Tópicos de Análise de Algoritmos

Análise amortizada

Cap 17 do CLRS

Análise amortizada

Serve para analisar uma sequência de operações ou iterações onde o pior caso individual não reflete o pior caso da sequência.

Análise amortizada

Serve para analisar uma sequência de operações ou iterações onde o pior caso individual não reflete o pior caso da sequência.

Em outras palavras, serve para melhorar análises de pior caso que baseiem-se diretamente no pior caso de uma operação/iteração e que deem uma delimitação frouxa para o tempo de pior caso da sequência.

Análise amortizada

Serve para analisar uma sequência de operações ou iterações onde o pior caso individual não reflete o pior caso da sequência.

Em outras palavras, serve para melhorar análises de pior caso que baseiem-se diretamente no pior caso de uma operação/iteração e que deem uma delimitação frouxa para o tempo de pior caso da sequência.

Métodos:

- agregado
- por créditos
- potencial

Considere um contador binário, inicialmente zerado, representado em um vetor A[0..n-1], onde cada A[i] vale 0 ou 1.

Operação: incrementa.

Considere um contador binário, inicialmente zerado, representado em um vetor A[0..n-1], onde cada A[i] vale 0 ou 1.

Operação: incrementa.

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Considere um contador binário, inicialmente zerado, representado em um vetor A[0..n-1], onde cada A[i] vale 0 ou 1.

Operação: incrementa.

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Consumo de tempo no pior caso: $\Theta(n)$

Considere um contador binário, inicialmente zerado, representado em um vetor A[0..n-1], onde cada A[i] vale 0 ou 1.

Operação: Incrementa.

Consumo de tempo no pior caso: $\Theta(n)$.

O odômetro dá uma volta completa a cada 2ⁿ execuções do Incrementa.

Considere um contador binário, inicialmente zerado, representado em um vetor A[0..n-1], onde cada A[i] vale 0 ou 1.

Operação: Incrementa.

Consumo de tempo no pior caso: $\Theta(n)$.

O odômetro dá uma volta completa a cada 2ⁿ execuções do Incrementa.

Quanto tempo leva para o odômetro dar uma volta completa?

Considere um contador binário, inicialmente zerado, representado em um vetor A[0..n-1], onde cada A[i] vale 0 ou 1.

Operação: Incrementa.

Consumo de tempo no pior caso: $\Theta(n)$.

O odômetro dá uma volta completa a cada 2ⁿ execuções do Incrementa.

Quanto tempo leva para o odômetro dar uma volta completa?

Leva $O(n2^n)$.

Será que é $\Theta(n2^n)$?

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1 0
12	1	1	0	
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Custo da volta completa é proporcional ao número de vezes que os bits são alterados.

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Custo da volta completa é proporcional ao número de vezes que os bits são alterados.

```
bit 0 muda 2^n vezes
bit 1 muda 2^{n-1} vezes
bit 2 muda 2^{n-2} vezes
...
bit n-2 muda 4 vezes
bit n-1 muda 2 vezes
```

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Custo da volta completa é proporcional ao número de vezes que os bits são alterados.

bit 0 muda 2^n vezes bit 1 muda 2^{n-1} vezes bit 2 muda 2^{n-2} vezes ...

bit n-2 muda 4 vezes bit n-1 muda 2 vezes

Total de alterações de bits: $\sum_{i=1}^{n} 2^{i} < 2 \cdot 2^{n}$.

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Custo da volta completa é proporcional ao número de vezes que os bits são alterados.

bit 0 muda 2^n vezes bit 1 muda 2^{n-1} vezes bit 2 muda 2^{n-2} vezes ... bit n-2 muda 4 vezes bit n-1 muda 2 vezes

Total de alterações de bits: $\sum_{i=1}^{n} 2^{i} < 2 \cdot 2^{n}$.

Custo da volta completa: $\Theta(2^n)$.

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Custo da volta completa é proporcional ao número de vezes que os bits são alterados.

bit 0 muda 2^n vezes bit 1 muda 2^{n-1} vezes bit 2 muda 2^{n-2} vezes ... bit n-2 muda 4 vezes bit n-1 muda 2 vezes

Total de alterações de bits: $\sum_{i=1}^{n} 2^{i} < 2 \cdot 2^{n}$.

