
Linear-Time Longest-Common-Prefix

Computation in Suffix Arrays and Its

Applications

Toru Kasai1, Gunho Lee2, Hiroki Arimura1,3,
Setsuo Arikawa1, and Kunsoo Park2?

1 Department of Informatics, Kyushu University
Fukuoka 812-8581, Japan

{arim,arikawa}@i.kyushu-u.ac.jp
2 School of Computer Science and Engineering
Seoul National University, Seoul 151-742, Korea

{ghlee,kpark}@theory.snu.ac.kr
3 PRESTO, Japan Science and Technology Corporation, Japan

Abstract. We present a linear-time algorithm to compute the longest
common prefix information in suffix arrays. As two applications of our
algorithm, we show that our algorithm is crucial to the effective use of
block-sorting compression, and we present a linear-time algorithm to sim-
ulate the bottom-up traversal of a suffix tree with a suffix array combined
with the longest common prefix information.

1 Introduction

The suffix array [16] is a space-efficient data structure that allows efficient search-
ing of a text for any given pattern. The suffix array is basically a sorted array
Pos of all the suffixes of a text. A suffix array for a text of length n can be
built in O(n logn) time, and searching the text for a pattern of length m can
be done in O(m log n) time by a binary search. When a suffix array is coupled
with information about the longest common prefixes (lcps) of some elements in
the suffix array, string searches can be speeded up to O(m+logn) time. The lcp
information is usually computed during the construction of suffix arrays [15,11].
In some cases, however, the lcp information may not be readily available.

In this paper we consider the lcp problem in suffix arrays that is to compute
the lcp information from a text and its Pos array, and present a linear-time
algorithm for the problem. We also describe two applications of our algorithm,
i.e., block-sorting compression and the substring traversal problem.

The block-sorting algorithm [4] is a text compression method with good bal-
ance of compression ratio and speed. The original text can be decoded in linear
time from block-sorting compression. An advantage of block-sorting compression
is that the suffix array of the original text can also be obtained in the process of
? This work was supported by the Brain Korea 21 Project.

A. Amir and G.M. Landau (Eds.): CPM 2001, LNCS 2089, pp. 181–192, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

182 Toru Kasai et al.

Suffix tree

7

a

b

b
c

a
$

$
b

c
a

$

b
b
c
a
$

b

c
a

b
b
c
a
$

c
a
b
b
c
a
$4

1

8

5

2

6

3

9

$

$c
a

$

Text
98764321

a b c a
5
b b c a $

98764321
4 1 8 5

5
2 6 3 7 9

a
b
b
c
a
$

a
$

b
b
c
a
$

c
a
b
b
c
a
$

b
c
a
$

c
a
$

$

Suffix array

b
c
a
b
b
c
a
$

a
b
c
a
b
b
c
a
$

Fig. 1. An example of the suffix tree and the suffix array.

decoding. This means that we can compress a text and its suffix array together
by simply using the block-sorting algorithm. This fact can be used for storing
and transferring large full-text databases. However, the lcp information that is
necessary for efficient searching is not obtained during the decoding of block-
sorting compression. With our algorithm, block-sorting compression can be used
more effectively to store a text and its suffix array.

The substring traversal problem is to enumerate all branching substrings ap-
pearing in a given text. Although the problem is easily solvable by a bottom-up
traversal of the suffix tree, recent large scale applications in bioinformatics and
data mining require a more practical and scalable solution for the problem [2].

We present a simple linear-time algorithm that simulates the bottom-up
traversal of a suffix tree with a suffix array combined with the lcp information.
Our algorithm is space-efficient and I/O-efficient, i.e., it requires only 7n bytes
including the text while the suffix tree requires at least 15n bytes, and it has a
good I/O complexity of 5n/B blocks. Furthermore, the algorithm can be modi-
fied to solve a class of problems based on the occurrence count of each branch-
ing substring, which include the longest common substring problem [12], the
square/tandem repeat problem [22], and the frequent/optimal substring prob-
lem [2,3,9]. Experiments on English text data show that our proposed algorithms
run efficiently in practice.

