
JOURNAL OF AL.ooRlTHMs 1,301-358 (1980)

Decomposable Searching Problems
1. Static-to-Dynamic Transformation*

JON LOUIS BENTLEY+ AND JAMES B. SAXE

Department of Computer Science, Carnegie-Mellon Uniwrsi~,
Pittsburgh, Penmylwmia 15213

Received October 29, 1979; revised April 15,198O

Transformations that serve as tools in the design of new data structures are
investigated. Specifically, general methods for converting static structures (m which
all elements are known before any searches are performed) to dynamic structures
(in which insertions of new elements can be mixed with searches) are studied.
Three classes of such transformations are exhibited, each based on a different
cmmtirtg scheme for representing the integers, and a combinatorial model is used
to show the optimality of many of the transformations. Issues such as online data
structures and deletion of elements are also examined To demonstrate the applica-
bility of these tools, several new data structures that have been developed by
applying the transformations are studied.

Contents. 1. Introduction. 2. Defm’tions and notation. 3. Tramformatiom that sq-
port insertiotu. 3.1. The binary transformation. 3.2. Transformations with fast
query time. 3.3. Transformations with fast insertion time. 3.4. Summary of the
transformations. 4. Lower bow& on tramformations. 4.1. The model of compu-
tation. 4.2. Computing F and G. 4.3. Transforming history diagrams to trees. 4.4.
Tree properties and their relation to performance. 4.5. The behavior of &(n). 4.6.
Allowing the number of static structures to grow. 4.7. Justification of the restriction
to arboreal transforms. 4.8. Limitations on the significance of the lower bounds.
5. Online transformations. 6. Tramfonnatiom that -port Metion. 6.1. A lower
bound. 6.2. A fast special case. 6.3. Structures supporting deletions only. 7.
Conclmions. Appendix I: A list of deconymsable searching problem. Appendix II: An
algorithm for approximate matchings.

1. INTRODUCTION

The design of efficient data structures for searching problems is an
important and difficult problem. In this paper we will investigate a set of
transformdons that aid in the design of such data structures, and illustrate

*This research was supported in part by the Office of Naval Research under Contract
N00014-76-C-0370.

+Also with the Department of Mathematics.

301
01966774/80/040301-58802.00/0
cbpyr@to 19s4lbyAudemicRru,fnc.

All lights of mpmd~lm ill ally form -cd.

302 BENTLEY AND SAXE

the use of those transformations by describing a number of new structures
that have been designed by applying the transformations.

Since this paper is the first of a multipart series, we will now take a
moment to describe briefly the common thread running through the work.
The work deals with a class of problems called the decomposable searching
problems, which includes most of the searching problems that have been
discussed in the literature (the term “searching problem” is used here in a
precise sense which we state formally in Section 2). The decomposable
searching problems share the property that any data structure for solving
them can also be applied as a “subroutine” in solving related problems.
The objects that we will study in this work are transfor~tio~ that can
apply any data structure for solving any decomposable searching problem
to solve a closely related searching problem.

The specific transformations that we will examine in this paper convert
static structures (which are built once-for-all before any queries are asked)
into dynamic structures (in which queries can be mixed with insertions,
and perhaps deletions). In Section 2 we will examine definitions and
notation necessary for discussing the transformations. The transformations
are discussed in Section 3, and a proof of their optimality is given in
Section 4. Online data structures and deletion are the subjects of Sections 5
and 6, and conclusions are offered in Section 7.

In later parts of this paper we will study two additional types of
transformations. The first type of transformation adds a “range variable”
to a query; specifically, we can associate a new variable with every object
in the set and then restrict each query to objects that have that variable in
a certain range, which may vary from query to query. The second type of
transformation we will see facilitates tradeoffs between the query time
required by the structure and the time and space required to build and
store it. Readers interested in a preliminary description of these results are
referred to Bentley (1979).

2. DEFINITIONS AND NOTATION

In this section we will review a number of basic concepts that have to do
with searching problems and give a number of definitions that will be used
throughout the paper. The casual reader may therefore skim most of this
section; the only part that need be read in detail is the definition of the
decomposable searching problems.

We will use the term searching problem in a restricted sense throughout
this paper. Specifically, we refer to maintaining a set F of objects so that
queries that ask the relation of a new object x to the set F can be answered
quickly. The most common example of a query is what we call a Member

DECOMPOSABLE SEARCHING PROBLEMS I 303

Query: “is x a member of F?” If F were a set of reals, we might be
interested in a Nearest Neighbor query: “what is the distance from x to the
real in F closest to it?” The general query is that a question containing a
variable of type Tl is asked of a set of elements of type 22, giving an
answer of type T3. In a Member query, Tl and T2 are the same, and T3 is
boolean. In a Nearest Neighbor query, both Tl and T2 are real, and T3 is
a nonnegative real. In the general case, the query Q can be viewed as a
function mapping a Tl and a set of T2’s to a T3, or

Q: Tl x 2”+ T3.

Throughout this paper we will identify a searching problem by its query; a
soiution to a searching problem is a data structure that allows the query to
be answered quickly.

In this paper we will study data structures for a class of searching
problems called the decomposable searching problem. A searching problem
with query operation Q is decomposable if there exists an efficiently
computable binary operator 0 satisfying the condition

Q(x,A u B) = q [Q(x,4 Q(x, W].
(Note that this definition implies that 0 is both associative and commuta-
tive.) For example, the member searching problem is decomposable be-
cause

Member(x,A u B) = V[Member(x,A),Member(x,B)],

and (distance to) nearest neighbor searching is decomposable because

NN(x,A IJ B) = min[NN(x,A),NN(x,B)].

We will investigate a number of decomposable searching problems
throughout this paper; a list of many of them can be found in Appendix I.
Ali of the transformations that we will see later in this paper are applicable
precisely to the decomposable searching problems. They exploit decom-
posability by partitioning a set into subsets, and answer a query by
computing answers on the subsets and then using the l-J operator to
combine those subanswers to yield a solution to the entire problem. Note
that the q operator is essential in this strategy.

There are two subclasses of the decomposable searching problems that
will be of special interest later in the paper. The first subclass consists of
those problems whose 0 operator has a “zero” (or “sticky”) element; that
is, there exists some element z such that for every element x,

q (z,x) = 2.

304 BENTLEY ANLI SAXE

For example, false is a zero for A, and true is a zero for V . A second class
that will be of interest consists of the problems for which the 0 operator
has an inverse (for example, if 0 is addition, its inverse is subtraction). We
will examine in detail both of these subclasses of the general decomposable
searching problems later in the paper.

We will make a distinction between two types of data structures for
solving searching problems. A static structure is built once and then
searched many times; insertions and deletions of elements are not allowed.
To describe the performance of the static structure A we give three
functions of N, the number of elements in the set represented by A:

P’(N) = the preprocessing time required to build A,

QA(N) = the query time required to perform a search in A, and

S’(N) = the storage required to represent A.

(Unless explicitly noted otherwise, throughout this paper we will deal only
with worst-case cost functions.) A second type of data structure is the
dynamic structure. This structure is initially empty, and the three opera-
tions available on it are for inserting a new element, for deleting a current
element, and for performing a search. We analyze the performance of the
dynamic structure B by giving the functions

I,(N) = the insertion time for B,

D,(N) = the deletion time for B,

es(N) = the quev time required to perform a search in B, and

S,(N) = the storage required to represent B.

Later in this paper we will want to “mix apples and oranges” and
compare the performance of the static structure A with that of the dynamic
structure B. To facilitate such comparisons we define the “insertion” time
for the static structure A as

UN) = P,(N)/N,

which is the cost of building an N-element structure amortized over the N
elements it represents. Likewise we define the cost of “processing” the
dynamic structure B to be

3. TRANSFORMATIONS THAT SUPPORT INSERTIONS

In this section we will investigate transformations that convert a static
data structure for a decomposable searching problem into a dynamic data

DECOMPOSABLE SEARCHING PROBLEMS I 305

structure. We will restrict ourselves to the special case of dynamic struc-
tures that support only the operations of inserting a new element and
searching to answer a query; we will return to the issue of deletion in
Section 6.

3.1. The Binary Transformation

In this subsection we will examine a static-to-dynamic transformation
that is based on the binary representation of the integers. We will study the
transformation by first examining its application to the particular problem
of nearest neighbor searching in the plane, and then discussing its more
general properties.

In planar nearest neighbor searching we must organize a set of N points
in the plane so that subsequent queries can tell the distance from the query
point x to its nearest neighbor in the set. Therefore, objects of types Tl
and 22 are points in W2, and those of type T3 are nonnegative reals.
(Henceforth we will use the term “nearest neighbor searching” to refer
only to the planar case; for ease of discussion we consider only the
problem of finding the distance to the nearest neighbor and not that of
finding the point realizing that distance.) Note that nearest neighbor
searching is decomposable because it satisfies

NN(x,A u B) = min[NN(x,A),NN(x,B)].

Lipton and Tarjan (1977) have described an elegant static data structure
for nearest neighbor searching (which we will call LT) with performance

Many applications, however, call for dynamic nearest neighbor searching,
and the Lipton-Tarjan structure does not appear to be suitable for a
modification that would facilitate insertions. We will now investigate a new
structure (called DNN for dynamic nearest neighbor) that uses the
Lipton-Tarjan static structure only as a subroutine, and does not try to
modify the structure. The DNN structure that we will describe is the best
of the known structures for performing dynamic nearest neighbor search-
ing in the plane.

The DNN structure will consist of a set of LT’s; that is, the elements
(points) currently stored in the DNN will be partitioned into subsets that
are themselves represented by LT’s. When there is one element in the
DNN, there is an LT containing that single element. When the second
element is inserted, that LT is discarded and a new LT of size 2 is created.

306 BENTLEY AND SAXE

At the arrival of the third element, a new LT of size 1 is created. This
process continues so that when there are N elements represented by the
DNN, there are LT’s corresponding to all of the one bits in the binary
representation of N. For example, when there are 79 elements in the DNN,
there are LT’s of sizes 64, 8,4,2, and 1. When the 80th element is inserted,
the four smallest structures are discarded and a new structure of size 16 is
built. At any time in this process the distance to the nearest neighbor of a
query point x can be found by locating its nearest neighbors in each of the
LT’s (using the O(lg N) algorithm) and taking the minimum of the dis-
tances; it is here that we make essential use of decomposability.

This scheme is illustrated pictorially in Fig. 3.1 by a diagram commonly
used to represent binary counting. The vertical axis in that figure denotes
the number of elements currently in the dynamic structure. Each rectangle
(square) represents a particular static LT structure; consider, for example,
the 4 x 4 square that comes into existence at time 4 and is then replaced at
time 8. The LT structures in existence at time T can be found by drawing a
horizontal line that intersects the vertical axis at T; for example, at time 7
there are three structures in existence-of sizes 4, 2, and 1. We will find
later that this type of diagram (which we call a “history diagram”) is a
handy way of representing transformations.

It is easy to analyze the performance of the DNN structure given the
performance of the LT structure. Since the LT requires linear storage and
the DNN just partitions its elements into LT’s, the DNN will also require
linear storage. A DNN of N elements will keep at most lg(N + 1) LT’s
(each of size not greater than N), so the query time of a DNN is bounded
above by lg(N + 1) times the cost of querying an LT. The cost of inserting
an element into a DNN is more difficult to analyze; note that while
inserting the 1023rd element is essentially free, the 1024th element is very
expensive, since a new structure of size 1024 must be built. We will
therefore count the cost of inserting the first N elements into an initially
empty structure, which is exactly P DNN(N). We will perform this analysis

FIG. 3.1. The binary transfom.

DECOMPOSABLE SEARCHING PROBLEMS I 307

only for the case that N = 2’ - 1, for some nonnegative integer i, and
discuss later the behavior of the function at other values of N. If we have
inserted 2’ - 1 elements, then we have built one LT structure of size 2j-‘,
two LT structures of size 2’-‘, and 2“-’ structures of size 2jmk. (This is a
trivial property of binary counting.) The total cost of inserting these
elements is therefore

Po,,(2j - 1) = 1.PLr(2j-i) + 2.pLT(2j-2) +. -. +2j-l.p,(i).

For N a power of 2 we can rewrite this as

PDNN(N - 1) = l+,(N/2) + 2+,r(N/4) +. . . + (N/2)+,(1).

We know that P&N) = O(NlgN), which means that P&N) I cNlg N,
for some positive constant c. Substituting this into the above equation
yields

PDNN(N - 1) I c*[l*(N/2lgN/2) + 2*(N/4lgN/4)

+ . . . + (N/2)-(1 k 01
= (cN/2)- [lgN/2 + lgN/4 + * -. +lg 1 J

5 (c/2)N lg’ N

= O(Nlg’N).

This completes our analysis of the DNN structure, establishing the follow-
ing.

