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Summary 
The n-queens problem is a classical combinatorial problem in 
the artificial intelligence (AI) area. Since the problem has a sim- 
ple and regular structure, it has been widely used as a testbed to 
develop and benchmark new AI search problem-solving strate- 
gies. Recently, this problem has found practical applications in 
VLSI testing and traffic control. Due to its inherent complexity. 
currently even very efficient AI search algorithms developed so 
far can only find a solution for the n-queens problem with n up to 
about 100. In this paper we present a new. probabilistic local 
search algorithm which is based on a gradient-based heuristic. 
This efficient algorithm is capable of finding a solution for ex- 
tremely large size n-queens problems. We give the execution sta- 
tistics for this algorithm with n up to 500,000. 

Keywords: Artificial intelligence (AI), combinatorial search, gra- 
dient-based heuristic, local search, the n-queens problem, non- 
backtracking search, fast search algorithm. 

1. Introduction 
The n-queens problem is a classical combinatorial problem in 
the AI search area. We are particularly interested in the n-queens 
problem since it is a relatively simple yet nontrivial case study and 
testbed in which to explore general issues of designing efficient 
AI search algorithms and predicting their performance [3]. Also, 
it has recently found applications in VLSI testing and traffic con- 
trol. Due to the exponential growth of the search load in the n-  
queens problem, even very efficient AI search algorithms can 
only handle the complexity (i.e., find out a solution) for about 100 
queens [5, 11]. There has been little progress in solving the n-  
queens problem for larger sizes during the last decade. 

In this paper we give a new, probabilistic local search algorithm 
which is based on a gradient-based heuristic [8, 9]. This algo- 
rithm is capable of providing a solution for an extremely large size 
n--queens problem in several CPU hours on a NeXT personal 
computer, We give the execution statistics of this fast algorithm 
with n up to 500,000. We believe that this new algorithm, its 
search technique, and the results of the n-queens problem may 
shed light on understanding other constraint-based AI search 
problems. 

In Section 2, the n-queens problem is briefly introduced. Our 
new algorithm and its search teehniques for the n-queens prob- 
lem are described in Section 3. We show the run-time behavior of 
this new algorithm in Section 4. The conclusions are given in Sec- 
tion 5. 

2. The N-Queens Problem 
The 4-queens problem is the simplest instance of the n-queens 
problem with solutions. The problem is to place four queens on a 
4 x 4 chessboard so that no two queens can capture each other. 
That is, no two queens are allowed to be placed on the same row, 
the same column, or the same diagonal. In the general n-queens 
problem, a set of n queens is to be placed on an n x n chessboard 
so that no two queens attack each other. 

In the following discussion, we assume that each row will be occu- 
pied by a single queen. The four queens, in the 4-queens prob- 
lem. are labeled with the numbers 1 through 4. Any possible solu- 
tion of the 4-queens problem can be represented as the 4-tuple 
(q~ . . . . .  q4), where q i is a column position on which the queen in 
the i-th row is placed. 

In a little known work, Ahrens [1] describes a method to compose 
a solution to the general n-queens problem by patching together 
solutions to the smaller sized problems. This analytical solution 
has an inherent limitation in that it will generate only a very re- 
stricted class of solutions. This is not the case with search based 
algorithms. 

One method for solving the n-queens problem which systemati- 
cally generates all possible solutions is known as backtracking 
search. Since the nature of backtracking search is exponential in 
time, backtracking search is not able to solve the large size n -  
queens problem [3, 4, 7, 2, 10, 11]. Recent results indicate that we 
may only solve the n-queens problem with n up to about 100 [5, 
11]. 

It is desirable to investigate some alternative search approaches 
in which there is no backtrack overhead involved. In the next sec- 
tion, we give a new probabilistic local search algorithm that is 
based on a gradient-based heuristic. The algorithm runs in poly- 
nomial time, does not use backtracking, and is capable of finding 
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a solution for an extremely large size n-queens problem within a 
reasonably short time period. 

1. f u n c t i o n  queen, search(queen : a r r a y  [1..n] o f  integer) 
2. begin 
3. repeat 
4. Gene ra t e  a r a n d o m  p e r m u t a t i o n  of  queenl to queenn; 
5. f o r a l l  i , j ;  where queeni o r  queenj is a t t acked  do 
6. i f  swap(queenl,queenj) reduces  collisions 
7. t h e n  perform_swap(queeni, queen j); 
8. u n t i l  no collisions; 

9. end; 

Figure 1: A Fast N-Queens Search Algorithm 

3. A Fas t  Algorithm for the N-Queens Problem 

Let:  

1. w(i) (i = 1 ..... n) be a permutation for integer numbers 1 ..... n, 
and 
2. {rowi, column w(i) } (i = 1 ..... n) be n coordinates of  positions for 
n queens on a chessboard. 

