-1	
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	
5	\leq	$1 + 2 + \cdots + (n-1) = n(n-1)/2$	
6	\leq	$1 + 2 + \cdots + (n-1) = n(n-1)/2$	
7	=	n-1	
total	<u> </u>	$(3/2)n^2 + (7/2)n - 4$	

Solução

linha	tod	las as execuções da linha	
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$2 \times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$

total \leq ?

Solução

linha	todas as execuções da linha			
1	=	n	$\times t_1$	
2	=	n-1	$\times t_2$	
3	=	n-1	$\times t_3$	
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$	
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$	
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$	
7	=	n-1	$\times t_7$	
total	≤ + -	$((t_4 + t_5 + t_6)/2) \times n^2$ $(t_1 + t_2 + t_3 + t_4/2 - t_5/2 - t_6/2 + t_6$	₇)× n	

Solução

linha	todas as execuções da linha		
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$
total	\leq	$c_2 \times n^2 + c_1 \times n + c_0$	

 c_2, c_1, c_0 são constantes que dependem da máquina.

 n^2 é para sempre! Está nas entranhas do algoritmo!

Notação O

Intuitivamente. . .

- O(f(n)) \approx funções que não crescem mais rápido que f(n) \approx funções menores ou iguais a
 - \approx funções menores ou iguais a um múltiplo de f(n)

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

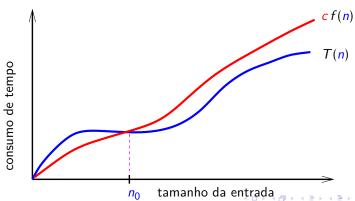
Intuitivamente...

```
O(f(n)) \approx funções que não crescem mais
rápido que f(n)
\approx funções menores ou iguais a
um múltiplo de f(n)
```

$$n^2$$
 $(3/2)n^2$ $9999n^2$ $n^2/1000$ etc.

crescem todas com a mesma velocidade

- $n^2 + 99n \in O(n^2)$
- ► $33n^2$ é $O(n^2)$
- ▶ $9n + 2 \in O(n^2)$
- $ightharpoonup 0,00001 n^3 200 n^2$ não é $O(n^2)$

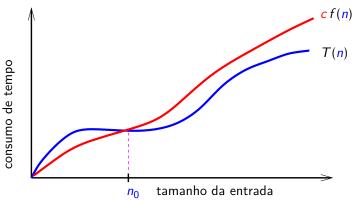

Definição

Sejam T(n) e f(n) funções dos inteiros nos reais.

Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.



Mais informal

 $T(n) \notin O(f(n))$ se existe c > 0 tal que

$$T(n) \leq c f(n)$$

para todo *n* suficientemente GRANDE.

 $T(n) \notin O(f(n))$ lê-se " $T(n) \notin O$ de f(n)" ou " $T(n) \notin O$ da ordem de f(n)"

$$T(n) \notin O(f(n))$$
 lê-se " $T(n) \notin O$ de $f(n)$ " ou " $T(n) \notin O$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2 \, \text{\'e O}(n^3)$.

$$T(n) \notin O(f(n))$$
 lê-se " $T(n) \notin O$ de $f(n)$ " ou " $T(n) \notin A$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2 \in O(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10n^3$.

$$T(n) \notin O(f(n))$$
 lê-se " $T(n) \notin O$ de $f(n)$ " ou " $T(n) \notin d$ a ordem de $f(n)$ "

Exemplo 1

 $10n^2 \in O(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

$$T(n) \notin O(f(n))$$
 lê-se " $T(n) \notin O$ de $f(n)$ " ou " $T(n) \notin O$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2 \in O(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in O(n)$.

$$T(n) \notin O(f(n))$$
 lê-se " $T(n) \notin O$ de $f(n)$ " ou " $T(n) \notin O$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2 \in O(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

Exemplo 2

 $\lg n \in O(n)$.

Prova: Para $n \ge 1$, tem-se que $\lg n \le 1 n$.

Mais exemplos

Exemplo 3

 $20n^3 + 10n\log n + 5 \in O(n^3)$.

Mais exemplos

Exemplo 3

$$20n^3 + 10n\log n + 5 \in O(n^3)$$
.

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n\lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Mais exemplos

Exemplo 3

$$20n^3 + 10n\log n + 5 \in O(n^3)$$
.

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n\lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Outra prova: Para $n \ge 10$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + nn \lg n + n \le 20n^3 + n^3 + n^3 = \frac{22}{3}n^3$$
.

Uso da notação O

$$O(f(n)) = \{T(n) : \text{existem } c \text{ } e \text{ } n_0 \text{ } \text{tq } T(n) \leq cf(n), n \geq n_0\}$$

"
$$T(n) \in O(f(n))$$
" deve ser entendido como " $T(n) \in O(f(n))$ ".

"
$$T(n) = O(f(n))$$
" deve ser entendido como " $T(n) \in O(f(n))$ ".

"
$$T(n) \le O(f(n))$$
" é feio.

"
$$T(n) \ge O(f(n))$$
" não faz sentido!

" $T(n) \in g(n) + O(f(n))$ " significa que existe constantes positivas c e n_0 tais que

$$T(n) \le g(n) + c f(n)$$

para todo $n \ge n_0$.

Nomes de classes O

classe	nome	
O(1)	constante	
$O(\lg n)$	logarítmica	
O(n)	linear	
$O(n \lg n)$	nlog n	
$O(n^2)$	quadrática	
$O(n^3)$	cúbica	
$O(n^k)$ com $k \ge 1$	polinomial	
$O(n^n)$ coin $n \ge 1$ $O(2^n)$	exponencial	
,		
$O(a^n)$ com $a > 1$	exponencial	