NEW DATA STR~~~~RE 1 (dynamic nearest neighbor). The DNN struc-
ture for dynamic nearest neighbor searching in the plane has performances

I&.&N) 5 Prr(N).lg(N + 1) = O(Nlg’N),

QrmdW 5 QmWMN + 1) = O(k2N),

%NN(N) 5 &v) = O(N)*

Note that the cost of doing N pairs of insert, Query operations in the DNN
structure is B(N lg2 N); all other known dynamic nearest neighbor struc-
tures require s2(N2) time for the task.

The binary transformation that we have just described for nearest
neighbor searching is applicable to any decomposable searching problem:
given a static data structure for a particular problem, a dynamic structure
is maintained by keeping a set of static structures, each of which represents
a set whose cardinality is a power of 2. Insertion is accomplished by the
same technique of binary counting. A query can be answered by querying
all the static structures in existence at the time of the query, and combining
the answers by repeated application of the 0 operator.

308 BENTLEY AND SAXE

A computer program that implements the binary transform is sketched
in Program 3.2. It assumes the existence of a static structure S with
operations Query,, Build,, and Unbuild, (Unbuild, returns the elements
currently stored in the structure as a linked list).’ The code implements a
dynamic structure D by providing routines Init, (which initializes the
structure to be empty), Insert,,, and Query,. It implements the binary
strategy by maintaining a one-way infinite array P with the invariant that
P[i] is either empty or contains a static structure of size 2’. The variable
High is an integer that is one greater than the index of the last nonempty
structure; P[High] is always empty. Init, initializes the structure to have
this invariant. Query, answers a query by iterating through the structures
and combining the answers by the 0 operator. Insert, can be understood
most easily by considering incrementing a binary integer by one: to do so,
we scan from right to left, changing ones to zeros until we come to the first
zero (which we then make a one). An Alphard program very similar to the
code in Program 3.2 has been given by Bentley and Shaw (1980); they also
provide both a precise specification of the transform and a proof that the
program indeed meets its specifications.

proc Init, c
PIO] t 0; High t 0

proc Insert D(x) t

S+ {xl
it0
while P[i] # 0 do

S t S u Unbuilds(P[i]); P[i] t 0
iti+ 1

P[i] t Build,(S)

if i = High then
High t High + 1; P[High] t 0

func Query,(x) t

A +- Quevdx, p[Ol)
for it 1 to High-l do

A + q (A, Query,(x, PiiD)
return A

PROGRAM 3.2. Sketch of code for the binary transform.

‘Throughout this paper we will retrieve a set of T2’s from a structure by unbuilding the
structure. In some applications it might be more efficient to store the set along with the
structure.

DECOMPOSABLE SEARCHING PROBLEMS I 309

The analysis of the general transformation is quite similar to the analysis
of the DNN structure.2 Since at most lg(N + 1) static structures exist for
an N-element dynamic structure, if we assume that the static query cost is
monotone nondecreasing then we have

Q,(N) 5 QsGVMN + 1).

To analyze the storage and processing costs we need the following defini-
tion: a function F is said to grow at least linearly if for every two positive
integers, M and N, where M < N,

F(M)/M I F(N)/N.

A consequence of this definition is that if F is a function that grows at least
linearly and A and B are positive integers, then

F(A + B) = A[F(A + B)/ (A + B)] + B[F((A + B)/ (A + B)]

2 F(A) + F(B).

Since the dynamic structure partitions its elements among static structures
without replication, if the storage costs S, of the static structure grows at
least linearly then we have the relation

S,(N) 2 S,(N).

To analyze the processing cost we will first consider the case that N is a
power of 2; the reasoning used in our analysis of DNN shows that

P,(N - 1) = P,(N/2) + 2Ps(N/4) + - . . + (N/2)&(1).

When Ps grows at least linearly, we know that Ps(2i) 2 2 Ps(i) and we can
use this fact inductively to show that

PD(N - 1) I P,(N/2) + P,(N/2) + . . . +P,(N/2)

= Ps(N/2).lg N.

We will now use a less accurate (but more general) analytic technique to
establish the value of P,(N) for N not one less than a power of 2. Note
that after N elements have been inserted, any particular element has been
in at most lg(N + 1) distinct static structures. We will now show that for
any transform, if every element has been built into at most k structures,
then the static and dynamic processing costs are related by

P,(N) 5 P,(N).k.

‘In the analysis of the transformed structure we will count only the costs incurred by
operations on the original structure. Examination of the code in Program 3.2 shows that the
overhead costs for both Insert and Query are a small constant times lg N.

310 BENTLEY AND SAXE

(This immediately yields the corollary that

P,(N) I Ps(N)~lg(N + 1)

for the binary transform, for any positive N.) Consider the cost that any
particular element, E, contributes to P,(N). Each time E is built into a
new static structure of size M, we can assign it a share of that cost of
P,(M)/M. Because Ps grows at least linearly and M is less than or equal
to N, we know that

and we can therefore assign E this latter cost as an upper bound. Multiply-
ing the number of distinct elements (N) by the number of times each is
built into a static structure (less than k) times this cost yields the desired
result.

To enable us to speak more precisely about transforms on data struc-
tures for decomposable searching problems, we need the following defini-
tion.

DEFINITION 3.1 (admissible transform). A transformation on decom-
posable searching problems is said to be an admissible (F(N), G(N))
transform if it converts the static structure A into a dynamic structure B
whose semantics are correct assuming or@ the properv of decomposability,
and whose performance satisfies the relations’

assuming only that QA is monotone nondecreasing and that both PA and
S, grow at least linearly.4

This definition will be further refined and presented as a precise model of
computation in Subsection 4.1.

3To simplify the analysis, we will count only the costs of calls to operations on the static
structure, and not the costs of bookkeeping operations nor the cost of combining the results
of queries into different static structures. Careful e xamination of our algorithms will show
that these extra costs add only a small constant factor (which does not depend on For G) to
the computation times. In most cases, this constant quickly approaches unity as N increases.
Similarly, the only storage we charge to the dynamic structure is that used for storing
instances of the static structure. Again, this is generally the dominant cost.

‘For cases where PA, QA , and .S” do not satisfy these criteria, we may choose functions Pi,
QA, and Si that (a) satisfy the criteria and (b) dominate PA, QA, and S’, respectively. The
relations g&en above will then hold between the dynamic cost functions and Pi, Q;, S;.

DECOMPOSABLE SEARCHING PROBLEMS I 311

We can now state precisely the fact that the binary transform efficiently
converts a static data structure to a dynamic structure as Theorem 3.1.

THEOREM 3.1 (the binary transform). The binary transform is an admissi-
ble (lg(N + l), lg(N + 1)) transform.

Proof. Given in the preceding text. Q.E.D.

To illustrate some “tricks” available in using the binary transform, we
will study its application to the member query problem using the data
structure of a sorted array. Precisely, consider the static data structure for
member searching that stores the elements in increasing order in an array
(built by sorting the set), and answers a query by performing a binary
search. The analysis of this structure (which we call SA, for sorted array)
shows

P s* = O(WW,

S SA = OtNh

QSA = OOgN).

Consider the dynamic member searching structure achieved by applying
the binary transformation to SA: we always maintain a set of sorted
arrays, each of size a power of 2. A particularly efficient representation of
this structure (which we will call BL, for binomial list’) is to store these
sorted arrays sequentially in one large array, with the largest sorted
segment (which we call a run) leftmost in the array. Two snapshots of a BL
are shown in Fig. 3.3; the vertical bars in the figure separate the runs in the
array. By the analysis of SA and the effect of the binary transform, we can
easily see that the performance of the BL structure is

P BL = O(NlgVV),

s,, = O(N),

Q BL = O(lg%).

Note that very little storage is used by a BL: it requires only N array words
for the elements, plus approximately lg N bits to describe the cardinality of
the represented set.

There is a glaring deficiency in the straightforward implementation of
this structure: the obvious insertion routine inserts the 1024th element by

‘A scheme very similar to this was proposed by John McCarthy in the wntext of an
“on-line merge sort” (see Knutb (1973, Question 5.2.4.17)). The binomial list structure was
developed for the present application by explicit application of the binary -form, and was
then studied in detail by Bentley et al. (1978). The name is taken from its simkity to the
binomial queue data structure of Vuillcmin (1978).

312 BENTLEY AND SAXE

112 19 23 27 38 41 43 47127 43l201--

a.

112 10 23 27 38 41 43 47127 20 38 43(--

b

FIG. 3.3. Snapshots of a binomial list. (a) An 11-element binomial list. (b) After
inserting 36.

ignoring all the structure currently in the array and resorting from scratch.
A superior insertion strategy is to consider the inserted element as a
rightmost one-element run, and merge that with its neighboring one-element
run giving a two-element run. We then merge that with its neighbor, giving
a four-element run, and so forth, until the two rightmost runs are of
unequal sizes. The amount of work in building a new run in this scheme is
linear in the size of the run, and the cost of inserting N elements is
therefore 0(N lg N). We have thus avoided paying the logarithmic penalty
factor inherent in the binary transform by observing that runs can be
efficiently merged.6

We can sometimes avoid paying the transform penalty of a logarithmic
slowdown in query time. Specifically, we will consider the average cost of
performing a successful member search in a BL (that is, a search that finds
the element it was looking for). If we assume that each element in the array
is equally likely to be searched for, then the probability of finding the
desired element in the first run is at least l/2. Therefore, half the time we
need not search the other runs. Likewise, at least one-half of the remaining
times we find the desired element in the second run, so the probability of
searching the third run is less than l/4. Sumrning the cost of searching
each run times the probability of performing the search, we find that a
successful member search is expected to be at most twice as expensive in
the BL as in the SA.

The arguments that we have just sketched have been given in detail by
Bentley et al. (1978), who describe the following data structure.

NEW DATA STRUCTURE 2 (binomial lists). The binomial list (BL) struc-
ture for dynamic member searching has performances

Pm(N) = O(NkW,

Q,,(N) = O(k2N),

%,(N) = O(N).

%nly constant extra space is required to merge consecutive runs in an array-see Knuth
(1973, Exercise. 5.2.4.18). The algorithm to accomplish this, however, is extremely difficult to
code, and would probably not be used in any real application.

DECOMPOSABLE SEARCHING PROBLEMS I 313

The linear storage used by this structure consists of exactly N array words
and O(lgN) additional bits, which is minimal.

Bentley et al. (1978) have investigated this structure in detail and have
shown that it is optimal in a certain model of minimum-storage dynamic
member searching. The BL structure provides an interesting point of
comparison with the minimum-storage structure described by Munro and
Suwanda (1979); the BL performs substantially better than their structure
by working in a different model of computation.

There is yet another circumstance in which the logarithmic cost penalties
of applying the binary transform do not have to be paid: when the original
cost functions are fast growing. Consider, for example, a static data
structure with N2 preprocessing time. Our previous analysis shows that for
N a power of 2, we will have

PD(N - 1) = Ps(N/2) + 2Ps(N/4) + * . * + (N/2)Ps(1)

= (N/2)2 + 2(N/4)2 + . . . + (N/2)12

= (N2/2).[1/2+ l/4+*** +1/N]

= O(N2).

Similar analyses show that the logarithmic penalty in processing cost is not
incurred when the binary transform is applied to any static structure with
preprocessing cost of Q(N’+‘), for any positive E. Likewise, it can be
shown that the logarithmic penalty in query time will not have to be paid
for any static structure with query time of S2(N’).

This concludes our study of the binary transform. In the next two
subsections we will see that this transform is but one of many possible
ways of converting a static structure to a dynamic structure, at the cost of
penalty factors in the preprocessing and query costs. As we study the other
transforms and their performance, it is important to keep in mind that the
penalty factors need not always be paid. In this subsection we have seen
three ways of avoiding them: by merging structures instead of rebuilding
them from scratch, by counting the uveruge search time instead of the
worst-case time (this is sometimes appropriate when the 0 operator has a
zero element), and by performing separate analysis for fmt-growing func-
tions.

3.2. Transformations with Fast Query Time

The binary transform described in the last subsection provides an
example of an admissible (lg(N + l), lg(N + 1)) transform, and we might
wonder if we can do better. In this subsection we will investigate a class of
transforms that have faster query times than the binary transform at the

314 BENTLEY AND SAXE

FIG. 3.4. The triangular transform.

cost of slower insertion time. Specifically, we will see that an admissible
(k, (k !N)“k) transform exists for every positive integer k. To study this
transform we will first investigate the case k = 2, and then move on to the
general case.

We will call the transform for the case k = 2 the triangular transform,
because it is based on the triangular numbers (that is, numbers of the form
(I;)). The transform is illustrated in Fig. 3.4. Note that when five elements
are in the dynamic structure, there are static structures of sizes 3 and 2;
when the sixth element is inserted, those structures are destroyed and a
new structure of size 6 is created. At any point in the history of the
dynamic structure, there will be at most two static structures in existence.
The insertion algorithm creates a new “large” static structure at every
triangular number; otherwise it inserts an element by unbuilding the
smaller structure and building it into a new structure with one additional
element. A query can be answered by searching the two static structures
and combining the answers by the q operator.

