Tópicos de Análise de Algoritmos

Análise amortizada

Análise do Union-Find

CLRS cap 21

Queremos uma ED boa para representar uma partição de um conjunto, e as seguintes operações sobre a partição:

Queremos uma ED boa para representar uma partição de um conjunto, e as seguintes operações sobre a partição:

- MakeSet(x): cria um conjunto unitário com o elemento x;
- Find(x): devolve o identificador do conjunto da partição que contém x;
- Union(x, y): substitui os conjuntos da partição que contêm x e y pela união deles.

Queremos uma ED boa para representar uma partição de um conjunto, e as seguintes operações sobre a partição:

- MakeSet(x): cria um conjunto unitário com o elemento x;
- Find(x): devolve o identificador do conjunto da partição que contém x;
- Union(x, y): substitui os conjuntos da partição que contêm x e y pela união deles.

O identificador de um conjunto é um elemento do conjunto: o seu representante.

Queremos uma ED boa para representar uma partição de um conjunto, e as seguintes operações sobre a partição:

- MakeSet(x): cria um conjunto unitário com o elemento x;
- Find(x): devolve o identificador do conjunto da partição que contém x;
- Union(x, y): substitui os conjuntos da partição que contêm x e y pela união deles.

O identificador de um conjunto é um elemento do conjunto: o seu representante.

Como podemos armazenar cada conjunto da partição?


```
MakeSet (x)
1  pai[x] \leftarrow x
2  rank[x] \leftarrow 0 \triangleright altura da árvore
```

Heurística dos tamanhos:

no union, pendura a árvore mais baixa na mais alta

```
Union (x,y) \triangleright x \in y representantes distintos

1 se \operatorname{rank}[x] \ge \operatorname{rank}[y]

2 então \operatorname{pai}[y] \leftarrow x

3 se \operatorname{rank}[x] = \operatorname{rank}[y]

4 então \operatorname{rank}[x] \leftarrow \operatorname{rank}[x] + 1

5 senão \operatorname{pai}[x] \leftarrow y
```

```
MakeSet (x)
1  pai[x] \leftarrow x
2  rank[x] \leftarrow 0 \triangleright altura da árvore
```

Heurística dos tamanhos:

no union, pendura a árvore mais baixa na mais alta

```
Union (x,y) \triangleright x \in y representantes distintos

1 se \operatorname{rank}[x] \ge \operatorname{rank}[y]

2 então \operatorname{pai}[y] \leftarrow x

3 se \operatorname{rank}[x] = \operatorname{rank}[y]

4 então \operatorname{rank}[x] \leftarrow \operatorname{rank}[x] + 1

5 senão \operatorname{pai}[x] \leftarrow y
```

Note que o rank[x] só é alterado enquanto x é raiz de uma árvore.

Heurística da compressão dos caminhos: quando busca um representante, aproveita para comprimir a árvore.

```
Find (x)

1 se pai[x] \neq x

2 então pai[x] \leftarrow Find (pai[x])

3 devolva pai[x]
```

Heurística da compressão dos caminhos: quando busca um representante, aproveita para comprimir a árvore.

```
Find (x)

1 se pai[x] \neq x

2 então pai[x] \leftarrow Find (pai[x])

3 devolva pai[x]
```

Consumo amortizado de tempo de cada operação:

$$O(\lg^* n)$$
,

onde $\lg^* n$ é o número de vezes que temos que aplicar o lg até atingir um número menor ou igual a 1.

Heurística da compressão dos caminhos: quando busca um representante, aproveita para comprimir a árvore.

```
Find (x)

1 se pai[x] \neq x

2 então pai[x] \leftarrow Find (pai[x])

3 devolva pai[x]
```

Consumo amortizado de tempo de cada operação:

$$O(\lg^* n)$$
,

onde $\lg^* n$ é o número de vezes que temos que aplicar o \lg até atingir um número menor ou igual a 1.

Na verdade, é melhor do que isso, e há uma análise justa.