Custo da volta completa: $\Theta(2^n)$.

Custo amortizado por Incrementa: $\Theta(1)$.

Atribuímos um número fixo de créditos por operação Incrementa de modo a pagar por toda alteração de bit.

Atribuímos um número fixo de créditos por operação Incrementa de modo a pagar por toda alteração de bit.

Objetivo: atribuir o menor número possível de créditos que seja ainda suficiente para pagar por todas as alterações.

Atribuímos um número fixo de créditos por operação Incrementa de modo a pagar por toda alteração de bit.

Objetivo: atribuir o menor número possível de créditos que seja ainda suficiente para pagar por todas as alterações.

Relembre...

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

5 i \leftarrow i + 1

6 se i < n

7 então A[i] \leftarrow 1
```

Atribuímos 2 créditos por Incrementa.

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Um é usado para pagar pela alteração da linha 6.

Atribuímos 2 créditos por Incrementa.

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Um é usado para pagar pela alteração da linha 6.

O outro fica armazenado sobre o bit alterado na linha 6.

Atribuímos 2 créditos por Incrementa.

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Um é usado para pagar pela alteração da linha 6.

O outro fica armazenado sobre o bit alterado na linha 6.

Há um crédito armazenado sobre cada bit que vale 1.

Alterações da linha 3 são pagas por créditos armazenados por chamadas anteriores do Incrementa.

Atribuímos 2 créditos por Incrementa.

```
Incrementa (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Um é usado para pagar pela alteração da linha 6.

O outro fica armazenado sobre o bit alterado na linha 6.

O número de créditos armazenados em cada instante é o número de bits que valem 1, logo é sempre não negativo.

Custo amortizado por Incrementa: 2

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa.

Note que $\phi(A_0) = 0$ e $\phi(A_i) \ge 0$.

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa.

Note que $\phi(A_0) = 0$ e $\phi(A_i) \ge 0$.

Seja *c_i* o número de bits alterados no *i*-ésimo Incrementa.

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa.

Note que $\phi(A_0) = 0$ e $\phi(A_i) \ge 0$.

Seja c; o número de bits alterados no i-ésimo Incrementa.

Note que $c_i \le 1 + t_i$ onde t_i é o número de bits 1 consecutivos no final do contador A_{i-1} .

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa.

Note que $\phi(A_0) = 0$ e $\phi(A_i) \ge 0$.

Seja c; o número de bits alterados no i-ésimo Incrementa.

Note que $c_i \le 1 + t_i$ onde t_i é o número de bits 1 consecutivos no final do contador A_{i-1} .

Note que $\phi(A_i) - \phi(A_{i-1}) \leq 1 - t_i$.

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa.

Note que $\phi(A_0) = 0$ e $\phi(A_i) \ge 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa.

Note que $c_i \le 1 + t_i$ onde t_i é o número de bits 1 consecutivos no final do contador A_{i-1} .

Note que $\phi(A_i) - \phi(A_{i-1}) \leq 1 - t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2.$$

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa. Temos que $\phi(A_0)=0$ e $\phi(A_i)\geq 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa e t_i é o número de bits 1 consecutivos no final do contador A. Temos que $c_i \le 1 + t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2.$$

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa. Temos que $\phi(A_0)=0$ e $\phi(A_i)\geq 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa e t_i é o número de bits 1 consecutivos no final do contador A. Temos que $c_i \leq 1 + t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2.$$

Então o custo da volta completa é

$$c = \sum_{i=1}^{2^n} c_i$$

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa. Temos que $\phi(A_0)=0$ e $\phi(A_i)\geq 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa e t_i é o número de bits 1 consecutivos no final do contador A. Temos que $c_i \leq 1 + t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2.$$

Então o custo da volta completa é

$$c = \sum_{i=1}^{2^n} c_i = \sum_{i=1}^{2^n} \hat{c}_i + \phi(A_0) - \phi(A_{2^n})$$