The triangular structure is very easy to analyze. Because at most two
static structures exist at any time, the dynamic query cost is given by

QdW 5 2Qs(W.

If we assume that the static storage requirements grow at least linearly, we
know that the dynamic structure does not use more storage. To analyze the
insertion time, consider the case in which a total of (y) elements have
been inserted. It is easy to prove by induction that no element has been
built into more than M structures (the proof is based on the recurrence for
the triangular numbers). In general, ‘if N elements have been inserted, no
single element has been built into more than (2N)‘j2 static structures. By

DECOMPOSABLE SEARCHING PROBLEMS I 315

the arguments in the previous subsection, this implies

PO(N) I P&v)*(2N)“2.

These arguments together establish the following theorem.

THEOREM 3.2 (the triangular transform). The triangular transform is an
admissible (2, (2 N)‘I2) transform.

Just as the binary transform is isomorphic to the binary representation
of the integers, so is the triangular transform isomorphic to a representa-
tion of the integers based on triangular numbers. (This system is called a
“binomial number system” by Knuth (1968, Exercise 1.2.6.56).) Specifi-
cally, an integer N is represented by a pair of integers i and j (with i > j)
by the expression

N=(;)+(i).

Note that both i and j are less than (2N)“’ + 1; this explains the
processing cost of the transform. The general transform, which we will call
the k-binomial transform, is based on a straightforward generalization of
this scheme, in which an integer is (uniquely) represented as the sum of k
binomial coefficients, whose lower parts are the integers 1 through k. This
counting scheme is illustrated for the cases k = 2 and k = 3 in Fig. 3.5.
Row 15 of the table is interpreted as follows: in the 2-binomial representa-

k-2

Intwvr (2) (1)

0 n o+o 1 0

I= 1+0 2 0
2 - 1+1 2 1
a n s+o a 0
4 = a+1 a 1
6 - 6+2 3 2
6 - 6+0 4 0
7 = 6+1 4 1
6 - 6+2 4 2
0 - 6+6 4 3

10 - IO+0 6 0
11 - lO+l 6 1
IL n IO+2 6 2
13 - 104 6 3
14 - 10+4 6 4
16 - 16+0 6 0
16 - 16+1 6 1
17 - 16+2 6 2
16 - 16+6 6 3
10 - 16+4 6 4
20 l 16+6 6 6
21 - 21+0 7 0
22 - 21+1 7 1

k-8

Integer (3) (2) (1)

0 = o+o+o 2 1 0
1 = 1+0+0 a 1 0
2 = l+i+o a 2 0
a - 1+1+1 1 2 i
4 - 4+0+0 4 1 0
6 - 4+1+0 4 2 0
6 . 4+1+1 4 2 1
7 - 4+3+0 4 a 0
6 . 4+6+1 4 3 i
9 . 4+6+2 4 3 2

10 n lO+OtO 6 1 0
11 - lO+l+O 6 2 0
12 n 1ot1t1 6 21
13 = 10+3+0 6 3 0
14 - 10+3+1 6 31
16 n 10+6+2 6 3 2
16 . 10+6+0 6 4 0
17 n 10+6+1 6 4 i
16 n 10+6+2 6 4 2
16 - 10+6+6 6 4 3
20 n 20+0+0 6 10
21 - 20+1+0 6 2 0
22 n 2o+i+i 6 21

Ro. 3.5. 2-Binomial and 3-binomial counting.

316 BENTLEY AND SAXE

tion, 15 is the sum of 15 and 0, or (z) and (F), In the 3-binomial

representation, 15 is the sum of 10,3, and 2, or (;), (i), (t).
With the example of Fig. 3.5 as background, we can now aescnoe

k-binomial counting more precisely. We will use an array D[1 . * * k] to
store the upper parts of the binomial coefficients. The invariant of this
counting scheme has two parts: first, the represented integer is given by

~=(“[k”l)+(y~ll)+... +(y1),

and second, each coefficient D[i] satisfies the condition

Lqi] > D[i- I],

for 2 I i I k. We can initialize the array to represent zero by assigning
each D[i] to have the value i - 1; we will also find it handy to assume that
the value of D[k + 1] is “infinity”. The code for incrementing an integer
by one is as follows.

D[l]tD[l] + 1
it1
while D[i] = D[i + 1] do

D[i + 1] t D[i + 1] + 1
D[i]ci - 1
iti+ 1

It is easy to prove by induction that this code correctly implements the
above counting scheme.

FIG. 3.7. The 3-binomial transform.

DECOMPOSABLE SEARCHING PROBLEMS I 317

It is straightforward to modify the above counting scheme to yield an
admissible transform. To do so we will retain the array D (with the same
invariant as above), and add an array P[l - * . k] of static structures. The
number of elements in the static structure P[i] is always (Dlil). The code
for this k-binomial transform is given in Program 3.6, and Fig. 3.7
illustrates the 3-binomial transform.

proc Init, c
for i c 1 to k do

D[i] t i - 1; P[i] t0
D[k + I]too

proc Insert o(x) t
D[l]tD[l] + 1; StUnbuild,(P[l]) u {x}; P[l]cO
it1
while D[i] = D[i + l] do

D[i + l]+ D[i + l] + 1; StS u Unbuilds(P[i])
D[i] t i - 1; P[i] t 0
iti+ 1

P[i] t Build,(S)

func Query,(x) t
A + Query,(-v P[W
for it 2 to k do

A + CKA, Querys(x, P[il))
return A

PROGRAM 3.6. Code for the k-binomial transform.

The correctness of the code can be proved by induction, and its analysis
establishes the following theorem.

THEOREM 3.3 (the k-binomial transform). The k-binomial transform is
an admissible (k , (k ! IV)“‘) transform.

Proof: Since at most k structures exist at any one time, we have

Since the space requirement for the static structure grows at least linearly
with the number of elements, the dynamic structure can be no more
expensive. To bound the processing time of the dynamic structure, we will
investigate the maximum number of structures into which any element
may be built during the first N insertions. Note that after N insertions, we

318

have

BENTLEY AND SAXB

2 (D[k] - k + l)k/k!,

implying

D[k] I(k!N)“k+k- 1.

This, together with the invariant that

D[k] >D[k- l] >a.- >O[l] 2 1

implies that each D[i] satisfies

OlD[i] -iI(k!N)“k- 1

for 1 I i I k. Finally, we note that whenever a structure is discarded and
its elements are rebuilt into a new structure, the difference between the
upper and lower parts of the binomial coefficient giving the size of the
structure increases by one; that is, a structure of size

m
(1 i

is always replaced by a structure of size

m+l (1 i

or of size

This implies that no element is ever built into more than (k!N)‘/’ static
structures, from which it follows that

P,(N) II Ps(N).(k!N)“k.

Q.E.D.

Note that for all positive k, k! ‘/’ < k. For large k, Stirling’s approxima-
tion gives’ k! ‘ik - k/e.

‘I We use the notation “A - 23” as a shorthand for “I A - B 1 - o(B).”

DECOMPOSABLE SEARCHING PROBLEMS I 319

To illustrate the application of the binomial transforms, we will consider
the problem of range searching. In this problem, the stored set contains
points in a d-dimensional space; that is, each element in the set has the d
attributes A,,& . . . , A,,. A query asks for all points with each dimension
Ai in a specified range [Li, Q], for 1 I i < d. (Note that this problem is
decomposable with the 0 operator interpreted as u *.) Bentley and Maurer
(1980) describe a structure for static range searching (SRS) with perfor-
mances

QSRSW) = m3W~

4RSW) = oW+%

%RSW) = ow’+6)

for any fixed S > 0. By choosing, for example, k = [2/r] and S = e/2, we
can apply the k-binomial transform to achieve the following structure.

NEW DATA STRUCTURE 3 (dynamic range searching). A dynamic range
searching (DRS) structure supporting insertions and queries for point sets
in d-space with performance

QodW = O(kN),

P,,(N) = O(N’+<),

SDRS(N) = O(NI+e)

can be achieved for any fixed e > 0 and positive integer d.

Such a structure is useful for range searching in a situation in which the
number of queries is known greatly to exceed the number of insertions.
Specifically, if the number of insertions in a set of N insertions and queries
were known to be 0(Np) for some p < 1, then this structure would allow
the operations to be processed in 0(N lg N) time. The best performance for
this task prior to this structure was (independently) achieved by Lueker
(1978) and by Willard (1978); their structures require 0(N lgd N) time.

It is important to observe that the penalties incurred by the k-binomiai
transform need not always be paid. Just as in the binomial transform, they
can occasionally be avoided by merging static structures, by counting the
expected query cost, or by performing separate analyses for fast-growing
functions.

*In order to implement (multiset) union as a constant-time operation, we ask that a query

combined in constant time by allocating a new root node containing pointers to the two trees.

320 BENTLEY AND SAXE

6

FIG. 3.8. Dual binomial transforms. (a) The dual triangular transform. (b) The dual
3-binomial transform.

3.3 Transform&ions with Fast Insertion Time

In the last subsection we investigated a set of transforms that only
slightly increase the query time at the cost of greatly increasing the
processing time. In this subsection we will study a class of structures dual
to those, which only slightly increase the processing time but greatly
increase the query time. Specifically, we will see that there exists an
admissible (k(k !N)“k , k) transform for each positive integer k. As be-
fore, we will first investigate the case k = 2, and then turn to the general
case.

The dual triangular transform is illustrated pictorially in Fig. 3.8a. At
time 9, there are six structures (of sizes 1, 2, 3, 1, 1, and 1); when the 10th
element is inserted it is combined with the last three structures to create a
new static structure of size 4. In general, when the (y)th element is
inserted, M elements are combined to form a static structure of size M;
other elements are kept in singleton structures as they are inserted. Since
each element is built into only two static structures (the large and the
singleton), we know that

PO(N) I 2P,(N).

It is easy to show that at most 2(2N) ‘I2 static structures exist at any time,
so we have

Q,(N) I Q,(N).2(2N)1’2.
These facts together establish the following theorem.

THEOREM 3.4 (the dual triangular transform). The dual triangular tram+
form is an admissible (2(2N)‘/*, 2) transform.

That this transform is dual to the triangular transform studied in
Subsection 3.2 is intuitively clear from Fig. 3.8a. To make the duality more
precise we will study the dual triangular transform from the viewpoint of
the triangular-number counting scheme of the last subsection. The history

DECOMPOSABLE SEARCHING PROBLEMS I 321

Structures

Large small

Number

Large Small

0 0
1

(1) I:) 1
(172)
(192)

I:, 3
3

(1,2) (19 1) 3

(1,2,3) 6
(1,2,3) I:) 6
(1,2,3) (191) 6

(1,2,3) (l,l, 1) 6
(1,2,3,4) 0 10
(1,2,%4) (1) 10
(1,2,%4) (191) 10

FIG. 3.9. History of the dual triangular transform.

0
0
1

0

1

2
0
1

2
3
0
1

2

of the dynamic structure is shown in tabular form in Fig. 3.9. The eighth
row shows that when eight elements are in the dynamic structure, there are
five static structures: three “large” structures (of sixes 1, 2, and 3) and two
“small” structures (each of only one element). In general, if the number in
the “large” column is (y), then there are large structures of sixes
1,2,3 , . . . , M - 1. The number in the “small” column gives the number of
unit-sized static structures. Note that the entries in the number columns
are identical to the 2-binomial counting depicted in Fig. 3.5. This duality
carries through to the k-binomial transform. For the case of the dual
3-binomial transform, each element will be built into at most three static
structures (which we call small, medium, and large). All small structures
have exactly one element, medium structures have an integer number of
elements, and large structures contain a triangular number of elements. At
any point in the history of the transform, each set of existing small,
medium, and large structures contains structures of adjacent sizes. The
following table shows the history of the dual 3-binomial transform from
the insertion of the fourth through the tenth elements; a history diagram of
the dual 3-binomial transform appears in Fig. 3.8b.

Structures Populations

N Law Med Sldl Large Med Small

4 (1,3) 4 0 0
5 (1,3) 4 1 0

6 (1,3) (1) (1) 4 1 1

7 Cl,31 (192) I:) 4 3 0
8 Cl,31 (1,2) 4 3 1

9 (133) (192) (l,U 4 3 2
10 (1,3,6) 0 0 10 0 0

322 BENTLEY AND SAXE

The extension of this strategy from the dual 3-binomial transform to the
dual k-binomial transform is straightforward. The code of Program 3.6 is
modified so that instead of containing a static structure of (Dli)) elements,
P[i] now contains a list of structures of sizes

Note that the sum of the sixes of the structures is () yil . This allows us to
establish the following theorem.

THEOREM 3.5 (the dual k-binomial transform). The dual k-binomial
transform is an admissible (k(k !N)“k, k) trun.$orm.

Proof. Because each element is built into at most k static structures, it
is clear that the processing cost increases by at most a factor of k. The
analysis used in the proof of Theorem 3.3 shows that each of the k classes
of structures contains at most (k!N) Ilk distinct structures at any point.
Therefore at most k(k!N) Ilk static structures exist at any time, providing
the upper bound on the query time penalty. Q.E.D.