Função log-estrela

```
\lg^* n é o menor k tal que \lg \lg \dots \lg n \le 1
```

Função log-estrela

lg* n $\lg^* n$ é o menor k tal que 12345 $\lg \lg \ldots \lg n \leq 1$ k 15 16 17 65535 65536 65537 5 100000000000000 · · · 0000000000000 80

Union-Find

```
MakeSet (x)
1 \operatorname{pai}[x] \leftarrow x
2 \operatorname{rank}[x] \leftarrow 0
Find (x)
   se pai[x] \neq x
              então pai[x] \leftarrow Find (pai[x])
3
     devolva pai[x]
Union (x, y) \triangleright x \in y representantes distintos
      se rank[x] > rank[y]
              então pai[y] \leftarrow x
3
                        se rank[x] = rank[y]
4
                               então \operatorname{rank}[x] \leftarrow \operatorname{rank}[x] + 1
5
              senão pai[x] \leftarrow y
```

Union-Find

```
Union (x, y)
1 x' \leftarrow \text{Find}(x)
2 y' \leftarrow \text{Find}(y)
3 se x' \neq y'
              então Link (x', y')
Link (x, y) \triangleright x \in y representantes distintos
     se rank[x] \ge rank[y]
              então pai[y] \leftarrow x
3
                       se rank[x] = rank[y]
4
                               então \operatorname{rank}[x] \leftarrow \operatorname{rank}[x] + 1
5
              senão pai[x] \leftarrow y
```

Dada sequência de MakeSet, Find e Union, converta-a em uma sequência de MakeSet, Find e Link.

Dada sequência de MakeSet, Find e Union, converta-a em uma sequência de MakeSet, Find e Link.

Sequência de m operações MakeSet, Find e Link das quais n são MakeSet.

Dada sequência de MakeSet, Find e Union, converta-a em uma sequência de MakeSet, Find e Link.

Sequência de m operações MakeSet, Find e Link das quais n são MakeSet.

Custo amortizado de cada operação: $O(\lg^* n)$.

Dada sequência de MakeSet, Find e Union, converta-a em uma sequência de MakeSet, Find e Link.

Sequência de m operações MakeSet, Find e Link das quais n são MakeSet.

Custo amortizado de cada operação: $O(\lg^* n)$.

Seja
$$\lg^{(1)} x = \lg x$$
.

Para
$$i \ge 2$$
, seja $\lg^{(i)} x = \lg(\lg^{(i-1)} x)$.

Dada sequência de MakeSet, Find e Union, converta-a em uma sequência de MakeSet, Find e Link.

Sequência de m operações MakeSet, Find e Link das quais n são MakeSet.

Custo amortizado de cada operação: $O(\lg^* n)$.

Seja
$$\lg^{(1)} x = \lg x$$
.

Para
$$i \ge 2$$
, seja $\lg^{(i)} x = \lg(\lg^{(i-1)} x)$.

A função $\lg^* n$ é definida da seguinte maneira:

$$\lg^* n = \min\{i : \lg^{(i)} n \le 1\}.$$

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Quantos grupos diferentes podemos ter?

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(rank[y]) = \lg^*(rank[x])\}.$$

Quantos grupos diferentes podemos ter?

Resposta: $\leq 1 + \lg^* n$

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(rank[y]) = \lg^*(rank[x])\}.$$

Quantos grupos diferentes podemos ter?

Resposta:
$$\leq 1 + \lg^* n$$

rank assume valores entre 0 e $\lg n$, assim os grupos vão de 0 a $\lg^*(\lg n) \le \lg^* n$.

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(rank[y]) = \lg^*(rank[x])\}.$$

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Função potencial:

$$\Phi = |\{x : G(x) = G(pai[x])\}|$$

(número de nós no mesmo grupo que seu pai)

Raízes contribuem com 1, logo Φ é pelo menos o número de árvores.

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Função potencial:

$$\Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|$$

(número de nós no mesmo grupo que seu pai)

Raízes contribuem com 1, logo Φ é pelo menos o número de árvores.

Ideia: Se o potencial é o número de árvores, então a altura das árvores é no máximo $1 + \lg^* n$ e o custo do Find é $O(\lg^* n)$.

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Função potencial:

$$\Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|$$

(número de nós no mesmo grupo que seu pai)

Raízes contribuem com 1, logo Φ é pelo menos o número de árvores.

Ideia: Se o potencial é o número de árvores, então a altura das árvores é no máximo $1 + \lg^* n$ e o custo do Find é $O(\lg^* n)$. Se altura é maior, o potencial será maior também.