2 Preliminaries

Let A = a1a2 · · ·an−1$ be a text of length n ≥ 1. In what follows, we assume
that A ends with a special end marker $ that does not appear in other positions.
Let Ai denote the suffix of A that starts at position i. For a substring S of
A, we denote by Occ(S, A) the set of all occurrences of S in A. Let ≡A be an
equivalence relation on substrings defined as follows: For any substrings S, S′,
the relation S ≡A S′ holds if and only if Occ(S, A) = Occ(S′, A). A substring S
of A is branching if S is the longest common prefix of distinct suffixes Ai and
Aj (i 6= j).

Linear-Time Longest-Common-Prefix Computation 183

The suffix array of a text A [16] is a sorted array Pos[1..n] of all the suffixes
of A, i.e., Pos[k] = i if Ai is lexicographically the k-th suffix. The suffix tree
[17] is a data structure for storing all branching substrings of A, which is the
compacted trie ST for all suffixes of A. The suffix tree has at most 2n− 1 nodes
and can be stored in O(n) space. The suffix tree ST of a text of length n can
be constructed in O(n) time [17,23,5]. The suffix array Pos of A coincides with
the list of the leaves of ST ordered from left to right. In Fig. 1, we show the
suffix tree and the suffix array of string A = abcabbca$. We denote by str(v)
the substring of A obtained by concatenating the labels on the path from the
root to v. The following lemma is well known [17].

Lemma 1. Let S be any substring of A. Then, the following 1–3 are equivalent.

1. S is branching.
2. S is the unique longest member of the equivalence class of S w.r.t. ≡A.
3. S = str(v) for some internal node v of the suffix tree of A.

We denote by lcp(A, B) the length of the longest common prefix between
strings A and B. The lcps between suffixes that are adjacent in the sorted Pos
array are denoted by an array Height: Height[k] = lcp(Apos[k−1], Apos[k]) for
2 ≤ k ≤ n. All the necessary lcps for O(m+log n) search (called arrays Llcp and
Rlcp in [16]) can be computed easily in O(n) time from array Height [11,15].
Therefore, we define the lcp problem as follows.

Definition 1. The lcp problem in suffix arrays is to compute the Height array
from a text A and its suffix array Pos.

For any substring S of A, the suffix array Pos gives a compact representation
of all occurrences of S. The set of all occurrences of S occupy a contiguous
interval [L, R] ⊆ {1, . . . , n}, namely, Occ(S, A) = {Pos[k] : L ≤ k ≤ R}. We
call the pair (L, R) the rank interval of S. Then, the triple for S is the triple
(L, R, H) of integers, where (L, R) is the rank interval of S and H = |S| is
the length of S. If necessary, the substring can be immediately obtained by
S = A[Pos[L]..P os[L]+ H − 1].

A bottom-up traversal of the suffix tree is any list L of its nodes such that
each node appears exactly once in L, and a node appears in L only after all
of its children appear. The post-order traversal [1] is an example of bottom-up
traversals. A bottom-up substring traversal of A is a list L of the triples (L, R, H)
for all branching substrings of A which is generated by a bottom-up traversal of
the suffix tree of A. Then, the substring traversal problem is stated as follows.

Definition 2. The substring traversal problem is to compute the substring
traversal L for a text A.

This problem is linear time solvable by a post-order traversal of the suffix
tree ST . Unfortunately, it is difficult to solve this problem with the suffix array
Pos alone because Pos has lost the information on tree topology. The array
Height has the information on the tree topology which is lost in the suffix array
Pos.

184 Toru Kasai et al.

Fig. 2. An example of sorted suffixes and lcps.

Lemma 2. A substring S of a text A is branching if and only if there exists
some rank 1 ≤ k ≤ n such that S is the longest common prefix of the adjacent
suffixes APos[k−1] and APos[k].

From Lemma 2, we can compute the list of all branching substrings associ-
ated with the in-order traversal of ST simply by reporting A[Pos[k]..P os[k] +
Height[k] − 1] for every rank 1 ≤ k ≤ n. Unfortunately, the obtained list may
contain duplicates since ST is not a binary tree. Furthermore, there is no obvi-
ous way to compute either the associated rank intervals (L, R) or the post-order
traversal.

3 Linear-Time lcp Computation

In the lcp computation, we will use an intermediate array Rank. The array Rank
is defined as the inverse function of Pos, and it can be obtained immediately
when the Pos array is given: If Pos[k] = i, then Rank[i] = k.