To illustrate the application of this transformation we will again con-
sider the problem of range searching in a d-dimensional point set. Bentley
and Maurer (1980) describe a second structure for range searching (whicil
we will call SRS’) with properties

&,oQ = O(N),

for any fixed 6 > 0. By choosing, for example, k = [2/e] and 6 = c/2, we
can apply the dual k-binomial transform to achieve the following structure.

NEW DATA STRUCTLJRE 4 (dual dynamic range searching). A dynamic
range searching (DRS’) structure supporting insertions and queries for
point sets in d-space with performance

QJXS~N) = OtN’h

PD~S’W) = O(NkW,

hs~(w = O(N)

can be achieved for any fixed E > 0 and positive integer d.

Note that this structure is appropriate when there are many more inser-
tions than queries; it reduces the cost of the computation of certain
sequences of N insert and query operations (analogous to those discussed
at the end of Subsection 3.2) from the O(N lgdN) time required by
Lueker’s (1978) or Willard’s (1978) methods to 0(N lg N).

DECOMPOSABLE SEARCHING PROBLEMS I 323

TABLE 3.10
Summary of Transformations

Transformation Query factor Processing factor

k-Binomial
Binary
Dual k-binomial

k
lg(N + 1)
k(k!N)“*

(k!N)‘/&

MN + 1)
k

3.4. Summary of the Transformations

In this section we have seen a number of different static-to-dynamic
transformations on data structures for decomposable searching problems.
We will now spend a moment reviewing these transformations. The trans-
formations themselves are summarized in Table 3.10.

There are many other transformations besides those that we have
already investigated. A simple way of achieving a new transformation is by
isomorphism to a particular number system (counting scheme). This is
illustrated in Fig. 3.11 for the radix-3 number system (ternary counting).
part (a) of that figure shows the ternary transform: each static structure
has cardinality of either a power of 3 or twice a power of 3 and corre-
sponds to either a 1 or a 2 in the ternary representation of the number of
elements in the dynamic structure. This transform is an admissible
([log, NJ, 2 [log, N]) transform. 9 Its dual is shown in part (b) of the
figure; every structure in the dual is of size a power of 3, and there
are zero, one, or two structures for any power of 3, corresponding to
the appropriate digit in the ternary expression of the integer size of
the structure. This is an admissible (2 [log, N], [log, N]) transform.
This scheme can be extended to radix-k counting to yield a pri-
mary([log,N],(k - l)[log,N])transformandadual((k - l)[log,N],
[log,N]) transform. An interesting open problem is to examine other
counting schemes (such as Fibonacci or factorial counting) for their
properties as transforms; in Section 4 we will see techniques that enable us
to establish lower bounds on the cost of transforms and thereby give us a
touchstone for evaluating various derived transforms.

It is now easy to state formally the relationship of the primary and dual
transforms derived from a particular counting scheme. In the primary
transform, there is a single structure corresponding to each digit, whereas
in the dual transform each digit corresponds to a set of structures that are
the “carries” from its right neighbor (the unit digit is a set of structures of
size 1).

The transformations of this section together provide a powerful set of
tools for designing new data structures both for particular applications and

9’llm& and the following claims about radix-k transforms assume that N > 1.

324 BENTLBY AND SAXE

Q

3

1 v w

FIG. 3.11. Radix-3 transformations. (a) The ternary transform. (a) The dual ternary
transform.

as a component in larger algorithms. To design a dynamic structure in a
given context, the algorithm designer first designs a static structure (which
is usually much easier than designing a dynamic structure), and then
applies one of the transformations to achieve an efficient dynamic struc-
ture. Which transformation is used depends on the relative efficiency of
the static preprocessing and query costs and on the expected frequency of
insertions and queries.

As we mentioned before, the cost penalties of the transformations need
not always be paid. One can often avoid them by merging static structures,
by analyzing the average query time, or by performing separate analyses
for fast-growing cost functions.

4. LOWER BOUNDS ON TRANSFORMATIONS

Our main goal in this section is to prove the optimality, in a certain
sense, of some of the transformations discussed in Section 3. Our path to
this goal will have many steps, and the reasons for each step might not be
clear in advance. To aid the reader, we now briefly sketch the contents of
this section.

In Subsection 4.1 we define the model of computation which we will use
throughout the rest of the section. We also advise the reader that the use of
this model implies certain limitations on the applicability of the results we
will obtain. In Subsections 4.2 through 4.4 we show a method for repre-
senting an initial sequence of insertions under some transform as a binary
tree, and show how the efficiencies of transformations are related to
properties of the corresponding trees. To achieve the correspondence
between transforms and trees, we restrict our attention to a class of
transforms that we call the arboreal transforms. In Subsection 4.5 we state
and solve a recurrence relating the various tree properties defined in
Subsection 4.4, and interpret this result as it applies to the /c-binomial
transformations. We then extend the basic result to answer questions about
other transformations (including the binary transformation) in Subsection

DECOMPOSABLE SEARCHING PROBLEMS I 325

4.6. In Subsection 4.7 we discuss the justification of the restriction to
arboreal strategies, and in Subsection 4.8 we return to explore the limita-
tions (implied by our model) of the preceding results, showing a number of
cases in which our “lower bounds” can be beaten by going outside the
model.

4.1. The Model of Computation

The most important assumption of our model is that the transformations
under consideration are not allowed to use any specific knowledge about
the original problem or static structure except for the fact that the problem
is decomposable. It therefore remains plausible for any particular decom-
posable searching problem, P, that there exists a dynamic data structure
for P having performance better than that produced by applying any
optimal static-to-dynamic transform to any static structure for P. For
example, AVL trees (see Knuth (1973)) provide a dynamic data structure
for member searching with

P AVL = o(N1ktN),

S AVL= OtN),

e AVL = o(1gN)*

The results of this section imply that no dynamic structure with this
efficiency can be obtained (in the worst case) by applying a general
transform to a static structure for member searching; the efficiency of
AVL trees depends on particular properties of the member searching
problem other than decomposability (in particular, the ability to maintain
the structural invariant under rotation).

Our model of computation is that we have three operations, Build,
Query, and 0, whose inner workings we may not examine. Build works
with performance Ps to create static structures. Query works with perfor-
mance Q, to search the structures created by Build. The 0 operator is
guaranteed to have the property

q (Query(x, Build(A)), Query(x, Build(B)) = Query(Build(A u B)).

The only way to answer a query is by applying Query one or more times to
structures created by Build and then combining the results using 0. We
assume that Ps grows at least linearly and that Q, is monotone nonde-
creasing.

To measure the computation costs (PD and Q,) associated with a
dynamic structure, we will charge only for the computation time of calls to
Build and Query. It should be noted that these costs will generally be the
dominant parts of the total costs of the dynamic algorithms. In any case,
this approximation is certainly acceptable for the purpose of establishing
lower bounds on the costs of dynamic algorithms.

326 BENTLEY AND SAXE

Our goal in the search for efficient transformations is to minimize
simultaneously the penalty functions

f’(N) = l~.yNP~(WQs(~) and G(N) = h,(W/Ps(W.

The bulk of this section will be devoted to showing limits on just how far
this process may be carried in the worst case. Our interpretation of the
term “worst case” in this context is a bit tricky. We have already men-
tioned that we may assume no specific knowledge about the problem or
the original static structure except for decomposability. It is also important
to note that we do not allow ourselves to assume any specific knowledge
about the efficiency of the underlying static structure, except that P is at
least linear and Q is monotone nondecreasing. (Note, for example, that the
improvements in F and G which occur for fast-growing P and Q are not
examples of worst-case behavior, so there is no contradiction in the fact
that our lower bounds deny the possibility of such improvements in the
general case.)

The reader may find it helpful to think of the worst case as that in which
P is linear and Q is constant, the intuition being that it is hardest for the
dynamic structure’s costs to approach the static structure’s costs when the
latter are as small as possible. Since we may not use any specific knowl-
edge about the original static problem or data structure, any solution to the
dynamic problem must work by maintaining a collection of static struc-
tures. Whenever an element is inserted, a new structure must be created
containing that element” and possibly some other elements. Also, some
existing static structures may be thrown away. When a query is made to
the dynamic structure, it is necessary to search some set of static structures
which together contain all the elements inserted so far.

For the following analysis, we will place a few restrictions on the nature
of the dynamic structures we will consider. We will return later to the
problem of justifying these restrictions. Our first restriction is as follows:

RESTRICTION 4.1 (dynamic structures partition elements into static struc-
tures). We assume that at any time there exists exactly one static struc-
ture containing each element which has been inserted so far. That is, the
static structures partition the set of elements represented by the dynamic
structure.

With the preceding assumptions in mind, we are now ready to move on
to the first steps of our analysis.

‘“While we may conceive of strategies in which new static structures are created by queria
into the dynamic structure, WC need not consider this possibility for this worst-case analysis,
since Ps could grow much more rapidly than Qs.

DECOMPOSABLE SEARCHING PROBLEMS I 327

4.2. Computing F and G

We now give some rules for determining the worst-case values of the
penalty functions F and G associated with a particular strategy.

DEFINITIONS (f and g). Consider the history of a dynamic structure
over the course of any number of insertions starting when the structure is
empty. We define f(N) as the maximum number of static structures
existing after one of the first N insertions. We define g(N) as the sum of
the cardinalities of all sets of elements built into static structures created
over the course of the first N insertions.

Note that, while the definitions of f and g actually depend on the
specific transform used, the identity of the transforms under consideration
will always be clear from context. We may now bound F and G as follows:

THEOREM 4.1 (f bounds F). For any positive integer N, F(N) I f(N).

Proof. After any of the first N insertions (say the ith), at most f(N)
static structures exist. To compute the cost of answering a query, we
charge precisely for querying these structures. Since each of these struc-
tures has cardinality no larger than i, and since Q, is monotone nonde-
creasing, the total cost is at mostj’(N)Q,(i). Q.E.D.

THEOREM 4.2 (g/N bounds G). For euery positive integer, N, G(N) I

g(W/N.

Proof. We note that any static structure built during the first N
insertions will have cardinality no larger than N. Consider such a structure,
S, having cardinality i. By the fact that Ps grows at least linearly, we may
bound the cost of building S by the inequality

Ps(i) I iP,(N)/N.

Summing over all static structures, we get

P,(N) 5 dNPs(W/N~
implying

G(N) = PdN)/Ps(N) 5 g(N)/N. Q.E.D.

By the assumptions in Subsection 4.1, the preceding bounds are the tightest
possible for the general case. We will therefore concern ourselves hence-
forth with the problem of minimizing f and g rather than F and G.

4.3. Transforming History Diagrams to Trees

The transforms we discussed in Section 3 are all representable by history
diagrams, such as those in Figs. 3.1, 3.4, 3.7, 3.8, and 3.11. It is not the

328 BENTLEY AND SAXE

case, however, that all transforms are so representable; in order for a static
structure to be represented as a (contiguous) rectangle in a history dia-
gram, it is necessary that it be built from a set of elements which were
inserted consecutively during the history of the structure. We now impose
our second restriction on the class of dynamic structures to be considered:

RESTRICTION 4.2 (continguity of static structures). We will restrict our
attention to transforms whose histories are representable by history dia-
grams.

Indeed, we will further restrict our attention to history diagrams (such as
those in Section 3) in which every rectangle reaches to the “diagonal” of
the diagram. We may state this otherwise as

RnsrrucrroN 4.3 (eagerness of static structures). We will restrict our
attention to transforms in which each static structure is built as soon as all
its elements have been inserted, and in which the elements of any dis-
carded static structure are always built into a single new static structure
(along with some additional elements).

Strategies which satisfy Restrictions 4.1, 4.2, and 4.3 will be called arboreal
strategies for a reason that will soon become obvious.

Consider the history diagram for the first N insertions into a dynamic
structure which is maintained by an arboreal strategy. Any such diagram
induces a binary tree, as shown in Fig. 4.1. We may draw this tree by
tracing the left and upper edges of each rectangle in the diagram. The
internal nodes of the tree will thus be at the upper left comers of the
various rectangles; each internal node of the tree corresponds to a (unique)
static structure. We will now go on to study some relationships between the
efficiencies of arboreal strategies and properties of their induced trees.

I
I~SON~)l

,d
Eon(a)

I '

-r
(b)

FIG. 4.1. A history diagram and its induced tree. (a) A partial history diagram. (b) The
induced tree.

DECOMPOSABLE SEARCHING PROBLEMS I 329

4.4 Tree Properties and Their Relation to Performance

We now introduce some basic vocabulary for discussing properties of
binary trees.

DEFINITIONS (tree properties). Let T be a binary tree. Then leaves(T)
denotes the set of all leaves of T and nodes(T) denotes the set of all
internal nodes of T. The weight of T, denoted IT 1, is defined as the
cardinality of leaves(T). For any internal node, a, of T the left and right
sons of a are denoted lson(a) and rson(a), respectively. If a is a leaf of T,
then the right depth of a, written rd(a), is defined as the number of right
branches along the path from the root of T to a. The right height of T,
rh(T), is the maximum right depth of any leaf of T. The right path length of
T, R(T), is defined as the sum of the right depths of all leaves of T. Left
depth, left height, and left path length are defined analogously.