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Função potencial:

$$\Phi = |\{x : G(x) = G(pai[x])\}|$$

(número de nós no mesmo grupo que seu pai)

 $\Phi \geq 0$ e o valor inicial $\Phi_0 = 0$. (não há nenhum conjunto na coleção inicialmente)

Para cada nó x da floresta, o grupo de x é o conjunto

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}.$$

Função potencial:

$$\Phi = |\{x : G(x) = G(pai[x])\}|$$

(número de nós no mesmo grupo que seu pai)

 $\Phi \geq 0$ e o valor inicial $\Phi_0 = 0.$ (não há nenhum conjunto na coleção inicialmente)

Φ_a: função potencial antes da operação Φ_d: função potencial depois da operação

```
G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}

Função potencial: \Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|

\Phi_a: função potencial antes da operação

\Phi_d: função potencial depois da operação
```

```
G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}

Função potencial: \Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|

\Phi_a: função potencial antes da operação

\Phi_d: função potencial depois da operação
```

O custo amortizado de cada operação é:

► MakeSet(x): $\hat{c} = c + \Phi_d - \Phi_a = 1 + 1 = 2$.

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}$$

Função potencial: $\Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|$
 Φ_a : função potencial antes da operação
 Φ_d : função potencial depois da operação

O custo amortizado de cada operação é:

- ► MakeSet(x): $\hat{c} = c + \Phi_d \Phi_a = 1 + 1 = 2$.
- ightharpoonup Link(x,y): $\hat{c} = c + \Phi_d \Phi_a = 1 + \Phi_d \Phi_a \le 1$ pois

$$G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}$$

Função potencial: $\Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|$
 Φ_a : função potencial antes da operação
 Φ_d : função potencial depois da operação

O custo amortizado de cada operação é:

- ► MakeSet(x): $\hat{c} = c + \Phi_d \Phi_a = 1 + 1 = 2$.
- ightharpoonup Link(x,y): $\hat{c} = c + \Phi_d \Phi_a = 1 + \Phi_d \Phi_a \le 1$ pois

se $\operatorname{pai}[x]$ é alterado para nó x e novo $\operatorname{pai}[x]$ é tal que $G(x) \neq G(\operatorname{pai}[x])$, então $\Phi_d - \Phi_a = -1$;

```
G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}
Função potencial: \Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|
\Phi_a: função potencial antes da operação
\Phi_d: função potencial depois da operação
```

O custo amortizado de cada operação é:

- ► MakeSet(x): $\hat{c} = c + \Phi_d \Phi_a = 1 + 1 = 2$.
- Link(x, y): $\hat{c} = c + \Phi_d \Phi_a = 1 + \Phi_d \Phi_a \le 1$ pois

se $\operatorname{pai}[x]$ é alterado para nó x e novo $\operatorname{pai}[x]$ é tal que $G(x) \neq G(\operatorname{pai}[x])$, então $\Phi_d - \Phi_a = -1$; se novo $\operatorname{pai}[x]$ é tal que $G(x) = G(\operatorname{pai}[x])$, então $\Phi_d - \Phi_a = 0$.

```
G(x) = \{y : \lg^*(\operatorname{rank}[y]) = \lg^*(\operatorname{rank}[x])\}

Função potencial: \Phi = |\{x : G(x) = G(\operatorname{pai}[x])\}|

\Phi_a: função potencial antes da operação

\Phi_d: função potencial depois da operação
```

O custo amortizado de cada operação é:

- ► MakeSet(x): $\hat{c} = c + \Phi_d \Phi_a = 1 + 1 = 2$.
- ► Link(x, y): $\hat{c} = c + \Phi_d \Phi_a = 1 + \Phi_d \Phi_a \le 1$ pois

se $\operatorname{pai}[x]$ é alterado para nó x e novo $\operatorname{pai}[x]$ é tal que $G(x) \neq G(\operatorname{pai}[x])$, então $\Phi_d - \Phi_a = -1$; se novo $\operatorname{pai}[x]$ é tal que $G(x) = G(\operatorname{pai}[x])$, então $\Phi_d - \Phi_a = 0$.