3.1 Properties of lcp

The lcp between two suffixes is the minimum of the lcps of all pairs of adjacent
suffixes between them on the Pos array [16]. That is,

lcp(APos[x], APos[z]) = min
x<y≤z

{lcp(APos[y−1], APos[y])}.

This implies that the lcp of a pair of adjacent suffixes on Pos is greater than or
equal to the lcp of a pair of suffixes that surround them.

Fact 1. lcp(APos[y−1] , APos[y]) ≥ lcp(APos[x] , APos[z]), x < y ≤ z.

When the lcp between a pair of adjacent suffixes on Pos is greater than 1,
the lexicographical order of the suffixes is preserved when the first character of
each suffix is deleted.

Linear-Time Longest-Common-Prefix Computation 185

Fact 2. If lcp(APos[x−1], APos[x]) > 1, then

Rank[Pos[x− 1] + 1] < Rank[Pos[x] + 1].

In this case, the lcp between APos[x−1]+1 and APos[x]+1 is one less than the
lcp between APos[x−1] and APos[x] .

Fact 3. If lcp(APos[x−1], APos[x]) > 1, then

lcp(APos[x−1]+1 , APos[x]+1) = lcp(APos[x−1], APos[x]) − 1.

Now we consider the following problem: compute the lcp between a suffix Ai

and its adjacent suffix on Pos when the lcp between Ai−1 and its adjacent suffix
is known. For notational convenience, let p = Rank[i− 1] and q = Rank[i]. Also
let j−1 = Pos[p−1] and k = Pos[q−1]. See Fig. 2. That is, we want to compute
Height[q] when Height[p] is given.

Lemma 3. If lcp(Aj−1, Ai−1) > 1 then lcp(Ak, Ai) ≥ lcp(Aj , Ai).

Proof. Since lcp(Aj−1, Ai−1) > 1, we have Rank[j] < Rank[i] by Fact 2. Since
Rank[j] ≤ Rank[k] = Rank[i]− 1, we get lcp(Ak, Ai) ≥ lcp(Aj , Ai) by Fact 1.

Theorem 1. If Height[p] = lcp(Aj−1, Ai−1) > 1 then

Height[q] = lcp(Ak, Ai) ≥ Height[p] − 1.

Proof.

lcp(Ak, Ai) ≥ lcp(Aj , Ai) (by Lemma 3)
= lcp(Aj−1, Ai−1) − 1. (by Fact 3)

By Theorem 1, when the lcp between suffix Ai−1 and its adjacent suffix is h,
suffix Ai and its adjacent suffix on Pos has a common prefix of length at least
h − 1. Therefore, it suffices to compare from the h-th characters for computing
the lcp between suffix Ai and its adjacent suffix. If h is less than or equal to 1,
we will compare from the first characters.

3.2 Algorithm and Analysis

We now present the algorithm GetHeight that solves the lcp problem in suffix
arrays. By Theorem 1, we do not need to compare all characters when we com-
pute the lcp between a suffix and its adjacent suffix on Pos. To compute all the
lcps of adjacent suffixes on Pos efficiently, we examine the suffixes from A1 to
An in order.

Theorem 2. Algorithm GetHeight computes array Height in O(n).

186 Toru Kasai et al.

Algorithm GetHeight

input: A text A and its suffix array Pos

1 for i:=1 to n do

2 Rank[Pos[i]] := i

3 od

4 h:=0

5 for i:=1 to n do

6 if Rank[i] > 1 then

7 k := Pos[Rank[i]-1]

8 while A[i+h] = A[j+h] do

9 h := h+1

10 od

11 Height[Rank[i]] := h

12 if h > 0 then h := h-1 fi

13 fi

14 od

Fig. 3. The linear-time algorithm for the lcp problem.

Proof. The correctness of GetHeight follows from previous discussions. The ex-
ecution time of the algorithm is proportional to the number of times line 9 is
executed, since line 9 is the innermost loop of GetHeight. The value of h in-
creases one by one in line 9, and it is always less than n due to the end marker
$. Since the initial value of h is 0 and it decreases at most n times in line
12, h increases at most 2n times. Therefore, the time complexity of Algorithm
GetHeight is O(n).