Since there is only one queen to be placed on each row, rowi can 
be represented by index i, and the exact position of the n queens 
on the chessboard can be fully specified by the column numbers 
(an n-tuple) of the n queens. This n-tuple of column numbers 
can be represented in a linear array of size n. That is, let {column 
"11"(/)}, or abbreviated as {'n'(i)} (i = 1 ..... n~ be the n positions ofn 
queens on a chessboard. 

For any permutation, the above formulation of the queens' posi- 
tions guarantees that no two queens will attack each other on the 
same row or the same column. The problem then remains to re- 
solve any collisions among queens that may occur on the diago- 
nals. 

Our new algorithm is shown in Figure 1. At the beginning of a 
search, a random permutation of the column positions of the 
queens is generated. This initial permutation of column positions 
generally produces collisions among queens on the diagonals. 
The number of collisions can be counted by tracing each negative 
(slope) diagonal line and each positive (slope) diagonal line using 
the method described below. 

Let i be a row index andj  be a column index, then the sum of both 
indexes is constant on any negative diagonal line, and the differ- 
ence of both indexes is constant on any positive diagonal line. The 
values of the sum on different diagonal lines are different, so are 
the values of differences. Corresponding to row index i and column 
index j, since the column positions of n queens are specified by a 
permutation ~r, the sum is calculated as i + "rr(i) and the difference 
as i -w( i )~  for/  = 1 ..... n. 

For the n-queens problem, there are 2n - 1 negative diagonal 
lines and 2 n - I positive diagonal lines on the chessboard. There 
is an array of size 2n - 1, called dl, that keeps track of the number 
of queens, i.e., the number of collisions, on each of the 2n -1 neg- 
ative diagonal lines. If tbere are k queens on the mth negative di- 
agonal line, there are k - 1 collisions on this diagonal line. The 
number k is written into the ruth element of the dl array. Similar- 
ly, we choose another array with size 2n - 1, called d2, for 2n - 1 
positive diagonal lines. 

As described in Figure 1, a random permutation of the column 
positions for n queens is generated at the beginning of the search. 
This initial permutation generally causes some collisions on the 
diagonals. The number of collisions on diagonals is counted and 
stored into arrays dl and d2. 

A gradient-based heuristic, as shown in Figure 2 (i.e., lines 5-7 in 
Figure 1), plays an important role in this fast queen search algo- 
rithm to navigate the search activity through a simple local 
search. The main idea behind this heuristic is to swap a pair of 
queens so that the total number of collisions (on both negative 
and positive diagonals) is reduced. Before a swap action is taken, 

local search is performed. We must first determine the "direc- 
tion" to proceed, i.e., the "'gradient direction" in the search space 
that points to the direction that may reduce the number of colli- 
sions among the queens. The idea is pretty simple. Before and 
after the swap of a pair of queens, the number of collisions on the 
diagonals are compared. Ifa swap of a pair of queens reduces the 
number of ccollisions, the swap action is performed; otherwise, no 
action is taken. 

1. repeat  
2. swaps.performed := O; 
3. for  i in  [1..n] do  
4. for  j in [(i + 1)..hi do 
5. i f  queeni is attacked or  queenj is attacked then  
6. i f  swap(queenl, queeni) reduces collisions t h e n  beg in  
7. perform_swap( queenl, queenj ); 
8. swaps_performed := swapLperformed + 1; 
9. end; 
10. until  sw~pn.performed = O; 

Figure 2: A Gradient-Based Heuristic 

In the fast search algorithm, the gradient-based heuristic is 
applied to all possible pairs of queens (see Figure 1) until there 
are no collisions left, that is. a solution is found. If no solution 
could be found for that initial permutation, a new permutation is 
generated and a new search process is started. 