Ademais, incremento de rank[y] pode fazer o potencial diminuir.

```
r = Find(x)

k = número de nós do caminho P de x a r
```

```
r = \operatorname{Find}(x)

k = \operatorname{número} \operatorname{de} \operatorname{nós} \operatorname{do} \operatorname{caminho} P \operatorname{de} x \operatorname{a} r

Então c = k e \hat{c} = k + \Phi_d - \Phi_a.
```

```
r = \operatorname{Find}(x)

k = \operatorname{número} \operatorname{de} \operatorname{nós} \operatorname{do} \operatorname{caminho} P \operatorname{de} x \operatorname{a} r

\operatorname{Então} c = k \operatorname{e} \hat{c} = k + \Phi_d - \Phi_a.

Quanto vale \Phi_d - \Phi_a?
```

```
r = \operatorname{Find}(x)

k = \operatorname{número} \operatorname{de} \operatorname{nós} \operatorname{do} \operatorname{caminho} P \operatorname{de} x \operatorname{a} r

\operatorname{Então} c = k \operatorname{e} \hat{c} = k + \Phi_d - \Phi_a.
```

Quanto vale $\Phi_d - \Phi_a$?

Partição dos arcos da floresta: para cada vértice u, o arco entre u e pai[u] é

r = Find(x)

k = número de nós do caminho P de x a r

Então c = k e $\hat{c} = k + \Phi_d - \Phi_a$.

Quanto vale $\Phi_d - \Phi_a$?

Partição dos arcos da floresta:

para cada vértice u, o arco entre u e pai[u] é

- vermelho se G(pai[u]) = G(u) = G(r), onde r é a raiz da árvore em que u se encontra.
- ▶ azul se $G(pai[u]) \neq G(u)$.
- ▶ amarelo se $G(pai[u]) = G(u) \neq G(r)$.

r = Find(x)

k = número de nós do caminho P de x a r

Então c = k e $\hat{c} = k + \Phi_d - \Phi_a$.

Quanto vale $\Phi_d - \Phi_a$?

Partição dos arcos da floresta:

para cada vértice u, o arco entre u e pai[u] é

- vermelho se G(pai[u]) = G(u) = G(r), onde r é a raiz da árvore em que u se encontra.
- ▶ azul se $G(pai[u]) \neq G(u)$.
- ▶ amarelo se $G(pai[u]) = G(u) \neq G(r)$.

Φ: número de arcos vermelhos mais amarelos.

r = Find(x) k = comprimento do caminho P de x a r $\hat{c} = k + \Phi_d - \Phi_a$.

Partição dos arcos da floresta:

para cada vértice u, o arco de u para $\operatorname{pai}[u]$ é

- ightharpoonup vermelho se G(pai[u]) = G(u) = G(r).
- ▶ azul se $G(pai[u]) \neq G(u)$.
- ▶ amarelo se $G(pai[u]) = G(u) \neq G(r)$.

$$r = \text{Find}(x)$$
 $k = \text{comprimento do caminho } P \text{ de } x \text{ a } r$
 $\hat{c} = k + \Phi_d - \Phi_a$.

Partição dos arcos da floresta:

para cada vértice u, o arco de u para $\operatorname{pai}[u]$ é

- ightharpoonup vermelho se G(pai[u]) = G(u) = G(r).
- ▶ azul se $G(pai[u]) \neq G(u)$.
- ▶ amarelo se $G(pai[u]) = G(u) \neq G(r)$.

Ao final de Find(x), nós de P têm r como pai. (Arcos amarelos viram azuis.)

 $r = \operatorname{Find}(x)$ $k = \operatorname{comprimento}$ do caminho P de x a r $\hat{c} = k + \Phi_d - \Phi_a$.

Partição dos arcos da floresta:

para cada vértice u, o arco de u para $\operatorname{pai}[u]$ é

- ightharpoonup vermelho se G(pai[u]) = G(u) = G(r).
- ▶ azul se $G(pai[u]) \neq G(u)$.
- ▶ amarelo se $G(pai[u]) = G(u) \neq G(r)$.

Ao final de Find(x), nós de P têm r como pai. (Arcos amarelos viram azuis.)

 Φ decresce do número de arcos amarelos em P.

$$r = \text{Find}(x)$$
 $k = \text{comprimento do caminho } P \text{ de } x \text{ a } r$
 $\hat{c} = k + \Phi_d - \Phi_a$.

Partição dos arcos da floresta:

para cada vértice u, o arco de u para $\operatorname{pai}[u]$ é

- ightharpoonup vermelho se G(pai[u]) = G(u) = G(r).
- ▶ azul se $G(pai[u]) \neq G(u)$.
- ▶ amarelo se $G(pai[u]) = G(u) \neq G(r)$.

