MAC0323 Algoritmos e Estruturas de Dados II

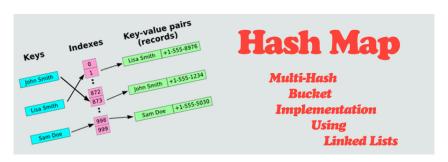
Edição 2020 - 2

Fonte: ash.atozviews.com

Compacto dos melhores momentos

AULA 14

Hashing



Fonte: http://programmingnotes.freeweq.com

Referências: Hashing (PF); Hash Tables (S&W); slides (S&W); Hashing Functions (S&W); CLRS, cap 12; TAOP, vol 3, cap. 6.4;

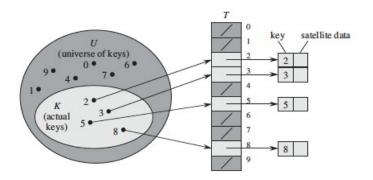
Endereçamento direto

Endereçamento direto (*directed-address*) é uma técnica que funciona bem quando o universo de chaves é <u>razoavelmente</u> pequeno.

Tabela indexada pelas chaves, uma posição para cada possível índice.

Cada posição armazena o valor correspondente a uma dada chave.

Endereçamento direto



Fonte: CLRS

Consumo de tempo

Em uma ST com endereçamento direto, o consumo de tempo de get(), put() e delete() é O(1).

Maiores defeitos

Os maiores defeitos dessa implementação são:

- ► Em geral, as chaves não são inteiros não-negativos pequenos...
- desperdício de espaço: é possível que a maior parte da tabela fique vazia

Hash tables

Inventadas para funcionar em $\mathrm{O}(1)$. . . em média.

universo de chaves = conjunto de **todas**as possíveis chaves

A tabela terá a forma st[0...m-1], onde m é o tamanho da tabela.

Hash functions

A função de dispersão (= hash function) recebe uma chave key e retorna um número inteiro h(key) no intervalo 0..m-1.

O número h(key) é o **código de dispersão** $(= hash \ code)$ da chave.

Queremos uma função de hashing que:

- ightharpoonup possa ser calculada em $\mathrm{O}(1)$ e
- ightharpoonup espalhe *bem* as chaves pelo intervalo 0..m-1.

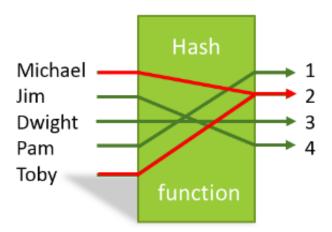
Perfeição é difícil...

Perfect hashing: funções que associam chaves diferentes a inteiros diferentes são difíceis de se encontrar mesmo conhecendo as chaves de antemão!

O paradoxo do aniversário nos diz que se selecionarmos uniformemente ao acaso uma função que leva 23 chaves em uma tabela de tamanho 365, a probabilidade de que duas chaves sejam associadas a uma mesma posição é maior que 0,5.

AULA 15

Conviver com colisões...



Fonte: https://stackoverflow.com/

Método da divisão (division method) ou hash modular: supondo que as chaves são inteiros positivos, podemos usar a função modular (resto da divisão por m):

```
static int hash(int key) {
   return key % m;
}
```

Exemplos com m = 100 e com m = 97:

418

key	hash (<i>M</i> = 100)	hash (<i>M</i> = 97)
212	12	18
618	18	36
302	2	11
940	40	67
702	2	23
704	4	25
612	12	30
606	6	24
772	72	93
510	10	25
423	23	35
650	50	68
317	17	26
907	7	34
507	7	22
304	4	13
714	14	35
857	57	81
801	1	25
900	0	27
413	13	25
701	1	22

18

Fonte: algs4

No caso de strings, podemos iterar hashing modular sobre os caracteres da string:

```
static int hash(char *key) {
   int h = 0;
   for (int i = 0; i < strlen(key); i++)
      h = (31 * h + key[i]) % m;
   return h;
}</pre>
```

Vantagens: rápida, faz apenas uma divisão.

Desvantagem:

devemos evitar certos valores para m, por exemplo:

- se m = 2^p, então h(key) são os p bits menos significativos de key.
- se a string de caracteres é interpretada como números na base 2^p, então m = 2^p - 1 é uma má escolha: permutações de caracteres são levadas ao mesmo valor de hash.

Um primo não "muito perto" de uma potência de 2 parece ser uma boa escolha para m.