We will sometimes identify a (not necessarily internal) node, x, of a tree
with the subtree rooted at X. For example, we may write 1 x 1 to indicate the
number of leaves which are descendants of x.

We now make the following observation:

THEOREM 4.3 (alternate characterization of left path length). Let T be a
tree. Then,

L(T) = x Ilson(n)l.
nEnodes(T)

Proof. Consider any leaf, x, of T. We need only note that the left
branches along the path from the root of T to x emanate precisely from
those nodes of T whose left sons contain x. Q.E.D.

With this characterization of left path length in mind, we may now relate
the trees induced by arboreal strategies to the penalty functions associated
with those strategies.

Consider the tree in Figure 4.lb. To each static structure created during
the partial history represented by that tree, there corresponds a right
(horizontal in the diagram) branch whose length (in the diagram) is
proportional to the cardinality of that static structure. Moreover, for any
internal node, n, of the tree, the length (in the diagram) of the right branch
from n corresponds precisely to the number of leaves in the left son of n.
By summing over all internal nodes of the tree, we establish the following
result:

THEOREM 4.4 (relation of g to left path length). Let N be a positive
integer and let T be the tree induced from the history diagram representing the

330 BENTLEY AND SAXE

first N insertions into a &numic structure maintained by some arboreal
strategy. Then, L(T) = g(N).

Proof. Given in the preceding text. Q.E.D.

We may also characterize N and f in terms of tree properties:

THEOREM 4.5 (relation of N andf to tree properties). Let N be a positive
integer and let T be the tree induced from the history diagram representing the
first N insertions into a dynamic structure maintained by some arboreal
strategy. Then,

IT(=N+ 1 and rh(T) -f(N).

Proof: Inspection of Fig. 4.1 will reveal that these results are obvious.
Q.E.D.

In the remainder of this section we will use N to denote the number of
elements inserted into a dynamic structure under some arboreal strategy,
and n = N + 1 to indicate the number of leaves in the corresponding tree.

The theorems proved so far in this section allow use to address the
problem of “simultaneously minimizing” F and G by investigating a
closely related problem about trees, namely, that of “simultaneously mini-
mizing” the right height and left path length of a tree with a fixed number
of nodes. To discuss this more precisely, we make the following definition:

DEFINITION (minimal left path length). Let n and k be positive integers.
We define

L,(n) = Min{L(T)[T isatreesuchthatIT1 =nandrh(T) I k}.

Since the only tree with zero right height is the tree of one node (which
also has zero left path length), we also define

L,(l) = 0.

By convention, we will regard L,(n) as “positive infinity” whenever n > 1.
A tree with n leaves, right path length k, and left path length L,(n) will be
called an economical tree.

In th2 next subsection, we will investigate the behavior of L,(n) as k and
n vary, and then restate our findings in terms of lower bounds on
worst-case penalty functions.

4.5 The Behavior of L,(n)

Consider a binary tree, T, with root node t. Let A and B be the subtrees
rooted at a = lson(t) and b = rson(t), respectively. The weight, right

DECOMPOSABLE SEARCHING PROBLEMS I 331

height, and left path length of T may be recursively computed from
properties of A and B by the relations

ITI = IAl + PI,

rh(T) = max(rh(A), rh(B) + l),

L(T) = L(A) + [A(+ L(B).

From this, we obtain the following recurrence for L,(n):

THEOREM 4.6 (recurrence for L,(n)). Let n and k be any positive
integers. Then,

I

Lk(n) =4 II’- 1 + &(n - 1) = (;),

n= 1,

k = 1,n > 1,

Min [L,(i)+i+L,-*(n-i)], k> l,n> 1.
I ISign-

Proof. The results for k = 1 follow by considering the unique binary
tree of any weight which has right height 5 1. For the case k > 1, we
consider a tree T having weight n > 1 and height k. Let t be the root of T,
and let A and B be the subtrees rooted at a = lson(t) and b = rson(t),
respectively. Then we must have

1 I JAI < n,

IAl + IBI = n,

rh(A) I k,

rh(B) I k - 1.

Moreover, if the left path length of T is to be minimal, then the left path
lengths of A and B must be minimal. That is, we must have

L(4 = UPI) and L(B) = LdIW

These requirements are precisely captured by our recurrence. Q.E.D.

We now come to the principal theorem of this section, wherein the
behavior of L,(n) is precisely characterized in terms of binomial coeffi-
cients.

THEOREM 4.7 (characterization of L,(n)). Let k and m be nonnegutiw
integers such that k I m, and let n be u positive integer sutisfving

332

Then,

BENTLEY AND SAXE

Lk(n) = k(k ‘: 1) + (m - k + l)N, (1)

where

Proof: Our proof will proceed by induction on k and, for each fixed
positive value of k, by induction on n.

Base step (k = 0). In this case, we have

(;)=1=(“:1).

This implies that n = 1, so the right-hand side of (I) reduces to

(o)(o ‘: 1) + (m - 0 + l)(n - (;)) = 0 + (m + 1)(1 - 1).

= 0

= L,(l).

In&due step (k > 0). We now must show that the theorem holds for
any k > 0 assuming it holds for all smaller k. We proceed by induction on
n. In doing this, we must take note of the interaction between m and n.
Since k is positive, (7) increases monotonically with m. Thus, the mini-

mum possible value of n is (E) = 1, and for any positive value of n, there is
at least one possible value for m (and occasionally there will be two).

Base step (n = 1). In this case we may choose either

(a)m=k-l;N=l- (k;l)=l-O=l,or

(b) m = k; N = 1 - (i) = 1 - 1 = 0.

We must show that (I) hold for either choice of m. For the case m = k - 1,
we have

= k(0) + (0)l
= 0
= L,(l).

DECOMPOSABLE SEARCHING PROBLEMS I 333

For the case m = k, we have

k(kl: 1 1 + (m - k + 1)N =k(k:l)+(k-k+l)N

= k(0) + (1)O
= 0
= L,(l).

Inductive step (n > 1). We first show that the right-hand side of (I)
gives an upper bound on L,(n). Note that

We now pick a and b such that

(;--;)jbs(k:l)’

a+b=n.

By Theorem 4.6, we have

L,(n) 5 Lk(a) + a + Lk-,(b)

= +((m- I)-k+l)(A)

=
k(k: 1) + (m - k + 1)N.

where

(11)

334 BENTLEY AND SAXE

This establishes that our expression is an upper bound on L,(n). To
establish that this is also a lower bound, we must show that no other way
of expressing n as the sum of two positive numbers, a and b, will give a
smaller value for

Lk(u) + a + I+,(b). (III)

To show this, we consider the effect on the value of expression (III) of
increasing or decreasing a by steps of 1.” Suppose we start with a and b
chosen to satisfy (II), and then start incrementing a and decrementing b by
steps of 1. So long as a remains less than (y) and b remains greater than

(;I ,‘), the effect of each increment will be to increase L,(u) + a by
((m - 1) - k + 1) + 1 = m - k + 1 and to decrease L,-,(b) by (m - 1)
- (k - 1) + 1 = m - k + 1, leaving the total value of (III) unchanged.i2
However, as soon as either a or b exceeds the stated bound, one or more of
the following things will happen:

1. the incremental growth of L,(u) will increase while the incremental
shrinkage of L,- i(b) decreases or remains the same,

2. the incremental shrinkage of L,-,(b) will decrease while the
incremental growth of L,(u) increases or remains the same, or

3. b will diminish to 0.

In any case, a smaller value for (III) will not be obtained. Similarly, if we
start with a and b as in (II) and decrease the value of Q while increasing b,
then we will have zero or more steps at which (III) remains unchanged,
zero or more steps where the increase in L,- ,(b) exceeds the decrease in
L,(u) + a, and finally the step at which a diminishes to zero. Thus, the
rules given in (II) give an optimal partitioning of n into a and 6. This
completes the induction step and the proof. Q.E.D.

The use of the auxiliary variable, m, in expression (I) makes it a bit
difficult to grasp intuitively what is being said about the effects of n and k
on L,(n). To make the picture clearer, we will briefly study the asymptotic
behavior of L,(n) as k remains fixed and n grows without bound. Consider
first what happens as n ranges only over binomial coefficients of the form
(z). *We note that n = (T) implies

m-k+ 1 <(n/k!)“kjm.

“In the following, we assume that k > 1. If k = 1 we must always take 6 = 1 (and
a = n - 1), since only then is L,(b) defined.

“The incremental changes given here are found by substitution into the second term of the
right-hand side of (I), under the induction hypothesis.

DECOMPOSABLE SEARCHING PROBLEMS I 335

so,

-[k/ (k + l)]k!“%‘+“k.

Since the growth of &(n) is very well behaved,13 the preceding may be
extended to cover all values of n.

THEOREM 4.8 (asymptotic behavior of L,(n)). Let k be any positive
integer. Then,

L,(n) -[k/ (k + l)]k!“%$+“k.

Proof. The result follows directly from the preceding text. Q.E.D.

By precisely characterizing L,(n), Theorem 4.7 gives us a bound on the
efficiencies of arboreal static-to-dynamic transforms. Any such strategy
which has f(N) < k for all N must always have g(N) 2 L,(N + 1). The
asymptotic behavior of L,(n) given by Theorem 4.8 and our knowledge
that Theorems 4.1 and 4.2 are the best possible within our model tell us
that whenever we have

F(N) <k

for any positive integer k, we must also have

G(N) 2 L,(N + l)/N-(k!N)“k.

This is precisely the behavior achieved by the k-binomial transforms, up to
lower-order terms. Note, however, that the exact lower bound is not always
achievable. The reason for this is the consideration of immutability of
history. If we know in advance that there will be exactly N insertions, then
an optimal strategy can be devised by working backward from an eco-
nomical tree of weight N + 1 and right height k. If the total number of
insertions to be made turns out to be larger, though, then a different
strategy for the first N insertions may have been appropriate. Fortunately,
the results of this restriction turn out not to be too severe, since the
k-binomial strategies have efficiency very close to this theoretical limit.
The following theorem shows that, for any k, the G(N) achieved by the
k-binomial transform is optimal (for (F(N) I k) not only to within
lower-order terms but actually to within an additive constant of unity.

‘3Given the values where n is of the form “m choose k,” we can find the exucf values at all
other n by linear interpolation.

336 BENTLEY AND SAXE

THEOREM 4.9 (optimality of k-binomial transforms). For any positioe
integer, k, the k-binomial transform achieves

f(N) 5 k and g(N) I L,(N + 1) + N

for all positive N.

Proof. Examination of the optimal construction given in the proof of
Theorem 4.7 shows that the k-binomial strategy achieves the optimal value
of

f(N) = UN + 1)

when N is of the form

N=(T)-1

for some m 2 k. For intermediate values of N, we need only note that,
after the first N insertions under the k-binomial strategy, the sum of the
cardinalities of all structures formed so far except those stifl in existence
after the Nth insertion (note that the latter must have a total cardinality of
N) will never be greater than L,(n). This fact may be established by
induction on k, using the fact that values of L,(n) are given exactly by
linear interpolation between points at which the k-binomial transform
gives absolutely minimal values off(N). Q.E.D.

4.6 Allowing the Number of Static Structures to Grow

So far in this section we have only considered minimizing g(N) where
f(N) is bounded by a constant. In other words, we have considered only
strategies which allow some fixed maximum number of static structures to
exist at one time. In Section 3, however, we also investigated strategies (the
binary and the dual k-binomial transforms) which allow the number of
static structures to grow without limit as the total number of elements in
the dynamic structure increases. We will now, therefore, briefly investigate
transforms which allow f(n) to grow without bound.

To study the efficiency of transforms in which f(N) is unbounded, we
may consider the behavior of L,(n), where k is allowed to vary with n.14
We must be aware of two possible consequences of allowing k to grow:

(1) For any particular k, n may never grow large enough for L,(n) to
approach the asymptotic behavior given by Theorem 4.9.

141n accordance with the notational conventions of this section, we have k = f(n)
= f(N + 1), since the first N insertions always give a history diagram which induces a tree of
weightN+ 1.

DECOMPOSABLE SEARCHING PROBLEMS I 337

(2) Our previous caveat about the immutability of history may be-
come more significant.

Since the asymptotic approach of L,(n)/[k/(k + l)]k!‘/knl+‘/k to unity
(as n grows and k remains constant) is from below, (1) may be ignored for
the purpose of investigating upper bounds. Since the immutability of
history can never make it easier to devise efficient transforms, this consid-
eration may be ignored for the investigation of lower bounds. Because of
these complicating factors, our results for transforms with unbounded fare
less precise than those for boundedf. A few results are nonetheless worth
noting, the first of which is the following.