Ao final de Find(x), nós de P têm r como pai. (Arcos amarelos viram azuis.)

 Φ decresce do número de arcos amarelos em P.

Então $\hat{c} = v + a$, onde v é o número de arcos vermelhos e a é o número de arcos azuis em P.

rank cresce estritamente ao subirmos nas árvores.

rank cresce estritamente ao subirmos nas árvores.

Arco azul: passamos de um grupo para outro.

rank cresce estritamente ao subirmos nas árvores.

Arco azul: passamos de um grupo para outro.

Número de arcos azuis no caminho de qualquer nó a uma raiz é no máximo o número de grupos, que é $\leq 1 + \lg^* n$.

rank cresce estritamente ao subirmos nas árvores.

Arco azul: passamos de um grupo para outro.

Número de arcos azuis no caminho de qualquer nó a uma raiz é no máximo o número de grupos, que é $\leq 1 + \lg^* n$.

Ou seja, $a \le 1 + \lg^* n$ e o custo amortizado do Find fica

$$\hat{c} = \mathbf{v} + \mathbf{a} \leq \mathbf{v} + 1 + \lg^* \mathbf{n}.$$

 \hat{c}_i : custo amortizado da i-ésima operação

 c_i : custo real da i-ésima operação

ĉ_i: custo amortizado da *i*-ésima operação
 c_i: custo real da *i*-ésima operação

Queremos mostrar que

$$\sum_{i=1}^{m} c_i = \mathcal{O}(m \lg^* n).$$

ĉ_i: custo amortizado da *i*-ésima operação
 c_i: custo real da *i*-ésima operação

Queremos mostrar que

$$\sum_{i=1}^{m} c_i = O(m \lg^* n).$$

Assim, o custo amortizado por operação é $O(\lg^* n)$.

ĉ_i: custo amortizado da *i*-ésima operação
 c_i: custo real da *i*-ésima operação

Queremos mostrar que

$$\sum_{i=1}^{m} c_i = \mathcal{O}(m \lg^* n).$$

Assim, o custo amortizado por operação é $O(\lg^* n)$.

Lembre-se que $\sum_{i=1}^{m} \hat{c}_i = \sum_{i=1}^{m} c_i + \Phi_f - \Phi_0$, onde Φ_f é o potencial final da floresta.

ĉ_i: custo amortizado da *i*-ésima operação
 c_i: custo real da *i*-ésima operação

Queremos mostrar que

$$\sum_{i=1}^{m} c_i = \mathcal{O}(m \lg^* n).$$

Assim, o custo amortizado por operação é $O(\lg^* n)$.

Lembre-se que $\sum_{i=1}^{m} \hat{c}_i = \sum_{i=1}^{m} c_i + \Phi_f - \Phi_0$, onde Φ_f é o potencial final da floresta.

Como $\Phi_0 = 0$ e $\Phi_f \ge 0$, temos que $\sum_{i=1}^m c_i \le \sum_{j=1}^m \hat{c}_j$.

Basta então mostrar que $\sum_{i=1}^{m} \hat{c}_i = O(m \lg^* n)$.

Por operação:

```
\begin{array}{lll} \mathsf{MakeSet}(x) \colon & \hat{c} = c + \Phi_d - \Phi_a = 2. \\ \mathsf{Link}(x,y) \colon & \hat{c} = c + \Phi_d - \Phi_a \leq 1. \\ \mathsf{Find}(x) \colon & \hat{c} = v + a \leq v + 1 + \lg^* n. \end{array}
```

Por operação:

```
MakeSet(x): \hat{c} = c + \Phi_d - \Phi_a = 2.

Link(x, y): \hat{c} = c + \Phi_d - \Phi_a \le 1.

Find(x): \hat{c} = \mathbf{v} + \mathbf{a} \le \mathbf{v} + 1 + \lg^* \mathbf{n}.
```

Portanto, para as m operações,

$$\sum_{i=1}^{m} \hat{c}_{i} \leq 2(m-f) + f(1+\lg^{*} n) + \sum_{i=1}^{m} v_{i},$$

onde f é o número de operações Find na sequência, v_i é 0 se a *i*-ésima operação não é Find e é o número de arcos vermelhos em P se é Find(x).