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa. Temos que $\phi(A_0)=0$ e $\phi(A_i)\geq 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa e t_i é o número de bits 1 consecutivos no final do contador A. Temos que $c_i \leq 1 + t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2.$$

Então o custo da volta completa é

$$c = \sum_{i=1}^{2^n} c_i = \sum_{i=1}^{2^n} \hat{c}_i + \phi(A_0) - \phi(A_{2^n}) \leq \sum_{i=1}^{2^n} \hat{c}_i \leq 2 \cdot 2^n.$$

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa. Temos que $\phi(A_0)=0$ e $\phi(A_i)\geq 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa e t_i é o número de bits 1 consecutivos no final do contador A. Temos que $c_i \leq 1 + t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2.$$

Então o custo da volta completa é

$$c = \sum_{i=1}^{2^n} c_i = \sum_{i=1}^{2^n} \hat{c}_i + \phi(A_0) - \phi(A_{2^n}) \leq \sum_{i=1}^{2^n} \hat{c}_i \leq 2 \cdot 2^n.$$

Custo amortizado por Incrementa: 2

 \triangleright valor da delimitação no \hat{c}_i

Outro exemplo: pilha

Operações básicas: empilha, desempilha.

Operações básicas: empilha, desempilha.

OP: operação única de acesso

Operações básicas: empilha, desempilha.

OP: operação única de acesso

OP(n)

- 1 \triangleright exige que a pilha tenha $\ge n$ elementos
- 2 desempilhe n itens da pilha
- 3 empilhe um item na pilha

Operações básicas: empilha, desempilha.

OP: operação única de acesso

```
OP(n)
```

- 1 \triangleright exige que a pilha tenha $\ge n$ elementos
- 2 desempilhe *n* itens da pilha
- 3 empilhe um item na pilha

Consumo de tempo de OP(n) é $\Theta(n)$.

Operações básicas: empilha, desempilha.

OP: operação única de acesso

```
OP(n)
```

- 1 \triangleright exige que a pilha tenha $\ge n$ elementos
- 2 desempilhe n itens da pilha
- 3 empilhe um item na pilha

Consumo de tempo de OP(n) é $\Theta(n)$.

Sequência de *m* operações OP.

Consumo de tempo de uma operação no pior caso: $\Theta(m)$.

Operações básicas: empilha, desempilha.

OP: operação única de acesso

```
OP(n)
```

- 1 \triangleright exige que a pilha tenha $\ge n$ elementos
- 2 desempilhe n itens da pilha
- 3 empilhe um item na pilha

Consumo de tempo de OP(n) é $\Theta(n)$.

Sequência de *m* operações OP.

Consumo de tempo de uma operação no pior caso: $\Theta(m)$.

Qual o consumo total das m operações no pior caso?

Consumo de tempo de uma operação no pior caso: $\Theta(m)$.

Qual o consumo das m operações no pior caso? $\Theta(m^2)$?

Consumo de tempo de uma operação no pior caso: $\Theta(m)$.

Qual o consumo das m operações no pior caso? $\Theta(m^2)$?

Em aula...

análise por créditos Quantos créditos damos para cada chamada de OP?

Consumo de tempo de uma operação no pior caso: $\Theta(m)$.

Qual o consumo das m operações no pior caso? $\Theta(m^2)$?

Em aula...

- análise por créditos Quantos créditos damos para cada chamada de OP?
- análise por função potencial Qual seria uma boa função potencial neste caso?

Vetor que sofre inserções. Cada inserção custa 1.

Vetor que sofre inserções. Cada inserção custa 1.

Inicialmente o vetor tem 0 posições.

Vetor que sofre inserções. Cada inserção custa 1.

Inicialmente o vetor tem 0 posições.

Na primeira inserção, um vetor com uma posição é alocado, e o item em questão é inserido.

Vetor que sofre inserções. Cada inserção custa 1.

Inicialmente o vetor tem 0 posições.

Na primeira inserção, um vetor com uma posição é alocado, e o item em questão é inserido.

A cada inserção em que o vetor está cheio, antes da inserção propriamente dita, um vetor do dobro do tamanho é alocado, o vetor anterior é copiado para o novo vetor e depois é desalocado.

Vetor que sofre inserções. Cada inserção custa 1.