Função Multiplicativa

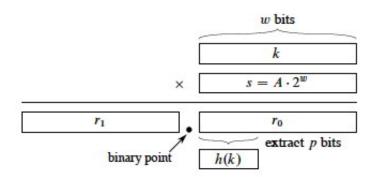
Método multiplicativo (multiplicative method):

- **escolha** uma constante A com 0 < A < 1;
- multiplique key por A;
- extraia a parte fracional de key × A;
- multiplique a parte fracionária por m;
- o valor de hash é o chão dessa multiplicação.

$$h(\texttt{key}) = |(A * \texttt{key} \mod 1) * m|$$

Função Multiplicativa

Nesse caso, se m é uma potência de 2, então h(key) conteria os bits iniciais da metade menos significa de $key \times A$.



Função Multiplicativa

Desvantagem: mais lenta que o hash modular

Vantagem: o valor de m não é crucial

O que Ubuntu tem a dizer...

http://releases.ubuntu.com/17.10/

```
MD5SUMS
                               2018-01-12 05:38
                                                 198
MD5SUMS-metalink
                               2018-01-12 05:38
                                                 213
MD5SUMS-metalink.gpg
                              2018-01-12 05:38
                                                 916
MD5SUMS.gpg
                               2018-01-12 05:38
                                                 916
                               2018-01-12 05:38
SHA1SUMS
                                                 222
                                                 916
SHA1SUMS.gpg
                               2018-01-12 05:38
SHA256SUMS
                               2018-01-12 05:38
                                                 294
SHA256SUMS.gpg
                               2018-01-12 05:38
                                                 916
```

https://en.wikipedia.org/wiki/MD5

https://en.wikipedia.org/wiki/SHA-2

O que Java tem a dizer

```
Em Java, toda classe tem um método padrão hashCode() que produz um inteiro entre -2^{31} e 2^{31}-1.
```

Exemplo:

```
String s = StdIn.readString();
int h = s.hashCode();
```

Boas e más funções de dispersão

Uma função só é eficiente se espalha as chaves pelo intervalo de índices de maneira *razoavelmente uniforme*.

Por exemplo, se os dois últimos dígitos das chaves não variam muito, então "key % 100" é uma péssima função de dispersão.

Boas e más funções de dispersão

Uma função só é eficiente se espalha as chaves pelo intervalo de índices de maneira *razoavelmente uniforme*.

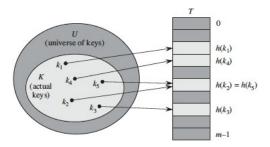
Por exemplo, se os dois últimos dígitos das chaves não variam muito, então "key % 100" é uma péssima função de dispersão.

Em geral é recomendável que m seja um número primo.

Escolha de funções de dispersão é uma combinação de estatística, probabilidade, teoria dos números (primalidade), . . .

Colisões

Como o número de chaves é em geral maior que m, é inevitável que a função de dispersão leve várias chaves diferentes no mesmo índice.



Fonte: CLRS

Colisões

Dizemos que há uma **colisão** quando duas chaves diferentes são levadas no mesmo índice.

Algumas maneiras de tratar colisões:

- ▶ listas encadeadas (=separating chaining);
- sondagem linear (=linear probing);
 Também conhecido como open addressing.
- double hashing (open addressing).

Uma solução popular para resolver colisões é conhecida como **separate chaining**:

para cada índice h da tabela, há uma lista encadeada que armazena todos os objetos que a função de dispersão leva em h.

Essa solução é muito boa se cada uma das "listas de colisão" resultar curta.

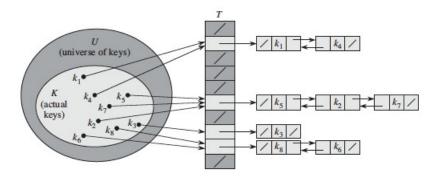
Uma solução popular para resolver colisões é conhecida como **separate chaining**:

para cada índice h da tabela, há uma lista encadeada que armazena todos os objetos que a função de dispersão leva em h.

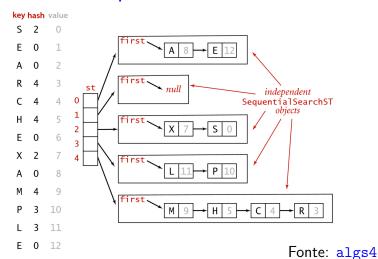
Essa solução é muito boa se cada uma das "listas de colisão" resultar curta.