$$\sum_{i=1}^{m} \hat{c}_{i} \leq 2(m-f) + f(1+\lg^{*} n) + \sum_{i=1}^{m} v_{i},$$

$$\sum_{i=1}^{m} \hat{c}_{i} \leq 2(m-f) + f(1+\lg^{*} n) + \sum_{i=1}^{m} v_{i},$$

Para delimitar $\sum_{i=1}^{m} v_i$, lembre-se que um arco é vermelho se G(pai[u]) = G(u) = G(r).

$$\sum_{i=1}^{m} \hat{c}_i \leq 2(m-f) + f(1+\lg^* n) + \sum_{i=1}^{m} v_i,$$

Para delimitar $\sum_{i=1}^{m} v_i$, lembre-se que um arco é vermelho se G(pai[u]) = G(u) = G(r).

Se um u deixa de ser ponta inferior de arco vermelho, não volta a ser ponta inferior de arco vermelho.

$$\sum_{i=1}^{m} \hat{c}_{i} \leq 2(m-f) + f(1+\lg^{*} n) + \sum_{i=1}^{m} v_{i},$$

Para delimitar $\sum_{i=1}^{m} v_i$, lembre-se que um arco é vermelho se G(pai[u]) = G(u) = G(r).

Se um u deixa de ser ponta inferior de arco vermelho, não volta a ser ponta inferior de arco vermelho.

Todos os nós de P, exceto os dois últimos (a raiz e o filho dela no caminho), têm o campo pai alterado no Find.

$$\sum_{i=1}^{m} \hat{c}_{i} \leq 2(m-f) + f(1+\lg^{*} n) + \sum_{i=1}^{m} v_{i},$$

Para delimitar $\sum_{i=1}^{m} v_i$, lembre-se que um arco é vermelho se G(pai[u]) = G(u) = G(r).

Se um u deixa de ser ponta inferior de arco vermelho, não volta a ser ponta inferior de arco vermelho.

Todos os nós de P, exceto os dois últimos (a raiz e o filho dela no caminho), têm o campo pai alterado no Find.

Se o pai de um nó é alterado, rank do seu pai aumenta

$$\sum_{i=1}^{m} \hat{c}_{i} \leq 2(m-f) + f(1+\lg^{*} n) + \sum_{i=1}^{m} v_{i},$$

Para delimitar $\sum_{i=1}^{m} v_i$, lembre-se que um arco é vermelho se G(pai[u]) = G(u) = G(r).

Se um u deixa de ser ponta inferior de arco vermelho, não volta a ser ponta inferior de arco vermelho.

Todos os nós de P, exceto os dois últimos (a raiz e o filho dela no caminho), têm o campo pai alterado no Find.

Se o pai de um nó é alterado, rank do seu pai aumenta pois rank cresce estritamente ao subirmos nas árvores.

y: ponta inferior de um arco vermelho

Enquanto isso, o campo pai[y] sofre alteração quantas vezes?

y: ponta inferior de um arco vermelho

Enquanto isso, o campo pai[y] sofre alteração quantas vezes?

Seja
$$t(s) = \min\{k \in Z : \lg^* k \ge s\}$$
 (tipo de inversa do $\lg^* n$).

Em palavras, t(s) é o menor rank de alguém do grupo s.

Exemplos: t(3) = 5, t(4) = 17 e t(5) = 65537.

k	lg* <i>k</i>
1 2	0
1 2 3 4 5	0 1 2 2 3
5	
: 15	3
16 17	3 3 4
65536 65537	4 5
:	:

y: ponta inferior de um arco vermelho

Enquanto isso, o campo pai[y] sofre alteração quantas vezes?

Seja
$$t(s) = \min\{k \in Z : \lg^* k \ge s\}$$
 (tipo de inversa do $\lg^* n$).

Em palavras,	
t(s) é o menor rank de a	lguém do grupo s.

Exemplos:
$$t(3) = 5$$
, $t(4) = 17$ e $t(5) = 65537$.

Então
$$t(g+1) = 2^{t(g)-1} + 1$$
.

k	lg* <i>k</i>
1 2	0 1
1 2 3 4 5	0 1 2 2 3
5	
: 15	3 3 4
16 17	3 4
:	:
65536 65537	: 4 5
:	:

y: ponta inferior de um arco vermelho

Enquanto isso, o campo pai[y] sofre alteração quantas vezes?