Inicialmente o vetor tem 0 posições.

Na primeira inserção, um vetor com uma posição é alocado, e o item em questão é inserido.

A cada inserção em que o vetor está cheio, antes da inserção propriamente dita, um vetor do dobro do tamanho é alocado, o vetor anterior é copiado para o novo vetor e depois é desalocado.

O custo no pior caso de uma inserção é alto, pois pode haver uma realocação.

Para
$$i=1,2,\ldots,n$$
,
$$c_i=\left\{ \begin{array}{ll} 1 & \text{se } i \text{ n\~ao \'e pot\'encia de 2 mais um} \\ i & \text{se } i \text{ \'e pot\'encia de 2 mais um}. \end{array} \right.$$

Para i = 1, 2, ..., n,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se i não \'e potência de 2 mais um} \ i & ext{se i \'e potência de 2 mais um}. \end{array}
ight.$$

Método agregado:

$$\sum_{i=1}^{n} c_i = n + (1 + 2 + 2^2 + \dots + 2^k)$$

onde
$$k = \lfloor \lg n \rfloor$$
.

Para i = 1, 2, ..., n,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se i não \'e potência de 2 mais um} \ i & ext{se i \'e potência de 2 mais um}. \end{array}
ight.$$

Método agregado:

$$\sum_{i=1}^{n} c_i = n + (1 + 2 + 2^2 + \dots + 2^k)$$

onde $k = \lfloor \lg n \rfloor$.

Logo
$$\sum_{i=1}^{n} c_i = n + 2^{k+1} - 1 \le n + 2n - 1 < 3n$$
.

Para i = 1, 2, ..., n,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se i não \'e potência de 2 mais um} \ i & ext{se i \'e potência de 2 mais um}. \end{array}
ight.$$

Método agregado:

$$\sum_{i=1}^{n} c_i = n + (1 + 2 + 2^2 + \dots + 2^k)$$

onde $k = \lfloor \lg n \rfloor$.

Logo
$$\sum_{i=1}^{n} c_i = n + 2^{k+1} - 1 \le n + 2n - 1 < 3n$$
.

Custo amortizado por inserção: 3

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção: um é usado para pagar pela inserção do item, os outros dois são armazenados sobre o item.

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção: um é usado para pagar pela inserção do item, os outros dois são armazenados sobre o item.

Ao ocorrer uma realocação, há 2 créditos sobre cada item novo no vetor,

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção: um é usado para pagar pela inserção do item, os outros dois são armazenados sobre o item.

Ao ocorrer uma realocação, há 2 créditos sobre cada item novo no vetor, e isso é suficiente para pagar pela cópia de todos os itens do vetor para o novo vetor

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção:

um é usado para pagar pela inserção do item, os outros dois são armazenados sobre o item.

Ao ocorrer uma realocação,

há 2 créditos sobre cada item novo no vetor, e isso é suficiente para pagar pela cópia de todos os itens do vetor para o novo vetor pois, quando o vetor está cheio, há um item novo para cada item velho.

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção:

um é usado para pagar pela inserção do item, os outros dois são armazenados sobre o item.

Ao ocorrer uma realocação,

há 2 créditos sobre cada item novo no vetor, e isso é suficiente para pagar pela cópia de todos os itens do vetor para o novo vetor pois, quando o vetor está cheio, há um item novo para cada item velho.

Em outras palavras, o segundo crédito paga a cópia do item na primeira realocação que acontecer após a sua inserção, e o terceiro crédito paga a cópia de um item velho nesta mesma realocação.

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção: um é usado para pagar pela inserção do item, os outros dois são armazenados sobre o item.

Ao ocorrer uma realocação, há 2 créditos sobre cada item novo no vetor, e isso é suficiente para pagar pela cópia de todos os itens do vetor para o novo vetor pois, quando o vetor está cheio, há um item novo para cada item velho.

Que função potencial você usaria neste caso?