Se o número total de chaves usadas for n, o comprimento de cada lista deveria, idealmente, estar próximo de $\alpha=n/m$.

O valor α é chamado de **fator de carga** (= *load factor*) da tabela.



Fonte: CLRS



Hashing with separate chaining for standard indexing client

SequentialSearchST: implementação de tabela de símbolos em uma lista ligada não ordenada.

```
static int n; /* número de chaves */
static int m; /* tam. da tabela de hash */
typedef struct pair Item;
struct pair {
  Key key;
  Value val:
  Item *next;
/* vetor da tabela de símbolos */
static Item **st;
```

```
SeparateChainingHashSTInit(int size) {
    n = 0;
    m = size;
    st = mallocSafe(m * sizeof(*Item));
    for (int h = 0; h < m; h++)
        st[h] = NULL;
}</pre>
```

hashCode(key): devolve a própria key ou um número obtido da key se ela não for numérica

```
static int hash(Key key) {
   return hashCode(key) % m;
}
Value getST(Key key) {
   int h = hash(key);
   return get(st[h], key);
                                    /* busca na lista */
}
static void insertST(Key key, Value val) {
   int h = hash(key);
   put(st[h], key, val);
```

```
Ao inserir.
dobramos o tamanho da tabela se \alpha > 10.
void putST(Key key, Value val) {
   if (n >= 10*m) resize(2*m):
   int h = hash(key);
   if (get(st[h], key) == NULL) n++;
   put(st[h], key, val); /* insere ou altera valor */
```

```
static void resize(int size) {
   Item *p, *t = st; int h, aux = m;
   m = size;
   st = mallocSafe(size * sizeof(*Item));
   for (h = 0; h < m; h++) st[h] = NULL;
   for (h = 0; h < aux; h++)
      for (p = t[h]; p != NULL; p = p->next)
         insertST(p->key, p->val);
   freeST(t,aux); /* libera a tabela velha */
insertST(key, val): insere sem mexer
no n nem fazer redimensionamento.
```

Redimensiona a ST se $\alpha \leq 2$.

```
void deleteST(Key key) {
  int h = hash(kev);
  if (get(st[h], key)) {
     n--;
     delete(st[h], key);
     if (m > INIT CAPACITY \&\& n <= 2*m)
        resize(m/2);
```

INIT_CAPACITY: guarda a capacidade inicial e não deixa diminuir além disso.

Retorna uma fila com todas as chaves da ST.

```
Queue keys() {
  Item *p;
  Queue queue = queueInit(n);
                           /* fila de Keys */
  for (int h = 0; h < m; h++)
     for (p = st[h]; p != NULL; p = p->next)
        enqueue(queue, p->key);
  return queue;
```

O comprimento médio das listas é $\alpha = n/m$.

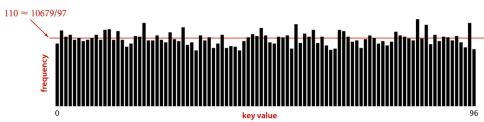
Poderíamos ter uma lista muito longa e todas as demais muito curtas . . .

O comprimento médio das listas é $\alpha = n/m$.

Poderíamos ter uma lista muito longa e todas as demais muito curtas . . .

Para eliminar essa possibilidade, precisamos saber ou supor algo sobre os dados.

Hipótese do Hashing Uniforme: Vamos supor que nossas funções de hashing distribuem as chaves pelo intervalo de inteiros 0..m-1 de maneira uniforme (todos os valores hash igualmente prováveis) e independente.



Hash value frequencies for words in *Tale of Two Cities* (10,679 keys, M = 97)

Fonte: algs4

Isso significa que se cada chave key é escolhida de um universo U de acordo com uma distribuição de probabilidade Pr (ou seja, Pr(key) é a probabilidade de key ser escolhida), então a hipótese do hashing uniforme nos diz que

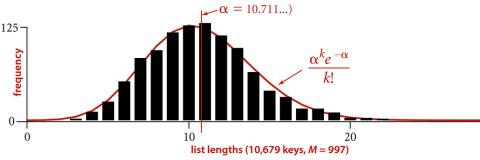
$$\sum_{\text{key:h(key)}=j} \Pr(\text{key}) = \frac{1}{m}$$

para
$$j = 0, 1, 2, \dots, m - 1$$
.

Proposição: Em uma tabela de hash encadeada com m listas e n chaves, se vale a hipótese do hashing uniforme, a probabilidade de que o número de chaves em cada lista não passa de $\alpha=n/m$ multiplicado por uma pequena constante é muito próxima de 1.