Seja $t(s) = \min\{k \in Z : \lg^* k \ge s\}$ (tipo de inversa do $\lg^* n$).

Em palavras, t(s) é o menor rank de alguém do grupo s.

Se $g = \lg^*(\operatorname{rank}[y])$, então $\operatorname{pai}[y]$ se altera e y permanece ponta inferior de arco vermelho no máximo $t(g+1)-t(g) \leq t(g+1)$ vezes.

y: ponta inferior de um arco vermelho

Enquanto isso, o campo pai[y] sofre alteração quantas vezes?

Seja
$$t(s) = \min\{k \in Z : \lg^* k \ge s\}$$
 (tipo de inversa do $\lg^* n$).

Em palavras, t(s) é o menor rank de alguém do grupo s.

Se $g = \lg^*(\operatorname{rank}[y])$, então pai[y] se altera e y permanece ponta inferior de arco vermelho no máximo $t(g+1) - t(g) \le t(g+1)$ vezes.

Logo
$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=1}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1).$$

y: ponta inferior de um arco vermelho

Enquanto isso, o campo pai[y] sofre alteração quantas vezes?

Seja
$$t(s) = \min\{k \in Z : \lg^* k \ge s\}$$
 (tipo de inversa do $\lg^* n$).

Em palavras, t(s) é o menor rank de alguém do grupo s.

Se $g = \lg^*(\operatorname{rank}[y])$, então pai[y] se altera e y permanece ponta inferior de arco vermelho no máximo $t(g+1) - t(g) \le t(g+1)$ vezes.

Logo
$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=1}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1).$$

2f: por 2 possíveis arcos vermelhos da raiz e de seu filho no caminho.

$$\sum_{i=1}^{m} \frac{v_i}{v_i} \leq 2f + \sum_{g=1}^{\lg^* n} |\{y : \lg^*(\operatorname{rank}[y]) = g\}| t(g+1).$$

Agora queremos delimitar $|\{y : \lg^*(rank[y]) = g\}|$.

$$\sum_{i=1}^{m} \frac{\mathbf{v}_{i}}{\mathbf{v}_{i}} \leq 2f + \sum_{g=1}^{\lg^{*} n} |\{\mathbf{y} : \lg^{*}(\operatorname{rank}[\mathbf{y}]) = g\}| t(g+1).$$

Agora queremos delimitar $|\{y : \lg^*(rank[y]) = g\}|$.

O número de nós y tais que $\operatorname{rank}[y] = r$ é no máximo $n/2^r$. (Subárvore com raiz de rank r tem pelo menos 2^r nós.)

$$\sum_{i=1}^{m} \frac{\mathbf{v}_{i}}{\mathbf{v}_{i}} \leq 2f + \sum_{g=1}^{\lg^{*} n} |\{\mathbf{y} : \lg^{*}(\operatorname{rank}[\mathbf{y}]) = g\}| t(g+1).$$

Agora queremos delimitar $|\{y : \lg^*(rank[y]) = g\}|$.

O número de nós y tais que $\operatorname{rank}[y] = r$ é no máximo $n/2^r$. (Subárvore com raiz de rank r tem pelo menos 2^r nós.)

Além disso, $t(g) = \min\{k \in Z : \lg^* k \ge g\} \le \operatorname{rank}[y].$

$$\sum_{i=1}^{m} \frac{v_i}{v_i} \leq 2f + \sum_{g=1}^{\lg^* n} |\{y : \lg^*(\operatorname{rank}[y]) = g\}| t(g+1).$$

Agora queremos delimitar $|\{y : \lg^*(rank[y]) = g\}|$.

O número de nós y tais que $\operatorname{rank}[y] = r$ é no máximo $n/2^r$. (Subárvore com raiz de rank r tem pelo menos 2^r nós.)

Além disso, $t(g) = \min\{k \in Z : \lg^* k \ge g\} \le \operatorname{rank}[y]$. Logo

$$|\{y : |g^*(rank[y]) = g\}| = \sum_{r=t(g)}^{t(g+1)-1} |\{y : rank[y] = r\}|$$

$$\sum_{i=1}^{m} \frac{\mathbf{v}_{i}}{\mathbf{v}_{i}} \leq 2f + \sum_{g=1}^{\lg^{*} n} |\{\mathbf{y} : \lg^{*}(\operatorname{rank}[\mathbf{y}]) = g\}| t(g+1).$$

Agora queremos delimitar $|\{y : \lg^*(\operatorname{rank}[y]) = g\}|$.