Análise por função potencial

Para
$$i=1,2,\ldots,n$$
,
$$c_i=\left\{\begin{array}{ll} 1 & \text{se } i \text{ n\~ao\'e potência de 2 mais 1}\\ i & \text{se } i \text{\'e potência de 2 mais 1}. \end{array}\right.$$

Chame de velho um item que já estava no vetor T no momento da última realocação do vetor T, e de novos os itens inseridos após a última realocação.

Método potencial:

Que função potencial você usaria neste caso?

Tome $\Phi(T)$ como duas vezes o número de elementos novos em T.

Análise por função potencial

Para
$$i = 1, 2, ..., n$$
,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se i n\~ao \'e potência de 2 mais 1} \ i & ext{se i \'e potência de 2 mais 1}. \end{array}
ight.$$

Chame de velho um item que já estava no vetor T no momento da última realocação do vetor T, e de novos os itens inseridos após a última realocação.

Método potencial:

Que função potencial você usaria neste caso?

Tome $\Phi(T)$ como duas vezes o número de elementos novos em T.

 T_i : estado do vetor T imediatamente após a inserção i

Note que $\Phi(T_0) = 0$ e $\Phi(T_i) \ge 0$.

Custo por inserção e função potencial

Para
$$i=1,2,\ldots,n$$
,
$$c_i=\left\{\begin{array}{ll} 1 & \text{se } i \text{ n\~ao\'e potência de 2 mais 1}\\ i & \text{se } i \text{\'e potência de 2 mais 1}. \end{array}\right.$$

Chame de velho um item que já estava no vetor T no momento da última realocação do vetor T, e de novos os itens inseridos após a última realocação.

Método potencial:

Tome $\Phi(T) = 2(\text{num}(T) - \text{size}(T)/2)$ onde num(T) é o número de elementos em T e size(T) é o tamanho de T.

Custo por inserção e função potencial

Para
$$i=1,2,\ldots,n$$
,
$$c_i=\left\{\begin{array}{ll} 1 & \text{se } i \text{ n\~ao\'e potência de 2 mais 1}\\ i & \text{se } i \text{\'e potência de 2 mais 1}. \end{array}\right.$$

Chame de velho um item que já estava no vetor T no momento da última realocação do vetor T, e de novos os itens inseridos após a última realocação.

Método potencial:

```
Tome \Phi(T) = 2(\text{num}(T) - \text{size}(T)/2) = 2 \text{num}(T) - \text{size}(T), onde \text{num}(T) é o número de elementos em T e \text{size}(T) é o tamanho de T.
```

Custo por inserção e função potencial

Para
$$i = 1, 2, ..., n$$
,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se } i ext{ não \'e potência de 2 mais 1} \\ i & ext{se } i ext{ \'e potência de 2 mais 1}. \end{array}
ight.$$

Chame de velho um item que já estava no vetor T no momento da última realocação do vetor T, e de novos os itens inseridos após a última realocação.

Método potencial:

Tome
$$\Phi(T) = 2(\text{num}(T) - \text{size}(T)/2) = 2\text{num}(T) - \text{size}(T)$$
, onde $\text{num}(T)$ é o número de elementos em T e $\text{size}(T)$ é o tamanho de T .

Vamos calcular
$$\hat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})$$
.

Para
$$i=1,2,\ldots,n$$
, $c_i=\left\{ egin{array}{ll} 1 & ext{se } i \ ext{n} \ ext{ao} \ ext{ é potência de 2 mais um} \\ i & ext{se } i \ ext{é potência de 2 mais um}. \end{array} \right.$

Tome
$$\Phi(T) = 2 \text{ num}(T) - \text{size}(T)$$
,
onde $\text{num}(T)$ é o número de elementos em T e
 $\text{size}(T)$ é o tamanho de T .

Vamos calcular $\hat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})$.

Dois casos:

i não é potência de 2 mais um.

Para
$$i = 1, 2, ..., n$$
, $c_i = \begin{cases} 1 & \text{se } i \text{ não \'e potência de 2 mais um} \\ i & \text{se } i \text{ \'e potência de 2 mais um}. \end{cases}$

Tome $\Phi(T) = 2 \text{ num}(T) - \text{size}(T)$, onde num(T) é o número de elementos em T e size(T) é o tamanho de T.

Vamos calcular $\hat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})$.