Exemplo: Se n/m = 10, a probabilidade de que uma lista tenha comprimento maior que 20 é inferior a 0.8%.

No gráfico, a altura de cada barra sobre o ponto k do eixo horizontal dá o número de listas que têm comprimento k:



List lengths for java FrequencyCounter 8 < tale.txt using SeparateChaining

Análise do separate chaining

Qual é o consumo de tempo de get(key)?

Análise é em termos do fator de carga $\alpha = n/m$ onde n é o número de itens na tabela e m é o número de listas.

O fator de carga α é o número médio de itens por lista.

Análise do separate chaining

Qual é o consumo de tempo de get(key)?

Análise é em termos do fator de carga $\alpha = n/m$ onde n é o número de itens na tabela e m é o número de listas.

O fator de carga α é o número médio de itens por lista.

O pior caso ocorre quando todas as n chaves vão para mesma lista.

Consumo de tempo médio depende de quão bem a função de hash h() distribui as chaves.

Consumo de tempo médio

A análise do consumo de tempo se apoia em uma suposição de uniform hashing.

Para
$$j = 0, ..., m-1$$
, seja n_j o comprimento da lista $st[j]$.

Logo,
$$\mathbf{n} = \mathbf{n}_1 + \mathbf{n}_2 + \cdots + \mathbf{n}_{m-1}$$
.

O valor esperado de n_j é $E[n_j] = \alpha$.

Consumo de tempo médio

A análise do consumo de tempo se apoia em uma suposição de uniform hashing.

Para
$$j = 0, ..., m-1$$
, seja n_j o comprimento da lista $st[j]$.

Logo,
$$n = n_1 + n_2 + \cdots + n_{m-1}$$
.

O valor esperado de n_j é $E[n_j] = \alpha$.

Supondo que h(key) é computada em tempo O(1), o tempo gasto por get(key) depende do comprimento da lista st[h(key)].

Busca mal sucedida

Considere dois casos:

busca mal sucedida (= key não está na ST) e busca bem sucedida (= key está na ST).

Na busca mal sucedida percorremos a lista st[h[key]] até o final.

Busca mal sucedida

Considere dois casos:

busca mal sucedida (= key não está na ST) e busca bem sucedida (= key está na ST).

Na busca mal sucedida percorremos a lista st[h[key]] até o final.

Hash uniforme nos diz que Pr[h(key) = j] = 1/m.

O comprimento esperado da lista st[h(key)] é α .

Busca mal sucedida

Considere dois casos:

busca mal sucedida (= key não está na ST) e busca bem sucedida (= key está na ST).

Na busca mal sucedida percorremos a lista st[h[key]] até o final.

Hash uniforme nos diz que Pr[h(key) = j] = 1/m.

O comprimento esperado da lista st[h(key)] é α .

Logo, o consumo de tempo médio de uma busca de uma chave key que não está em st[] é $O(1 + \alpha)$.

O termo "1" vem do consumo de tempo de h(key).

Suporemos que o elemento key procurado é igualmente provável de ser qualquer elemento na ST.

O número de chaves examinadas por get(key) é 1 mais o número de elementos na lista st[h(key)] antes de key.

Todos esses elementos foram inseridos na ST depois de key. Por quê?

Suporemos que o elemento key procurado é igualmente provável de ser qualquer elemento na ST.

O número de chaves examinadas por get(key) é 1 mais o número de elementos na lista st[h(key)] antes de key.

Todos esses elementos foram inseridos na ST depois de key. Por quê?

Precisamos encontrar, para cada key na ST, o número médio de elementos inseridos em st[h(key)] depois de key.

Esse é um trabalho para variáveis indicadoras!

Para $j=1,\ldots,n$, seja key_j a j-ésima chave inserida na ST. Para todo i e j, defina a variável aleatória indicadora:

$$X_{\mathbf{i}\mathbf{j}} = \mathbf{I}_{\mathbf{i},\mathbf{j}} = egin{cases} 1, & \text{se } \mathbf{h}(\mathbf{key_i}) = \mathbf{h}(\mathbf{key_j}) \\ 0, & \text{caso contrário} \end{cases}$$

Para $j=1,\ldots,n$, seja $\mathbf{key_j}$ a j-ésima chave inserida na ST.