4 Application to Block-Sorting Compression

4.1 Block-Sorting Compression

The block-sorting algorithm is a text compression method with good balance of
compression ratio and speed [4,8]. It achieves speed comparable to dictionary
compressors, but obtains compression close to the best statistical compressor.
The block-sorting algorithm is used in bzip2 [21].

The encoder of block-sorting consists of three processes: the Burrows-Wheeler
transformation, move-to-front encoding and entropy coding. The Burrows-
Wheeler transformation (BWT) is the most time-consuming process. It trans-
forms a string A of length n by forming the n rotations (cyclic shifts) of A,
sorting them lexicographically, and extracting the last character of each of the
rotations. A string L is formed from these characters, where the i-th character
of L is the last character of the i-th sorted rotation. In addition to L, the BWT
computes the index I of the original string A in the sorted list of rotations. Fig. 4
is an example of BWT where A=’abraca’. A move-to-front encoding encodes an
instance of a character ch by the count of distinct characters between itself and
the previous occurrence of ch.

Linear-Time Longest-Common-Prefix Computation 187

Fig. 4. An example of the Burrows-Wheeler transformation.

As a result of BWT, the locality of characters of L goes higher than that of A
[4]. So, when applied to the string L, the output of a move-to-front encoder will
be dominated by low numbers, which can be effectively encoded with Huffman
coding or run-length coding.

The decoder of block-sorting is the reverse of the encoder. Decoding speed of
an entropy code depends on the used method, but Huffman coding or run-length
coding, which is generally used for encoding, can be reversed in linear time. A
move-to-front code can be reversed in O(n) time, and the original string A, the
reverse of the BWT, can be recovered from L and I in O(n) time. Therefore,
the block-sorting decompression takes linear time in general.

4.2 Block-Sorting and Suffix Arrays

The first step of block-sorting, the BWT, is similar to the construction process of
a suffix array. The BWT takes much time for sorting the suffixes. However, its
reverse transformation from L and I to A is quickly computed in linear time by a
radix-sort-like procedure. Moreover, the suffix array Pos of A can be computed
immediately when the compressed text is decoded.

To search for a pattern using the suffix array more efficiently, the lcp infor-
mation (Llcp and Rlcp) is required. The lcp information can be computed in
O(n logn) time when the suffix array is constructed from the original text A.
With our algorithm, the lcp information can be computed in O(n) time from
the original text A and its Pos array. Therefore, suffix arrays can be stored and
used efficiently by the block-sorting compression.

Since block-sorting has the effect of storing the compressed text and its suffix
array, it can be used for storing and transferring large data. Sadakane and Imai
presented a cooperative distributed text database management method unifying
search and compression based on BWT [18]. Sadakane also presented a modified
BWT for case-insensitive search with the suffix array [19]. Recently, Sadakane
proposed a compressed text database system [20] based on the compressed suffix
array [10]. Ferragina and Manzini [7,6] proposed a data structure that supports
search operations without uncompressing the block-sorting compression.

188 Toru Kasai et al.

lk-1

lca(lk-1 , lk)

lk

Πk-1

Πk

root

Fig. 5. An example of the right-
most branch decompositions.

Algorithm BottomUpTraverse;

input: An ordered and compacted tree T

with n ≥ 0 leaves `1, . . . , `n.
1 S:={>} /* Initialize the stack S */

2 for k:=1 to n+1 do /* k-th stage */

3 v := lca(`k−1, `k);
4 while (depth(top(S)) > depth(v)) do

5 v := Pop(S) and report v; od;

6 if (depth(top(S)) < depth(v)) then

7 Push(v,S); fi;

8 Push(`k, S); /* Set Sk = S */

9 od /* for-loop */

Fig. 6. The algorithm to compute the post-
order traversal of an ordered tree.