The swap action incrementally updates arrays dl and 4 .  Since 
one queen can affect at most two diagonals (i.e., one negative di- 
agonal and one positive diagonal), correspondingly at most two 
values in arrays dl and 4 ,  i.e., i + rr(i) and i -  ~r(i), are affected. A 
swap of two queens can affect at most eight diagonals: four for 
both "source" queens and four for both "destination" queens. In 
order to test if a swap reduces the number of collisions we need 
only to check these eight diagonals. The number of operations in 
a swap action is therefore constant, and obviously does not de- 
pend on n. This test operation and a possible subsequent swap 
operation are repeated for all possible pairs of queens until a so- 
lution is found. If no more swaps can be performed and collisions 
still exist, a new permutation is invoked. The implementation of 
the above algorithm is straightforward. 

The running time of the algorithm can be estimated as follows. 
The generation of a random permutation (line 4 in Figure 1) can 
be done in linear time [6]. Regardless of the board size. the test- 
ing and swap operations (lines 5-9 in Figure 2) can be evaluated 
in constant time as described above. Therefore, the number of 
testing and swap operations determines algorithm performance. 
In the worst case, each iteration of the repeat loop in Figure 2 
requires O(n 2) evaluations since there are two for loops (lines 3-4 
in Figure 2). Since each execution of the repeat loop must de- 
crease the number of collisions, which is at most n - 1, the upper 
bound on the running time of the gradient-based heuristic is 
O(n~). 

For an initial permutation, if no solution is found affter the com- 
pletion of the repeat loop, a new permutation is generated and a 
new search process is started. However, the number of permuta- 
tions required to find a solution is very small. With increasing n, 
the number of permutations required to find a solution goes to 1. 
That is, for large n, the first permutation will always find a solu- 
tion (See Table 4 in Section 4). Experimental results collected 
during the last several years show that the actual running time of 
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the algorithm is, in practice, approximately 007 log n). These re- 
suits are shown in the next section. 

4. Results 
Among the algorithm features we have studied, the following ob- 
servations are of particular interest. We summarize some exper- 
imental data below. 

- Real execution time of the algorithm. 
- The probabilistic behavior of the algorithm. 
- Number of initial collisions generated by a random permuta 

tion. 
- The maximum number of queens on the same diagonal in a 

random permutation. 

1. Real execution time of  the algorithm. 
The real execution time of our fast search algorithm, pro- 
grammed in C and run on a NeXT personal computer (with a 25 
MHz Motorola 68030 processor), is illustrated in Table 1. Since 
our algorithm takes polynomial time, it is incomparably faster 
than any present well-known AI search algorithms, all of which 
run in exponential time. Due to the memory limitation of our 
computer, the largest problem size we were able to run was 
500,000. 

2. Number of initial collisions generated by a random 
permutation. 

The second observation made involved the number of collisions 
generated by a random permutation (See Table 2). This indicates 
the maximum number of swaps which may be required to find a 
solution. The results collected in Table 2 were based on the aver- 
age of 100 random permutations. Theoretically, no more than n -  
1 collisions are possible on a board of size n, when all n queens are 
aligned on the same diagonal. So the number of collisions which 
must be resolved may increase only linearly in n. It is indicated 
from numerous real algorithm runs that the ratio between the 
number of collisions, and the board size n in a random permuta- 
tion approaches 0.5285 as n increases up to 500,000. Individual 
sample runs have shown a very small deviation from this number. 
Numbers in Table 2 actually present the upper bound on the 
number of swaps that may be performed to find a solution from 
an initial random permutation. 

3. The maximum number of  queens on the 
same diagonal. 

As illustrated in Table 3, the maximum number of queens that 
attack each other on the same diagonal line was also analyzed. A 
total of 100 random permutations were generated for each board 
size shown and the maximum number of queens on one diagonal 
was recorded. The minimum and maximum values from these 
100 permutations are very similar. That is. the collisions among 
queens on diagonals are basically evenly distributed. There are 
no specific diagonals that contain a large number of queens 