THEOREM 4.10a (optimality of the binary transform). For any arboreal
transform such that f(N) = O&N), g(N) = a(NlgN).

Proof. Since constraining the growth of f can only increase and never
decrease the necessary growth of g, we need only consider the case where
f(N) = B(lgN). We must show that L,(&N + 1) = Q(Nlg N). We define
the function M by

M(n,k) = Max m t I(34

From the fact that f(N) = e(lgN), it follows that M(N,f(N)) -f(N) =
fI(lgN). This gives us

L?(N) 2 &N,W + 1)

2 &(N)(N)

-4 f(N)/ (f(N) + OIL MN,f(N)) - fW)IN
= e(NlgN) = Q(NlgN).

Q.E.D.

This result tells us that the binary transform is optimal in the sense that
any transform that pays as small a penalty in search cost (within a
constant factor) must pay at least as large a penalty in insertion (again
within a constant factor); any arboreal transform which achieves F(N) =
O(lg N) in the worst case must also pay G(N) = a(lg N).” The binary
transform is also optimal in the sense that any transform which is actually
cheaper (by more than a constant factor) for searches must be strictly

“This follows from the fact that Theorems 4.1 and 4.2 are the tightest results possible
within our model.

338 BENTLEY AND SAXE

more expensive (again by more than a constant factor) for insertions. We
state this result more formally in the following theorem.

THEOREM 4.1Ob (optimality of the binary transform). For any arboreal
transform such thatf(N) = o(lg N), g(N) = w(NlgN).

Proof: Let the function h be defined by

From the hypothesis that f(N) = o(lgN), it follows that h(N) = w(l).
Moreover, since M(N,f(N)) 2 Ig N, we havef(N) = o(A4(N,f(N)), which
means that the approximation in Theorem 4.8 remains valid.16 This gives
us

-[f(N)/ (f(N) + l)]f(N)!‘/f(N)N’+‘/f(N)

-[l](f(N)/e)N’/f’“)N

= [(lgN)/ (e-h(N))]2h(“)N

= w(NlgN).

Q.E.D.

This implies that any arboreal transform which achieves F(N) = o(lgN)
in the worst case must also pay G(N) = o(lg N).

In the preceding proof, we saw that the approximation given in Theorem
4.8 still serves to provide a lower bound on the growth of g even when f is
allowed to grow without bound, provided that f(N) = o(lg N). The next
natural question is whether this bound can always be achieved. It turns out
that this is not always possible. If f grows in a very irregular manner,
having sudden spurts of growth separated by intervals of almost no
change, then the immutability of history will cause g(N) to be much larger
than &,,(N + 1) for values of N immediately following the sudden
increases. If f grows “smoothly” (the precise meaning of this term is
implicit in the following theorem), however, this lower bound for g(N) is
very nearly obtainable. We state this result formally as follows.

THEOREM 4.11 (optimizing g for slowly growingf). Let h be a monotone
non-decreasing differentiable function such that

h(x) = o(l) and h’(x) = 0(1/x).

16That is, consideration (1) may be disregarded.

DECOMPOSABLE SEARCHING PROBLEMS I 339

Then, there exists a transform having

f(N) +G%
g(N) - (h(N)/e)N’+‘/h(N).

(1)
(11)

Moreover, given (I), (II) is optimal up to lower-order terms.

Proof. A structure having the performance described may be formed
by a process of “cutting and pasting” from the history diagrams of the
various k-binomial strategies. We omit the details for brevity and for the
sake of keeping the reader awake. The optimality of (II), given (I), is
implicit in the proof of Theorem 4.1Ob. Q.E.D.

Our results for transforms in which f(N) = w(lgN) are much less
complete. In particular, we know that the performance of the dual k-
binomial transforms falls substantially short of the bound given by the
inequality

g(N) 2 &,)(N + 1).

We conjecture that this is an inevitable penalty of the immutability of
history, and that the dual binomial transforms are in fact optimal in some
strong sense, similar to that of Theorem 4.9 for the ordinary binomial
transforms. The problem of finding optimal transforms in which f(N)
grows faster than lg N but slower than nC for any positive e remains open.”

4.7 Justification of the Restriction to Arboreal Transforms

In Subsections 4.1 and 4.3, we introduced three restrictions which
together constrained our investigation to arboreal transforms. While we
conjecture that arboreal strategies are optimal, in the sense that for any
nonarboreal transform there exists an arboreal transform which is at least
as good (given the “black box” model described in Subsection 4.1) we
have not yet found a rigorous proof. In this subsection, we will summarize
our reasons for considering each of the restrictions reasonable.

Restriction 4.1 forbids the existence of multiple structures containing the
same element. Our intuition is that any strategy that permits such overlap-
ping structures can be improved by omitting the shared elements from all
but one of the overlapping structures. To justify this intuition would
require careful examination of the consequences of this omission when that
one structure is finally destroyed. We may also forbid overlapping struc-
tures on the grounds that transformations which allow them cannot be

“We may equivalently view this as the problem of optimizing f when g(N) grows
asymptotically faster than N but slower than Nlg N.

340 BENTLEY AND SAXE

optimal for space in the worst case. An even more serious objection is that
there are a number of problems that satisfy the definition of decomposabil-
ity only when the unions involved are of disjoint sets.

Our intuitive justification for Restriction 4.2 (contiguity of static struc-
tures) is the belief that a partial history which does not satisfy this
restriction can be turned into one that does, at no cost inf(N) or g(N), by
a kind of “permutation of the names of the elements.” To show this would
justify the restriction at least for the cases where f is bounded or grows
slowly and smoothly, so that the immutability of history is not a significant
problem.

For Restriction 4.3 (eagerness of static structures), we can actually give a
rigorous justification, at least over the class of transforms which already
satisfy Restrictions 4.1 and 4.2. We express this in the following theorem:

THEOREM 4.12 (optimality of eager strategies). Let N be a positive
integer. For any partial history consisting of the first N insertions and
satisfying Restrictions 4.1 and 4.2, there exists a partial history which also
satisfies Restriction 4.3 and which has f(N) and g(N) no greater than those
for the original partial history.

Prooj Any partial history which satisfies the first two restrictions may
be represented by a history diagram. We may ensure that the rectangle in
the upper left comer of the diagram represents a structure which is formed
as soon as all its elements become available, for any diagram that does not
have this property can be transformed at no cost into one that does. The
construction is as follows:

Let R be the upper left rectangle in the diagram. Consider the leftmost rectangle
immediately below R. If it is wider than R, then we extend it upward to the top of
the diagram, obliterating R; if it is narrower than R, then we extend R downward
by one step. This process is repeated until the property holds.

But now the rest of the diagram (excluding the upper-left rectangle) must
consist of zero, one, or two staircase-shaped pieces to which the same
process may be applied recursively, finally yielding a diagram satisfying
Restriction 4.3. No step in this process increases either the total pre-
processing cost or the maximum number of simultaneously existing struc-
tures, so Restriction 4.3 has been formally justified. Q.E.D.

4.8 Limitations on the Significance of the Lower Bout&

The lower bounds we have derived in this section are based on the
model of computation given in Subsection 4.1. Before concluding the
section, we will mention some of the limitations which this implies for the
applicability of our results.

DECOMPOSABLE SEARCHING PROBLEMS I 341

We have already mentioned that is is often possible to obtain superior
dynamic data structures for individual decomposable problems (e.g., Mem-
ber) by using specific properties of those problems. Another assumption on
which our lower bounds depend is that Theorems 4.1 and 4.2 are the
strongest possible results of their kind, because we assume no knowledge
about the performance of the original static algorithm. As we saw at the
end of Subsection 3.1 the penalty factors, F(N) and G(N), may be greatly
reduced (from f&lg N) to t9(1) in the example of Subsection 3.1) if the cost
functions of the static structure are already fast-growing. We now present
some results concerning a slightly different way of lowering the penalty
functions given fast-growing cost functions for the original static structure.

Suppose we are given a static structure for a decomposable searching
problem having preprocessing cost Ps(N) and query cost Q,(N). We will
make only the usual assumption about Q,- that it is monotone nonde-
creasing. We will, however, make the assumption that P,(N) not only
grows at least linearly with N, but is actually 0(N2). If we apply the
2-binomial (triangular) transform, we will obtain a dynamic structure
having cost functions, P, and Q,, which satisfy

Q,(N) 5 2QdN) and P,(N) = 0(N5’2).

The reader is advised to go through the exercise of verifying the latter
assertion. The penalty factor in preprocessing is given by

G(N) = P,(N)/P,(N) = 19(N1’2),

which is at most a constant factor improvement over the worst-case result
given in Theorem 3.2. We appear to get negligible compensation for the
fact that the preprocessing cost is already much more than linear. If we
look a little more carefully, however, we may notice an interesting phe-
nomenon.

In the triangular strategy, we maintain two structures, a large one,
having cardinality O(N), and a small one, having cardinality 0(N ‘1’). If
we break down P,,(N) into the cost of forming all the large structures built
during the first N insertions and the cost of forming all the small structures
built during the first N insertions, we find that the large structures have a
total cost of e(N’/‘), while the total cost of the small structures is only
0(N2). If Ps had been linear, then the costs of the two families of
structures would have been equal within a constant factor, each being
8(N3j2). The present disparity suggests that it might be better to merge the
small structures into the large ones less frequently. And, indeed, if we
adopt the strategy of rebuilding all the elements into a single structure only
when the size of the small structure would exceed N213, we achieve a
dynamic structure having

QdN> 5 2QdW and P,(N) = 0(N7’3) = 0(N”‘P(N))

342 BENTLEY AND SAXE

(as the reader may again wish to verify), the total preprocessing cost being
split evenly (within a constant factor) between the two families of struc-
tures. The preceding results may be generalized to arbitrary polynomial
preprocessing costs and arbitrary binomial transforms, as shown in the
following theorem.

THEOREM 4.13 (shift-of-strategy speed-ups). Let k be an arbitrary posi-
tive integer and let r be a real number” gretaer than 1. Suppose that we are
given a static structure for a decomposable searching problem with cost
functions satisfying the following criteria:

Q,(N) is monotone nondecreasing.

P,(N) grows at least linearly, and

P,(N) = o(N’).

Then, a dynamic data structure can be constructed such that

Q,(N) 5 kQs(N) and P,(N) = O(N+,(N)),

where
R = (r - l)/(rk - 1).

Proof: We maintain a set of structures satisfying the following in-
variants:

(1) After any insertion there are at most k static structures.

(2) Letj be a positive integer. After the Nth insertion, the cardinality,
q, of thejth largest structure (if there are at least j structures in existence)
satisfies

When an element is inserted, we see how many structures already exist. If
there are fewer than k, we simply build the new element into a static
structure of cardinality one. If k structures already exist, we rebuild the
smallest structure to include the new element. We then repeatedly (zero or
more times) merge the smallest two structures until (2) is satisfied. We
leave it to the reader to verify that this strategy achieves the advertised
performance. Q.E.D.

In any strategy based on the construction in the previous proof, the total
preprocessing will be divided evenly (up to constant factors) among k

IsThe nit-picking reader will delight in noting that it is not quite correct to allow r to be an
arbitrary real number. In order for the desired transform to be implementable, r must be-
Turing computable. Even then, if r is very expensive to compute, the bookkeeping costs may
kill us. Similar considerations apply to the function h in Theorem 4.11.

DECOMPOSABLE SEARCHING PROBLEMS I 343

families of structures. We conjecture that this gives optimal PD within a
constant factor (which may depend on r and k). Needless to say, similar
improvements are available, both in preprocessing time and in query time,
for a number of other transformations, given sufficiently fast-growing cost
functions. Only a small fraction of the possibilities have been explored.

5. ONLINE TRANSFORMATIONS

All the transforms in Section 3 have the property that some insertions
are very cheap while others are very expensive. For example, in the binary
transform the 1023rd insertion is much less costly than the 1024th. While
this situation is quite acceptable in certain applications (such as when the
total cost of accessing a structure throughout an entire algorithm is
counted), it is prohibitive in others (such as online data bases). In this
section we will show how the transforms in Sections 3 can be modified to
amortize the cost of building static structures over the time of many
insertions.

In Section 4, we worked on the principle that any static structure might
as well be formed as soon as all its elements became available, since the
cost of building it would eventually have to be paid anyway. While this is
reasonable if we are concerned only with the total cost of all insertions, it
is inappropriate if we wish to make sure that no individual insertion is
inordinately expensive. Figure 5.1 shows a strategy which is similar to the
binary strategy of Subsection 3.1, except that each structure of cardinality
C is completed at the end of the Cth insertion that al! its elements are
available, rather than at the end of the first such insertion. A structure, s, is
said to be pending during the Nth insertion if the all elements of s become
available at or before the beginning of the Nth insertion and s is completed
during the Nth insertion or later. (The X'S in Fig. 5.1 denote the structures
that are pending during the eighth insertion). A structure of cardinality C
will therefore be pending during exactly C insertions.