5 Bottom-Up Traversal of Suffix Trees

5.1 Properties of the Post-Order Traversal

An ordered tree T is compacted if every internal node of T has at least two
children. Let T be an ordered and compacted tree with n ≥ 0 leaves `1, . . . , `n.
In what follows, a path in T is always written in the upward direction. That is,
a path (or upward path) is a sequence π = (v0, v1, . . . , vm) (m ≥ 0) of nodes
in T such that vi is the parent of vi−1 for every 1 ≤ i ≤ m. The length of π
is |π| = m. A path π from the k-th leaf (1 ≤ k ≤ n) to the root is called the
k-th branch of T and denoted by π(`k). A node-depth of a node v, denoted by
depth(v), is the length of the path from v to the root. We write u � v (u ≺ v) if
a node u is an ancestor (proper ancestor) of node v. We denote by lca(u, v) the
lowest common ancestor of nodes u and v and by π(`) the branch starting at
a leaf `. Let ` be any leaf. A rightmost branch (RM branch, for short) starting
with `, denoted by Π(`), is the longest branch π = (v0 = `, v1, . . . , vm) (m ≥ 0)
starting at ` that consists of only rightmost edges, that is, vi−1 is the rightmost
child of vi for every 1 ≤ i ≤ m.

Π(`k) is called the k-th RM branch. Since the set {Π(`1), . . . , Π(`n)} of
all RM branches of T is called the RM branch decomposition of T since it is a
partition of T . Fig. 5 shows an example of the RM branch decompositions, where
each shadowed line indicates an RM branch (See below for the special node >).

Lemma 4. The post-order traversal of an ordered tree T equals the concatena-
tion Π(`1) · · ·Π(`n) of the RM branches of T from left to right.

5.2 Algorithm for Bottom-Up Substring Traversal

From now on, we consider a method to compute the post-order traversal of an
ordered compacted tree T with n ≥ 0 leaves `1, . . . , `n when the lowest common

Linear-Time Longest-Common-Prefix Computation 189

ancestors of adjacent leaves and the depth of a node are available. Fig. 6 shows
the algorithm BottomUpTraverse for the problem. In the algorithm, we assume
a special top node> such that > ≺ v for every v in T and special leaves `0 and
`n+1 such that lca(`0, `1) = lca(`n, `n+1) = > (See Fig. 5).

Scanning the height array Height from left to right, the algorithm enumerates
the nodes of T without duplicates by a sequence of push/pop operations to a
stack S as follows. During the scan, a leaf node, say `k, is pushed into the stack
S when it is first encountered at stage k and popped immediately at stage k+1.
The case for internal nodes is more complicated (See Fig. 5). Conceptually, a
node v is pusded when it is visited from below at the first time and popped when
it is visited at the last time in the depth-first search of T .

An internal node v is pushed into the stack when the leftmost leaf of the
second child of v, say `k, is encountered at the first time in the scan, i.e., v =
lca(`k−1, `k). Then, v is popped from the stack S when the leftmost leaf of the
next right sibling of v, is encountered in the scan. Then, p = lca(`k−1, `k) is the
parent of v. Since the tree is compacted, the second leftmost leaf always exists
for every internal node. Thus from Lemma 2, the algorithm BottomUpTraverse
enumerates all nodes without duplicates by a scan of Height.

To see that the algorithm correctly computes the post-order traversal of T , we
need to know the precise contents of the stack during the scan. A key observation
is that if an internal node v is lca(`k−1, `k) for some k then v is on the k-th branch
from `k to the root and all nodes of Π(`k−1) are proper descendants of v. We
gives the following lemma without proof due to the space limitation (See [14] for
the complete proof).

Lemma 5. Let us consider the algorithm BottomUpTraverse of Fig. 6. For any
stage 1 ≤ k ≤ n + 1, the contents of the stack S at the beginning of the k-
th stage is the subsequence Sk = (vj0 , . . . , vjk) of the k-th branch πk = (v0 =
`k, v1, . . . , vm = >) (m ≥ 0) such that for every 0 ≤ j ≤ m, vj ∈ Sk if and only
if the following inclusion condition holds at position j: either (i) j = 0 or (ii)
vj−1 is not the leftmost child of vj.

From Lemma 5, we see that in the end of every stage k, the k-th RM branch
Π(`k−1) is stored on the top of the stack S. Then, Π(`k−1) is deleted from
the stack S when `k is encountered in the scan. By repeating this process, the
algorithm finally outputs all RM branches Π(`1), . . . , Π(`n) of T from left to
right. Hence, the next lemma immediately follows from Lemma 4.