Para todo i e j, defina a variável aleatória indicadora:

$$X_{\mathbf{i}\mathbf{j}} = \mathbf{I}_{\mathbf{i},\mathbf{j}} = \begin{cases} 1, & \text{se } \mathbf{h}(\mathbf{key_i}) = \mathbf{h}(\mathbf{key_j}) \\ 0, & \text{caso contrário} \end{cases}$$

Portanto, $E[X_{ij}] = 1/m$.

O número esperado de chaves examinadas em uma busca com sucesso é o número médio de chaves $\ker_{\mathbf{j}}$ inseridas depois de $\ker_{\mathbf{i}}$ e tais que $X_{\mathbf{i}\mathbf{j}}=1$.

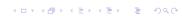
$$\mathbb{E}\left[\frac{1}{\mathbf{n}}\sum_{\mathbf{i}=1}^{\mathbf{n}}\left(1+\sum_{\mathbf{j}=\mathbf{i}+1}^{\mathbf{n}}X_{\mathbf{i}\mathbf{j}}\right)\right]$$

 o somatório interno conta as chaves key_j inseridas depois de key_i e que têm o mesmo valor de hash de key_i

O número esperado de chaves examinadas em uma busca com sucesso é o número médio de chaves $\ker_{\mathbf{j}}$ inseridas depois de $\ker_{\mathbf{i}}$ e tais que $X_{\mathbf{i}\mathbf{j}}=1$.

$$\mathbb{E}\left[\frac{1}{\mathbf{n}}\sum_{\mathbf{i}=1}^{\mathbf{n}}\left(1+\sum_{\mathbf{j}=\mathbf{i}+1}^{\mathbf{n}}X_{\mathbf{i}\mathbf{j}}\right)\right]$$

- o somatório interno conta as chaves key_j inseridas depois de key_i e que têm o mesmo valor de hash de key_i
- ▶ o "1" é pelo custo de examinar key;
- o somatório mais externo faz a soma sobre todas a chaves
- ► 1/n é para a média



Pela linearidade da esperança . . . a média é

$$= \frac{1}{\mathbf{n}} \sum_{\mathbf{i}=1}^{\mathbf{n}} \left(1 + \sum_{\mathbf{j}=\mathbf{i}+1}^{\mathbf{n}} \mathbf{E}[X_{\mathbf{i}\mathbf{j}}] \right)$$

$$= \frac{1}{\mathbf{n}} \sum_{\mathbf{i}=1}^{\mathbf{n}} \left(1 + \sum_{\mathbf{j}=\mathbf{i}+1}^{\mathbf{n}} \frac{1}{\mathbf{m}} \right)$$

$$= 1 + \frac{1}{\mathbf{n}} \sum_{\mathbf{i}=1}^{\mathbf{n}} (\mathbf{n} - \mathbf{i})$$

$$= 1 + \frac{1}{\mathbf{n}} \left(\mathbf{n}^2 - \frac{\mathbf{n}(\mathbf{n}+1)}{2} \right)$$

Continuando ...

$$= 1 + \frac{\mathsf{n} - 1}{2\,\mathsf{m}}$$

$$= 1 + \frac{\mathsf{n}}{2\,\mathsf{m}} - \frac{\mathsf{n}}{2\,\mathsf{m}\,\mathsf{n}}$$

Substituindo n/m pelo fator de carga α obtemos

$$= 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}$$
$$= O(1 + \alpha)$$

Consumo de tempo

Seja n é o número de chaves e m é o tamanho da tabela.

Supondo que a função hash distribuia as chaves uniformemente em [0..m-1], em uma tabela de distribuição com listas encadeadas, o consumo de tempo de get(), put() e delete() é O(1 + n/m).

Consumo de tempo

Supondo que a função hash distribuia as chaves uniformemente em [0..m-1], em uma tabela de distribuição com listas encadeadas, o consumo de tempo de get(), put() e delete() é $O(1+\alpha)$.

Se $n \le cm$ para alguma constante c, ou seja, n = O(m), então α é O(1) e portanto $O(1 + \alpha)$ é **constante**.

Mais experimentos ainda

Consumo de tempo para se criar uma ST em que as chaves são as palavras em les_miserables.txt e os valores o número de ocorrências.

estrutura	ST	tempo
vetor	ordenada	1.5
skiplist	ordenada	1.1
árvore rubro-negra	ordenada	0.76
árvore binária de busca	ordenada	0.72
splay tree	ordenada	0.68
hash. encadeamento	não-ordenada	0.61
hash. encadeamento+MTF	não-ordenada	0.56

Tempos em segundos obtidos com StopWatch.