To limit the work done in any insertion step, we require that l/C of the
work required to build any structure of size C be performed during each of
the C steps in which that structure is pending.19 We call the resulting

19The exact means by which this is ensured are left unspecified. We may modify the static
algorithm to include appropriate breakpoints (generally an easier task than totally reworking
the algorithm into a dynamic algorithm by ad hoc methods), or we could assume that we can
determine the required computation time in advance (at negligible cost) and set a hardware
interrupt. For our present purposes, we will assume that the ability to partition the compute
time of a call to insert is available by magic. It should also be noted that the partitioning of
the work into equal parts will not be exact in practice; this will lead to slightly greater
insertion times than those we are about to advertise.

344 BENTLEY AND SAXB

20
19
19
17
16
15
I4
13
12
11
10

:
7

:

:
2
1

Fro. 5.1. The online binary transform.

transformation the online binary transformation. Analysis of this trans-
form’s performance yields the following theorem.

THEOREM 5.1 (the on-line binary transformation). Suppose we are given
a static structure, S, for a decomposable problem such that

(1) Q,(N) is monotone nondecreusing,

(2) a structure of cardinality N may be built by N calls, each of cost
Z,(N) (recall that Z,(N) is defined as Ps(N)/N),

(3) Z,(N) is montone nondecreasing,

(4) the space used at any point during the formation of a static structure is
at most S,(N), and

(5) S,(N) grows at least linearly.

Then, there exists a dynamic structure, D, such that

Q,(N) 2 2lkdN + l)JQsV’%

Z,(N) ~kO1Zs(N),

S,(N) 53&(N).

(Recall that Zo(N) is the worst-case time to insert the Nth element in a
dynamic structure.)

Proof. By assumption (2), application of the online binary transform is
well defined. We will now show that the resulting dynamic algorithm has
the stated performance. We first note that all structures which are either
active (completed but not yet discarded) after the Nth insertion or pending

DECOMPOSABLE SEARCHING PROBLEMS I 345

during the Nth insertion have cardinalities which are exact powers of 2
and which are I N. Moreover, there are never more than two active
structures of any given cardinality. This and assumption (1) justify the
claim about Q,. Similarly, assumption (3) and the fact that there is never
more than one pending structure of any cardinality together justify the
claim about In. Finally, we note that the sum of the cardinalities of all
structures active and pending after the Nth insertion is no more than 3N
(N for the active structures and no more than 2N for the pending
structures). Together with assumptions (4) and (5), this fact justifies the
claim about S,,. Q.E.D.

To illustrate the application of the online binary transformation, we will
consider the problem of d-dimensional maxima searching. A vector is said
to be maximal with respect to a set of vectors if no vector in the set is
greater than the given vector in all coordinates. Preparata (1978) has given
a data structure SMS for d-dimensional maxima searching with perfor-
mances

PSMS(N) = 0(Nlgd-* N),

&s(N) = O(Nkd-*N),

QSMSW = O(kd-*N),

for any d 2 3. Applying the online binary transform to this structure yields
the following.

NEW DATA STRUCTURE 5 (dynamic maxima searching). For any fixed
d 2 3 there exists a dynamic data structure DMS for d-dimensional
maxima searching with performance

Zms(N) = O(kd-’ N),

Qms(N) = O(kd-‘N),

S,,,(N) = 0(Nlgd-* N).

This structure has the same performance as Lueker’s (1979) but is substan-
tially easier to code and prove correct; his structure, however, also sup-
ports deletions. (The two structures were discovered independently.)

The other transforms we have studied may also be modified to give
online versions, as shown by the examples in Fig. 5.2. The online triangular
transform, shown in Fig.- 5.2a, gives the performance

Z,,(N) I (2N)“*Zs(N),

QdN) 2 3Qs(Nh
S,(N) I 2Ss(N).

346 BENTLEY AND SAXE

FIG. 5.2. (a) Online triangular transform. (b) Online dual triangular transform.

Similarly, the online dual triangular transform, shown in Fig. 5.2b, achieves

z&v 5 24(N),

edw 5 3wW*~dw,

%3(N) - MW

Determination of good lower bounds for the penalty factors associated
with online transformations remains an open problem.

6. TRANSFORMATIONS THAT SUPPORT DELETION

So far in this paper we have considered dynamic data structures that
support only insertions and queries. In this section we will present two
results dealing with data structures that support deletions along with
insertions and queries, and the realization of such structures by decom-
posable transforms. In Subsection 6.1 we present a negative result that says
that, in general, it is impossible to achieve by a transform a data structure
that efficiently supports deletions. In Subsection 6.2 we will examine a
transformation that efficiently achieves deletion, but is applicable only to a
subset of the decomposable searching problems. We then examine in
Subsection 6.3 a transformation that yields structures that support dele-
tions and queries, but no insertions.

6.1 A Lower Bound

In this subsection we will study a lower bound on the efficiency of
performing deletion in a structure achieved by a decomposable transfor-
mation. As with all lower-bound proofs, it is important that we accurately
define our model of computation, which is very similar to that used in

DECOMPOSABLE SEARCHING PROBLEMS I 347

Section 4. We assume that there is a static structure S with operations
Build and Query, which have performances Ps and Qs, respectively. The
function Ps grows at least linearly, and Qs is positive and monotone
nondecreasing. There is no way to answer a query other than by using the
Query subroutine (on a structure built by Build) and the 0 operator. The
only costs that we will count are those of Ps, Q,, and a constant cost for
computing /-J.

To state the lower bound precisely, we need some definitions. For a
dynamic structure with deletions (which we call DD) we will define the
functions Z&,(N), &o(N), and Q&,(N) for the insertion, deletion, and
query costs, respectively. To strengthen our result, we let these costs denote
not the worst-case times, but rather the average cost (over a distribution
that we will make precise in the proof of the theorem). We are now ready
to state and prove the primary theorem of this subsection.

THEOREM 6.1 (expense of deletion). For any dynamic structure with
deletions (which we call DD) obtained by a transformation applicable to aN
decomposable searching problems, there exists a sequence of insertions, dele-
tions, and queries for which

Note that this implies that at least one of the insertion, deletion, and query
costs requires at least Q(N I/=) time.

Proof. We will prove this theorem by considering a “steady state” in
which there is a structure of size N, and a sufficiently long string of
repeated query, delete, and insert operations is performed. After M repeti-
tions of these operations, the structure will still be of size N, and a total of
A4 queries will have been performed. Each query that is performed must
examine some collection of static structures whose total size is at least N
(so that each element of the set is represented in the query); assume that
C*(N) such structures are examined on the average. We therefore know
that at least half the queries examine no more than 2C*(N) static struc-
tures each (if more were examined, then the average would be too high),
and in these cases the largest structure examined must contain at least
N/(2C*(N)) elements.

Consider now an adversary that causes each deletion in the sequence to
be deleted from the largest existing static structure-because of our model
of computation, this structure must now be discarded. For sufficiently long
sequences of operations, static structures must be created as often as they
are discarded. The costs of building the static structure must therefore be
paid in insertion, deletion, and query costs, yielding

%,(W + 6,(N) + Q&o(N) ~$‘&WC*(N)).

348 BENTLEY AND SAXE

(The right-hand side is from the fact that at least one-half of the queries
access a structure of size N/2C*(N), and the adversary always deletes that
structure.) We also know that

because each structure queried costs at least some constant. Multiplying
these two inequalities yields

[ei5D<wl*[~Mw + mrdw + Q~dWl
= S1(C*(N)*Ps(N/2C*(N)))

= Qow))

= Q(N).

The last two inequalities both follow from the fact that Ps grows at least
linearly. Q.E.D.

Several authors have recently proposed static-to-dynamic transforma-
tions with deletion that come close to achieving this lower bound by
always keeping approximately N ‘P static structures, each of size ap-
proximately N . ‘I* The lower bound of this section shows that such
transformations are the best that can be achieved in the general case.
Fortunately, however, additional information can often be used to achieve
more rapid deletion outside the model for which this lower bound holds.
(Any such transform, however, is not applicable to all decomposable
searching problems.)

6.2 A Fast Special Case

Theorem 6.1 shows that any quest for an efficient deletion transforma-
tion for all aN decomposable searching problems must be in vain. In this
section we will see a transformation that does in fact efficiently support
deletions as well as insertions, but is not applicable to all decomposable
searching problems. We will investigate this transform by first studying a
particular example, and then turn to the general case.

The particular problem that we will study is that of counting the number
of times a given element occurs in a multiset. A suitable static structure for
this problem is the sorted array, which we discussed in Subsection 3.1; it
has performances

f’sA(N) = O(NkN),

S,,.,(N) = O(N),

GA(N) = O(kN)-

DECOMPOSABLE SEARCHING PROBLEMS I 349

We saw in that subsection that this structure can be transformed to yield
the binomial list data structure that efficiently supports both insertions and
member queries. It is a trivial modification to have it support count queries
as well; the 0 operator is now plus rather than or.

Binomial lists can be modified to support deletion by keeping two
binomial lists at all times, which we will call the real and the ghost
structures. Each time an element is inserted, it is inserted into the real
structure. When an element is deleted, we insert it into the ghost structure.
To count the number of times an element occurs in the set, we count the
number of times it occurs in the real structure and subtract from that the
number of times is occurs in the ghost structure. We maintain the further
invariant that the ghost structure always holds fewer than half as many
elements as the real structure; when deletion of an element violates this
invariant we destroy the ghost structure, unbuild the set of elements in the
real structure and subtract all deleted elements from it, and finally rebuild
that set into a new real structure (giving an empty ghost structure).

We must now analyze the performance of binomial lists with deletions.
The costs of inserting an element and of performing a count search remain
the same; they are respectively O(lg N) and O(lg’N). The “immediate”
cost of deleting an element is O(lg N) (for performing the insertion into the
ghost structure); we must also count, however, the cost of rebuilding the
structure. The cost of rebuilding an M/Zelement real structure is incurred
only after M/2 elements have been deleted; since the total cost is
0(Mlg M), we can assign each element a share proportional to lg M. Thus
the cost of deletion in an N-element set can be amortized to O(lg N).

The strategy of using real and ghost structures can be generalized to give
a dynamic structure supporting deletions for any decomposable searching
problem whose 0 operator has an inverse. The most common case is that
in which l-J isplu.s, for which 0 -i is minus. If 0 is and or or, then one can
often transform the problem to involve plus instead (for instance, we could
transform member queries to count queries, whose 0 operator is invert-
ible). If 0 is multiset union, then this scheme works only when the size of
the answer set for the ghost structure is much smaller than the size of the
total answer set (and this is often not the case). Finally, if 0 is min or rna~,
this scheme is usually impossible to apply.

To describe the strategy more precisely we will need some notation to
describe the efficiency of structures with deletions. If DD is a dynamic
structure supporting deletions, we let P,,(M, N) denote the total insertion
cost involved in a sequence of N insertions and M deletions in an initially
empty structure. The function Q,,(M, N) denotes the cost of answering a
query in a structure built by N insertions and M deletions. Finally,
D&M, N) denotes the total time spent in processing deletions in a series
of N insertions and M deletions, and S,,(M, N) denotes the maximum

350 BENTLEY AND SAXE

space required by the structure during the sequence. With this background
we can describe the transformation supporting deletions precisely in the
following theorem.

THEOREM 6.2 (transformations supporting deletions). Assume that there
exists an admissible (F(N), G(N)) transformation. Then, given any static
structure S for a decomposable searching problem P such that the inverse of
the q operator for P is computable in constant time, it is possible to achieve a
new structure DD with performances

S,,(M,N) I &(2(N - M)) + S,(N - M),

P,,(M>N) I G(N).Ps(N),

Q,,,,(WW I @(N - M)).Q&N - M)) + F(N - M)*Q,(N - M),
D,,(M, N) I G(M)*P,(M) + Ps(2M).

We assume here that Q, is monotone nondecreasing and that both Ps and S,
grow at least linearly.

Proof: The DD structure maintains two dynamic structure (each
achieved by applying the admissible (F(N), G(N)) transform to S): the
real structure and the ghost structure. Both structures are initially empty.
To insert a new element into DD, insert it into the real structure. To
answer a query, answer it on the real structure and subtract from that the
answer on the ghost structure (using i--J’). To delete an element, insert it
into the ghost structure. If the ghost structure ever becomes half the size of
the real structure, rebuild the real structure with only undeleted elements,
and discard the current ghost structure.

The storage requirements of DD follow immediately from the superlin-
ear growth of S& If a total of N insertions and M deletions have been
performed, then at most N - M elements are “really” stored in the
structure. The ghost structure can therefore contain at most N - M
elements, and the real structure contains at most twice that number. The
time spent on insertion is straightforward, and so is the query time. The
time spent on deletion is at most that for inserting M elements into the
ghost structure and then rebuilding the real structure; the latter action is
never carried out on more than 2M elements. These facts together estab-
lish the theorem. Q.E.D.