N u m b e r  o f  Q u e e n s  n I 

T i m e  o f  t h e  1st  r u n  

T i m e  o f  t h e  2 n d  r u n  

T i m e  o f  t h e  3 r d  r u n  

T i m e  o f  t h e  4 t h  r u n  

T i m e  o f  t h e  5 t h  r u n  

T i m e  o f  t h e  6 t h  r u n  

T i m e  o f  t h e  7 t h  r u n  

T i m e  o f  t h e  8 t h  r u n  

T i m e  o f  t h e  9 t h  r u n  

T i m e  o f  t h e  1 0 t h  r u n  

10 1 1 0 0 1  

< 0.1 0.4 

< 0.1 0.2 

< 0.1 < 0.1 

< 0.1 < 0.1 

< 0.1 < 0.1 

< 0.1 < 0.1 

< 0.1 0.2 

< 0.1 O.3 

< 0.1 0.1 

< 0.1 < 0.1 

0.1 I 0.1 ] Ave .  T i m e  t o  F i n d  a S o l u t i o n  I < 

1 ,000 10 ,000  

2.1 

1.9 

1.8 

3.1 

1.9 

2.4 

1.9 

3.3 

2.3 

2.1 

2.3 37 

27.7  

38.2 

42 .6  

34.9 

34.3 

31.2  

41 .2  

36.5 

52 .4  

35.1 

100,000 500,000 
1,098 .4  7 ,500  

1 ,081 .2  9 ,065  

997 .6  12 ,617  

979 .9  11 ,730 

1 ,286 .4  9 ,934  

992 .3  9 ,198  

1 ,425 .5  9 ,789  

1 ,235 .4  11 ,142  

1 ,285 .7  11 ,788 

1 ,285 .4  8 ,300  

1 ,167 10 ,106 

Table 1: A Fast N-Queens Search Algorithm to Search for a Random Solution on an Next Machine with a 25Mhz Motorola 68030 
Microprocessor (Average of 10 Runs; Time Units: seconds) 

N u m b e r  o f  Q u e e n s  n ] 10 I 100 I 1 ,000 [ 10 ,000  100 ,000  , 500 ,000  

N u m .  o f  C o l l i s i o n s / n  [ 0 .486  I 0 .523  1 0 . 5 2 7 7  1 0 . 5 2 8 3  0 . 5 2 8 6 9 4  I 0 .528511  

Table 2: Number of Collisions Among Queens in a Random Permutation (Average of 100 Permutations) 
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N u m b e r  of  Queens  n 10 100 1,000 10,000 100,000 500,000 

M i n i m u m  2 5 7 7 9 10 

M a x i m u m  5 7 7 9 9 10 

'Ihble 3: Maximum Number and Minimum Number of Queens on the most Populated Diagonal in a Random Permutation 
(Average of 100 Runs) 

N u m b e r  of  Q u e e n s  n 10 100 I 1,000 10,000 100,000 500,000 

So lu t i on  in t h e  F i r s t  P e r m u t a t i o n  2 6 8 10 10 10 

M a x .  N u m .  o f  P e r m u t a t i o n s  10 3 2 1 1 1 

Table 4: Permutation Statistics (Average of 10 Runs) 

N u m b e r  of  Queens  n 

N u m .  o f  Pa i r s  T e s t e d  

N u m .  of  S w a p s  T e s t e d  

10 100 1,000 10,000 100,000 500,000 

353 13,525 253,671 4 ,827,973 110,186,345 967,924,234 

198 2,385 15,116 166,215 2 ,034,907 11,447,508 

Table 5: Swap Statistics (Average of 10 Runs) 

4. The probabilistic behavior of the algorithm. 

Table 4 and Table 5 were obtained from 10 sample algorithm 
runs. The algorithm is probabilistic. That is, if the algorithm 
could not find a solution from a given random permutation, a 
new permutation is generated and the algorithm starts a new 
search. 

Table 4 shows the probabilistic behavior regarding algorithm suc- 
cess in finding a solution from an initial random permutation. 
The solution in the first perrnutation represents, among 10 sample 
algorithm runs, the number of times a solution is found based on 
an initial (the first) permutation. The maximum number ofper- 
mutations is, within 10 sample algorithm runs, the maximum 
number of permutations that were required to find a solution in 
one program run. It can be seen that the number of required per- 
mutations decreases with increasing n. For n equal to 100, the 
algorithm succeeded in the first permutation in 6 of 10 sample 
runs. In the worst case, only 3 permutations were required. In our 
measurements, for n greater than 10,000, the algorithm always 
finds a solution in the first permutation. 

Table 5 shows parts of the program on which the most time was 
spent. The number ofpairs tested gives the total number of pairs 
checked for collision (line 5 in Figure 2). The number of swaps 
tested indicates a total number of calls to the swap testing (line 6 
in Figure 2). 

5. Conclusion 
An efficient, fast search algorithm able to find a solution for mil- 
lions of queens is presented. The algorithm runs in polynomial 
time as compared to the exponential time of the present AI 
search algorithms. This performance is achieved by applying a 
clever, gradient-based heuristic within a local search. 
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