Dois casos:

i não é potência de 2 mais um. $\operatorname{num}(T_i) = \operatorname{num}(T_{i-1}) + 1 \quad \text{e} \quad \operatorname{size}(T_i) = \operatorname{size}(T_{i-1}).$

Para
$$i=1,2,\ldots,n$$
, $c_i=\left\{\begin{array}{ll} 1 & \text{se } i \text{ não \'e potência de 2 mais um} \\ i & \text{se } i \text{ \'e potência de 2 mais um}. \end{array}\right.$

Tome
$$\Phi(T) = 2 \text{ num}(T) - \text{size}(T)$$
,
onde $\text{num}(T)$ é o número de elementos em T e
 $\text{size}(T)$ é o tamanho de T .

Vamos calcular $\hat{c}_i = c_i + \Phi(T_i) - \Phi(T_{i-1})$.

Dois casos:

▶ *i* não é potência de 2 mais um.

$$\operatorname{num}(T_i) = \operatorname{num}(T_{i-1}) + 1$$
 e $\operatorname{size}(T_i) = \operatorname{size}(T_{i-1})$.

$$\hat{c}_{i} = c_{i} + \Phi(T_{i}) - \Phi(T_{i-1})
= 1 + (2 \operatorname{num}(T_{i}) - \operatorname{size}(T_{i})) - (2 \operatorname{num}(T_{i-1}) - \operatorname{size}(T_{i-1}))
= 1 + 2 + 0 = 3.$$

Para
$$i=1,2,\ldots,n$$
, $c_i=\left\{ egin{array}{ll} 1 & ext{se } i \ ext{n} \ ext{n} \ ext{o} \ ext{e} \ ext{potencia} \ ext{de e} \ 2 \ ext{mais um} \\ i & ext{se } i \ ext{foptencia} \ ext{de e} \ 2 \ ext{mais um}. \end{array} \right.$

```
Tome \Phi(T) = 2 \text{ num}(T) - \text{size}(T),
onde \text{num}(T) é o número de elementos em T e
\text{size}(T) é o tamanho de T.
```

- i não é potência de 2 mais um: $\hat{c}_i = 3$.
- ▶ *i* é potência de 2 mais um.

Para
$$i=1,2,\ldots,n$$
, $c_i=\left\{ egin{array}{ll} 1 & ext{se } i \ ext{n} \ ext{ao} \ ext{ é potência de 2 mais um} \\ i & ext{se } i \ ext{é potência de 2 mais um}. \end{array} \right.$

Tome $\Phi(T) = 2 \text{ num}(T) - \text{size}(T)$, onde num(T) é o número de elementos em T e size(T) é o tamanho de T.

- i não é potência de 2 mais um: $\hat{c}_i = 3$.
- i é potência de 2 mais um. $\operatorname{num}(T_i) = \operatorname{num}(T_{i-1}) + 1 = c_i \text{ e}$ $\operatorname{size}(T_i) = 2\operatorname{size}(T_{i-1}) = 2\operatorname{num}(T_{i-1})$

Para
$$i=1,2,\ldots,n$$
, $c_i=\left\{\begin{array}{ll} 1 & \text{se } i \text{ não \'e potência de 2 mais um} \\ i & \text{se } i \text{ \'e potência de 2 mais um}. \end{array}\right.$

Tome $\Phi(T) = 2 \text{ num}(T) - \text{size}(T)$, onde num(T) é o número de elementos em T e size(T) é o tamanho de T.

- i não é potência de 2 mais um: $\hat{c}_i = 3$.
- i é potência de 2 mais um. $num(T_i) = num(T_{i-1}) + 1 = c_i$ e $size(T_i) = 2 size(T_{i-1}) = 2 num(T_{i-1}) = 2(c_i - 1)$.

Para
$$i = 1, 2, ..., n$$
, $c_i = \begin{cases} 1 & \text{se } i \text{ não \'e potência de 2 mais um} \\ i & \text{se } i \text{ \'e potência de 2 mais um}. \end{cases}$

Tome
$$\Phi(T) = 2 \operatorname{num}(T) - \operatorname{size}(T)$$
, onde $\operatorname{num}(T)$ é o número de elementos em T e $\operatorname{size}(T)$ é o tamanho de T .