Lemma 6. The algorithm BottomUpTraverse of Fig. 6 computes the post-order
traversal of an ordered compacted tree with n leaves in O(n) time when the node-
depth for a node and the lowest common ancestor of adjacent leaves are constant
time computable.

Now we present a linear time algorithm for the substring traversal problem
when the height array and the suffix array of A is given. Fig. 7 shows the algo-
rithm TraverseWithArray to compute the list of triples for text A generated by
the post-order traversal of a suffix tree. In the algorithm, we encode a node v

190 Toru Kasai et al.

Algorithm TraverseWithArray;

input: The height array Height and the suffix array Pos for a text A;

1 S:= (-1, -1); n:=|T| /* Initialize the stack S */

2 for k:=1 to n+1 do /* k-th stage */

3 (Llca, Hlca) := (k-1, Height[k]);

4 (L, H) := top(S);

5 while (H > Hlca) do

6 (L, H) := pop(S), R := k-1; Then, report triple (L, R, H);

7 Llca := L; /* Update the left boundary */

8 (L, H) := top(S);

9 od

10 if (H < Hlca) then

11 Push((Llca,Hlca),S); fi;

12 Push((k, n - Pos[k] + 1), S); /* Set Sk = S */

13 od /* for-loop */

Fig. 7. A linear time algorithm for the substring traversal problem.

by any pair (L, H) such that L and H are the any occurrence and the length of
the substring str(v), respectively. The top node is encoded by (−1,−1).

Recall that there were only two types of nodes processed in the algorithm
BottomUpTraverse, a leaf and the lca of adjacent leaves. Thus for any rank
1 ≤ k ≤ n + 1, we encode v by (L, H) as follows: (i) if v is the leaf `k

then (L, H) = (k, |APos[k]|) = (k, n − Pos[k] + 1) and (ii) if v is the lca node
lca(`k−1, `k) then (L, H) = (k − 1, Height[k]). The depth of the node v is obvi-
ously given by H . From Lemma 6, we know that the algorithm correctly simulates
ButtomUpTraverse.

We then consider the computation of the rank intervals. Suppose a pair
(L, H) is popped from the stack S at stage k and it represents a node v. By
induction on the number of nodes below v on the (k − 1)-th path, we can show
that L is the rank of the leftmost leaf of v, where the value of L is kept at the
variable Llca at Line 7 of the algorithm. Since v is on the (k−1)-th RM branch,
R = k − 1 is obviously the rank of the rightmost leaf of v. Therefore, (L, R, H)
is the triple of v, and the next theorem follows from Lemma 6.

Theorem 3. The algorithm TraverseWithArray of Fig. 7 computes in O(n)
time the list of all triples generated by the post-order traversal of the suffix tree
of a text A of length n when the height array and the suffix array of A is given.

Hence, the substring traversal problem is solvable in linear time when the
height array Height of a text A is given. Since the algorithm TraverseWithArray
makes only sequential I/Os and does not access the text A, we can also see that
the algorithm is I/O efficient in the external I/O model of [24] (See [14]).

6 Experimental Results

We run experiments on a real dataset. For the height array construction, we
implemented the naive O(n2) time algorithm (Abbreviated as NaiveHeight)

Linear-Time Longest-Common-Prefix Computation 191

and the linear time algorithm GetHeight (GetHeight). For the bottom-up sub-
string traversal in Section 5, we implemented the algorithm with the suffix tree
(TravTree), the naive algorithm with binary search on the suffix array (TravBi-
nary), and the algorithm TraverseWithArray (TravHeight).

Table 1. Comparison of the computation time on English texts.

Height array construction Substring traversal

Algorithm NaiveHeight GetHeight TravTree TravBinary TravHeight

Time (sec) 17.59 7.81 2.07 13.62 1.94

In Table 1, we show the running time of the algorithms on an English text
of 5.3MB [13] and a workstation (Sun UltraSPARC 300MHz, 256MB, g++ on
Solaris 2.6). In the substring traversal, the preprocessing time for building the
height array is not included. For the height array construction, we see from
this table that GetHeight is faster than NaiveHeight more than twice on this
test data. For the substring traversal, TravHeight is as fast as TravTree when
the height array is precomputed, and faster than TravBinary even when the
computation time of the height array is included.