O número de nós y tais que $\operatorname{rank}[y] = r$ é no máximo $n/2^r$. (Subárvore com raiz de rank r tem pelo menos 2^r nós.)

Além disso, $t(g) = \min\{k \in Z : \lg^* k \ge g\} \le \operatorname{rank}[y]$. Logo

$$|\{y : |g^*(\operatorname{rank}[y]) = g\}| = \sum_{r=t(g)}^{t(g+1)-1} |\{y : \operatorname{rank}[y] = r\}|$$

$$< \sum_{r=t(g)}^{\infty} \frac{n}{2^r} = \frac{n}{2^{t(g)}} \sum_{r=0}^{\infty} \frac{1}{2^r}$$

$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=1}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1).$$

Agora queremos delimitar $|\{y : \lg^*(\operatorname{rank}[y]) = g\}|$.

O número de nós y tais que $\operatorname{rank}[y] = r$ é no máximo $n/2^r$. (Subárvore com raiz de rank r tem pelo menos 2^r nós.)

Além disso, $t(g) = \min\{k \in Z : \lg^* k \ge g\} \le \operatorname{rank}[y]$. Logo

$$|\{y : |g^*(\text{rank}[y]) = g\}| = \sum_{r=t(g)}^{t(g+1)-1} |\{y : \text{rank}[y] = r\}|$$

$$< \sum_{r=t(g)}^{\infty} \frac{n}{2^r} = \frac{n}{2^{t(g)}} \sum_{r=0}^{\infty} \frac{1}{2^r} = \frac{2n}{2^{t(g)}}.$$

$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=0}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1)$$

$$\leq 2f + 2n \sum_{g=0}^{\lg^{*} n} \frac{t(g+1)}{2^{t(g)}}.$$

$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=0}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1)$$

$$\leq 2f + 2n \sum_{g=0}^{\lg^{*} n} \frac{t(g+1)}{2^{t(g)}}.$$

Mas
$$t(g+1) = 2^{t(g)-1} + 1 \le 2^{t(g)}$$
.

$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=0}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1)$$

$$\leq 2f + 2n \sum_{g=0}^{\lg^{*} n} \frac{t(g+1)}{2^{t(g)}}.$$

Mas
$$t(g+1) = 2^{t(g)-1} + 1 \le 2^{t(g)}$$
.

Então
$$\sum_{i=1}^{m} v_i \leq 2f + 2n(1 + \lg^* n)$$
 e

$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=0}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1)$$

$$\leq 2f + 2n \sum_{g=0}^{\lg^{*} n} \frac{t(g+1)}{2^{t(g)}}.$$

Mas
$$t(g+1) = 2^{t(g)-1} + 1 \le 2^{t(g)}$$
.

Então
$$\sum_{i=1}^{m} v_i \leq 2f + 2n(1 + \lg^* n)$$
 e

$$\sum_{i=1}^{m} c_{i} \leq \sum_{i=1}^{m} \hat{c}_{i} \leq 2m + 2n + 2f + 2m \lg^{*} n = O(m \lg^{*} n).$$

Portanto concluímos que

$$\sum_{i=1}^{m} v_{i} \leq 2f + \sum_{g=0}^{\lg^{*} n} |\{y : \lg^{*}(\operatorname{rank}[y]) = g\}| t(g+1)$$

$$\leq 2f + 2n \sum_{g=0}^{\lg^{*} n} \frac{t(g+1)}{2^{t(g)}}.$$

Mas
$$t(g+1) = 2^{t(g)-1} + 1 \le 2^{t(g)}$$
.

Então
$$\sum_{i=1}^{m} v_i \leq 2f + 2n(1 + \lg^* n)$$
 e

$$\sum_{i=1}^{m} c_{i} \leq \sum_{i=1}^{m} \hat{c}_{i} \leq 2m + 2n + 2f + 2m \lg^{*} n = O(m \lg^{*} n).$$

Logo o custo amortizado por operação é $O(\lg^* n)$.