- i não é potência de 2 mais um: $\hat{c}_i = 3$.
- i é potência de 2 mais um. $\operatorname{num}(T_i) = \operatorname{num}(T_{i-1}) + 1 = c_i \text{ e}$ $\operatorname{size}(T_i) = 2\operatorname{size}(T_{i-1}) = 2\operatorname{num}(T_{i-1}) = 2(c_i - 1).$

$$\hat{c}_{i} = c_{i} + \Phi(T_{i}) - \Phi(T_{i-1})
= c_{i} + (2 \operatorname{num}(T_{i}) - \operatorname{size}(T_{i})) - (2 \operatorname{num}(T_{i-1}) - \operatorname{size}(T_{i-1}))
= c_{i} + (2c_{i} - 2(c_{i} - 1))$$

Para
$$i=1,2,\ldots,n$$
, $c_i=\left\{\begin{array}{ll} 1 & \text{se } i \text{ não \'e potência de 2 mais um} \\ i & \text{se } i \text{ \'e potência de 2 mais um}. \end{array}\right.$

Tome
$$\Phi(T) = 2 \operatorname{num}(T) - \operatorname{size}(T)$$
,
onde $\operatorname{num}(T)$ é o número de elementos em T e
 $\operatorname{size}(T)$ é o tamanho de T .

- i não é potência de 2 mais um: $\hat{c}_i = 3$.
- i é potência de 2 mais um. $num(T_i) = num(T_{i-1}) + 1 = c_i \text{ e}$ $size(T_i) = 2 \operatorname{size}(T_{i-1}) = 2 \operatorname{num}(T_{i-1}) = 2(c_i - 1).$

$$\hat{c}_{i} = c_{i} + \Phi(T_{i}) - \Phi(T_{i-1})
= c_{i} + (2 \operatorname{num}(T_{i}) - \operatorname{size}(T_{i})) - (2 \operatorname{num}(T_{i-1}) - \operatorname{size}(T_{i-1}))
= c_{i} + (2c_{i} - 2(c_{i} - 1)) - (2(c_{i} - 1) - (c_{i} - 1))$$

Para
$$i = 1, 2, ..., n$$
, $c_i = \begin{cases} 1 & \text{se } i \text{ não \'e potência de 2 mais um} \\ i & \text{se } i \text{ \'e potência de 2 mais um}. \end{cases}$

```
Tome \Phi(T) = 2 \operatorname{num}(T) - \operatorname{size}(T),
onde \operatorname{num}(T) é o número de elementos em T e
\operatorname{size}(T) é o tamanho de T.
```

- i não é potência de 2 mais um: $\hat{c}_i = 3$.
- ▶ *i* é potência de 2 mais um.

$$num(T_i) = num(T_{i-1}) + 1 = c_i e$$

$$size(T_i) = 2 size(T_{i-1}) = 2 num(T_{i-1}) = 2(c_i - 1).$$

$$\hat{c}_{i} = c_{i} + \Phi(T_{i}) - \Phi(T_{i-1})$$

$$= c_{i} + (2 \operatorname{num}(T_{i}) - \operatorname{size}(T_{i})) - (2 \operatorname{num}(T_{i-1}) - \operatorname{size}(T_{i-1}))$$

$$= c_{i} + (2c_{i} - 2(c_{i} - 1)) - (2(c_{i} - 1) - (c_{i} - 1))$$

$$= c_{i} + 2 - (c_{i} - 1) = 3.$$

Para
$$i = 1, 2, ..., n$$
,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se } i ext{ não \'e potência de 2 mais um} \ i & ext{se } i ext{ \'e potência de 2 mais um}. \end{array}
ight.$$

Tome $\Phi(T) = 2 \text{ num}(T) - \text{size}(T)$, onde num(T) é o número de elementos em T e size(T) é o tamanho de T.

Dois casos:

- ightharpoonup i não é potência de 2 mais um: $\hat{c}_i = 3$.
- ightharpoonup i é potência de 2 mais um: $\hat{c}_i = 3$.

Conclusão: custo amortizado por inserção é 3.