References

1. A. V. Aho, J. E. Hopcroft and U. D. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983.

2. H. Arimura, S. Arikawa and S. Shimozono, Efficient discovery of optimal word-
association patterns in large text databases, New Generation Comput., 18, 49–60,
2000.

3. H. Arimura, H. Asaka, H. Sakamoto and S. Arikawa, Efficient discovery of proxim-
ity patterns with suffix arrays, In Proc. CPM 2001 , Poster paper, LNCS, Springer-
Verlag, 2001. (In this volumn).

4. M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algo-
rithm, Digital Systems Research Center Research Report 124 , 1994.

5. M. Farach-Colton, P. Ferragina and S. Muthukrishnan, On the sorting-complexity
of suffix tree construction, Journal of the ACM , Vol.47, No.6, 987–1011, 2000.

6. P. Ferragina and G. Manzini, Opportunistic data structures with applications, In
Proc. 41st IEEE Symposium on Foundations of Computer Science, 390–398 2000.

7. P. Ferragina and G. Manzini, An experimental study of an opportunistic index,
In Proc. 12th ACM-SIAM Symposium on Discrete Algorithms , 269–278 2001.

8. P. Fenwick, Block sorting text compression, In Proc. Australian Computer Science
Communications , 18(1), 193–202, 1996.

9. R. Fujino, H. Arimura and S. Arikawa, Discovering unordered and ordered phrase
association patterns for text mining, In Proc. PAKDD2000 , LNAI 1805, 281–293,
2000.

10. R. Grossi and J. S. Vitter, Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching, In Proc. 32nd ACM Symposium on
Theory of Computing , 397–406, 2000.

192 Toru Kasai et al.

11. D. Gusfield, An increment-by-one approach to suffix arrays and trees, Technical
Report CSE-90-39 , UC Davis, Dept. Computer Science, 1990.

12. D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University Press, New York, 1997.

13. R. Harris, Abstract Index, Monash Univ (1998).
14. T. Kasai, H. Arimura and S. Arikawa, Efficient substring traversal with suffix

arrays, DOI-TR 185, Feb. 2001. (First appeared as T. Kasai, Fast algorithms for
the subword statistics problems with suffix arrays, Mc. Thesis , Dept. Informatics,
Kyushu Univ.,1999, In Japanese.)

15. S. E. Lee and K. Park, A new algorithm for constructing suffix arrays, Journal of
Korea Information Science Society (A), 24(7), 697–704, 1997.

16. U. Manber and G. Myers, Suffix arrays: A new method for on-line string searches,
SIAM J. Computing, 22(5), 935–948 (1993).

17. E. M. McCreight, A space-economical suffix tree construction algorithm, Journal
of the ACM, 23(2), 262–272, 1976.

18. K. Sadakane and H. Imai, A cooperative distributed text database management
method unifying search and compression based on the Burrows-Wheeler transfor-
mation, In Proc. International Workshop on New Database Technologies for Col-
laborative Work Support and Spatio-Temporal Data Management , 434–445, 1998.

19. K. Sadakane, A modified Burrows-Wheeler transformation for case-insensitive
search with application to suffix array compression, In Proc. Data Compression
Conference , p.548, 1999.

20. K. Sadakane, Compressed text databases with efficient query algorithms based on
the compressed suffix array, In Proc. 11th Annual International Symposium on
Algorithms and Computation, 410–421, 2000.

21. J. Seward, http://sources.redhat.com/bzip2\/
22. J. Stoye and D. Gusfield, Simple and flexible detection of contiguous repeats using

a suffix tree, In Proc. CPM’98, LNCS, 140–152, 1998.
23. E. Ukkonen, On-line construction of suffix trees, Algorithmica 14, 249–260, 1995.
24. J. S. Vitter, External memory algorithms, In Proc. PODS’98 , 119–128 (1998).

http://sources.redhat.com/bzip2/

	Introduction
	Preliminaries
	Linear-Time lcp Computation
	Properties of lcp
	Algorithm and Analysis

	Application to Block-Sorting Compression
	Block-Sorting Compression
	Block-Sorting and Suffix Arrays

	Bottom-Up Traversal of Suffix Trees
	Properties of the Post-Order Traversal
	Algorithm for Bottom-Up Substring Traversal

	Experimental Results