There are two important facts to note about the transformation of
Theorem 6.2. The first is that it is not online in the sense of Section 5; as it
stands, the expense of rebuilding the real structure and discarding the
ghost structure must occasionally be paid in a single block of time. The
second fact is that there is nothing magic about insisting that the ghost
structure be at most one-half the size of the real structure: we could just as

DECOMPOSABLE SEARCHING PROBLEMS I 351

well use any constant A in the range (0,l). For small A, the query time
decreases and the storage utilization is higher; for large A, the deletion
time decreases.

As an application of this transformation, we will consider the problem of
Empirical Cumulative Distribution Function (ECDF) searching in a set of
N d-dimensional vectors. One vector is said to dominate another if it is
greater than it in all components; an ECDF query asks for the number of
vectors a given vector dominates. Note that ECDF searching is decom-
posable with 0 interpreted as plus. Bentley and Shamos (1977) describe a
data structure for d-dimensional ECDF searching (for d 2 2) with perfor-
mances

We can apply the binary transform of Section 3.1 and the transform of
Theorem 6.2 to their structure to achieve the following.

NEW DATA STRUCTLJRE 6 (dynamic ECDF searching). It is possible to
achieve a data structure for dynamic ECDF searching in which performing
a sequence of N insertions and deletions requires O(NlgdN) time. When
representing N elements, the structure requires 0(N lgd- ’ N) space, and an
ECDF query can be answered in O(lgd+’ N) time.

Lueker (1979) later used a different transformation on decomposable
searching problems to achieve an online structure with performance identi-
cal to this, but with a logarithmic factor removed from the query time; his
structure is more difficult to code, prove correct, and analyze, however.

6.3 Structures Supporting Deletions On&

In the two previous subsections we have examined structures that
support insertions, deletions, and queries. In this subsection we will turn
our attention to structures that support only deletions and queries, and do
not allow insertions. Such structures are interesting both because of their
symmetry with the “insertion-only” structures of previous sections, and
because such a structure leads to a new algorithm with best-known running
time for a particular problem. (Because that algorithm is rather difficult to
describe, we defer discussion of it to Appendix II.)

We will now show how to maintain a set, S, of N elements under the
operations of Build, Delete, and Query. For convenience we will assume
that N = iU*, where M is a positive integer. The Build operation partitions

352 BENTLEY AND SAXE

S into M subsets, each of M elements, and then builds M static structures,
named P ,, . . . , PM, with one static structure to represent each subset. To
Delete a given element we locate its structure Pi, and rebuild 4 without the
given element; note that rebuilding requires at most P(M) time. (The
given element can be located by storing a table, L, such that Lj gives the
integer i of the structure Pj containing element j; this table requires linear
time to build and constant time for a lookup.) The Query operation is
accomplished by querying all M static structures and combining the
answers by M - 1 applications of the 0 operator; this requires at most
M-Q(M) time. These facts together establish the following theorem.

THEOREM 6.3 (structures with deletion only). Given a static structure S
for a decomposable searching problem there exists a dynamic structure DO
with operations Build, Delete, and Quev with performances

%o(W 2 S,(N),

B,(N) 5 J’s(N),

D,(N) I Ps(N”‘),

Q,(N) I N”*Qs(N”‘).

The function B(N) denotes the time required to Build a structure of N
elements. We assume that the functions S, and Ps grow at least linearly and
that Q, is monotone increasing.

An adversary argument similar to that used in the proof of Theorem 6.1
can be used to show that the above construction is nearly optimal.
Specifically, it can be shown that building a structure of N elements and
then performing a sequence of N query-deletion operation pairs must
require at least 8(N312) time.

A new data structure achieved by the transform of Theorem 6.3, and the
application of that structure in a matching algorithm, can be found in
Appendix II.

7. CONCLUSIONS

We will now briefly review the contributions of this paper. The subject
throughout has been general methods for converting static data structures
to dynamic data structures. In Section 3 we saw three distinct classes of
transformations, each based on a combinatorial representation of the
integers. In Section 4 we saw that many of those transformations are
optimal, in a very strong sense. In Section 5 we considered structures in
which each insertion must be handled very quickly; this is important in

DECOMPOSABLE SEARCHING PROBLEMS I 353

“online” applications. Our study of dynamic structures up to this point
concentrated on structures that supported only insertions and queries; in
Section 6 we investigated structures that also support deletions. We saw
that although it is impossible to achieve efficient deletions in the general
case, they can be achieved for an important subclass of the decomposable
searching problems.

The contributions of this paper can be classified on three distinct levels.
On the first level are the new data structures that we have seen. Each one
is currently the best-known structure for its task (with the exception of
New Data Structure 6) and each was discovered by conscious qplication of
the transforms described in this paper. On a second level are the transforma-
tions themselves; they are very interesting from a combinatorial viewpoint,
and provide a useful addition to the algorithm designer’s tool bag. On the
third and final level is the new kind of result represented by the transfor-
mations: they are not just a single solution to a single problem, but rather
a set of solutions to a broad class of problems. This aspect of the work will
be further emphasized in later parts of this paper.

APPENDIX I: A LIST OF DECOMPOSABLE SEARCHING
PROBLEMS

Throughout the body of this paper we have examined a number of
operations on decomposable searching problems. In this appendix we will
list some (23) searching problems that have the property of decomposabil-
ity. For each problem we will note its 0 operator in square brackets.

The most common kind of searching problems are those defined on
totally ordered sets. We already saw that Member searching (which asks
“is x an element of F?“) is decomposable [with 0 operator V]. Other
examples are Successor (what is the least element in F greater than x?)
[mm], Predecessor [max], Rank (how many elements in Fare less than x?)
[+], and Count (how many elements in multiset F have value x?) [+ 1. Two
queries on ordered sets that have no query element are the priority queue
operations Min [min] and Max [max]. These problems, applications in
which they arise, and data structures for their solutions are discussed in
depth by Knuth (1973).

Many of the problems that arise in database applications are decom-
posable. In this context, the set of elements is usually a file of records, each
of which contains certain keys. An Exact Match query calls for a list of all
records that have all keys equal to specified values [U 1. A Partial Match
query asks for all records that match some subset of the keys [U 1. Range
queries ask for all records that have each key in a specified range of values
[u 1. Intersection queries specify a subset of the key space and ask for a list

354 BENTLEY AND SAXE

of all records in that subset (thus asking for the intersection of the query
space and the record set) [u]. Finally, Best Match queries specify an
“ideal” record and a distance function (often the Hamming distance), and
ask for the record in the set closest to the ideal [mm]. These queries and
data structures for answering them are discussed by Rivest (1976).

We saw in the body of the paper two decomposable searching problems
that arise in statistics. Both of the problems are defined in terms of vector
domination (one vector is said to dominate another if it is greater in all
coordinates). A Maxima query asks whether the query vector is dominated
by any in the set [//I. The Empirical Cumulative Distribution Function
(ECDF) query asks how many vectors a given vector dominates [+].

Examples of decomposable searching problems abound in computa-
tional geometry. Many queries are asked of sets of points in the plane or
Euclidean k-space, including Nearest Neighbor (which point in the set is
nearest the query point?) [mm], Furthest Neighbor [max], and Near
Neighbor (list all points within distance d of the query point) [u] queries.
Other queries deal with more complicated objects. For example, we might
wish to know whether a given point is in the intersection of a set of
half-planes (this problem arises in linear programming)-Feasible Region
queries are decomposable [with the A operator]. Other queries include
Rectangle Intersection (what rectangles in the set does this rectangle
intersect?) [u] and Circle Intersection [u 1. The queries and many others
have been discussed in detail by Shamos (1978). Dobkin and Lipton (1976)
investigate a number of decomposable searching problems in multidimen-
sional space; these include such queries as “is the point on any of the
lines” [V] and “is this point on any of the hyperplanes” [V]. Many of the
other problems that we have already mentioned can be cast in geometric
terms; these include ECDF, Maxima and Range searching.

Convex Hull searching is a very interesting problem from the viewpoint
of decomposability. In its simplest form-“is point x within the convex
hull of point set F?“-it is simple to prove that it is not decomposable,
since whenever F contains at least two points we can partition F and
specify x so that x is not in the hull of either part but either is or is not in
the hull of the union. If we ask instead the query “what does the hull of the
set look like from here?’ (the answer being either an assertion that the
query point is within the hull or a pair of angles giving the extremal points
of the hull as “viewed” from the query point), the problem is now
decomposable. The transforms described in this paper are therefore appli-
cable to any data structure for Convex Hull searching, provided that
structure can be cheaply modified to answer the more complicated “view”
query. While this result is not of particular interest in itself (since one can
develop fast ad hoc algorithms for dynamic Convex Hull searching), it
indicates a possibly fruitful technique for extending the domain of applica-

DECOMPOSABLE SEARCHING PROBLEMS I 355

bility of the transforms: the identification of any searching problem P such
that (1) P may be made decomposable by having the query provide some
extra information, and (2) known static algorithms for P can be altered to
yield that extra information at low cost. The identification of other such
“pseudodecomposable” problems (and other decomposable problems in
general) remains an open problem.

APPENDIX II: AN ALGORITHM FOR APPROXIMATE MATCHINGS

In this appendix we will investigate a computational problem that was
examined by Reingold and Tajan (1978). They studied the following
method for finding low-cost matchings among a set of N points in the
plane.

Select a pair of points in the set that realize the minimal interpoint distance,
report the points as being a pair in the matching, and remove them from the set.
Repeat the above process N/Z times, at which time all points in the set have been
matched.

Reingold and Tajan described algorithms by which the above method
could be implemented in 0(N 2 lg N) worst-case time or 0(N2) expected
time. We will now investigate an algorithm based on the transform of
Theorem 6.3 (structures with deletion only) that operates in 8(N 3/2 lg N)
worst-case time.

Our first description of the algorithm will be fairly informal. The
algorithm’s primary data structures are the set, S, of all unmatched points
(organized to facilitate nearest neighbor searching), and an array, T,
recording for each unmatched point the unmatched point nearest it. The
algorithm initializes the structure by building S as the set of all unmatched
points and performing N nearest neighbor searches to compute T. We will
now describe the iterative step. We find the closest pair (say, points x and
y) by choosing x as an unmatched point with minimum distance to its
nearest neighbor, and y as x’s nearest neighbor (this can be accomplished
in logarithmic time by a priority queue, Q, representing the distances in
T). We then delete both x and y from S. To maintain T we must see if any
other points in S have x or y as their nearest neighbor. To do this we keep
a “reverse set”, R, as an array of lists in which R[i] records for each point i
the set of all points that have i as their nearest neighbor (note that R is the
inverse of T). We can now find all points with x or y as nearest neighbors
by examining R[x] and R[y]. We then use S to find the nearest neighbors
of those points, record those nearest neighbors in T and R, and modify Q
to reflect the new state of T. This completes the iterative step of the
algorithm.

356 BENTLEY AND SAXE

We must now cite the following fact, which will be crucial later in our
discussion.

In a set of points in the plane, any given point can be the nearest neighbor of at
most six other points in the set.

This fact is a consequence of the fact that at most six unit circles can be
made to touch a given unit circle without overlap; a precise proof can be
found in Bentley (1976). This fact has two pleasant implications for our
algorithm. First, the cardinality of each list R[i] can be at most 6. Second,
the number of points whose nearest neighbors must be found in any
iteration is bounded above by 10. (Because x was the nearest neighbor of
at most five points besides the one just deleted from S-that is, y; the
same holds for y.)

We will now describe precisely the algorithm we informally sketched
above. It employs the following data structures.

-P, the input array of points to be matched.

-Q, a priority queue representing the objects in T, ordered by
distance to nearest neighbor, and implemented as a heap.

-R, an array that is the reverse of structure T. The element R[i]
contains the list of (at most six) points whose nearest neighbor is point I.

-S, the set of currently unmatched points. The set is implemented by
transforming the Lipton-Tarjan nearest neighbor structure into a dynamic
structure supporting deletions and queries by the transform of Theorem
6.3.

-T, an array telling the nearest unmatched neighbor of each un-
matched point.

Our implementation of Reingold and Tajan’s approximate matching
method can now be described precisely as follows.

1. Initialize the structures as follows.

a. Build S from the points contained in P.

b. Build T by searching S a total of N times to find the nearest
neighbor of each point. As each entry is made in T, record the
corresponding “reverse” entry in R.

c. Insert the elements of T into the priority queue Q.

2. Repeat the following operations N/2 times.

a. Use Q to find a pair of points realizing the minimum interpoint
distance among points in S; call the two points x and y. Report x
and y as a pair in the matching.

b. Delete x and y from S.

DECOMPOSABLE SEARCHING PROBLEMS I 357

c. For each point j in R[x], calculate j’s nearest neighbor in S (say,
k), set T[j] = k, add j to R[k], and modify Q to reflect the new
value of T[j]. Do the same for each point in R[y 1.

The running time of the above algorithm is t9(N3i2 lg N). By applying
Theorem 6.3 to the Lipton-Tarjan structure, the set S can be built in
0(N lg N) time and both searches and deletions require 0(N’/’ lg N) time.
Steps la and lb therefore require B(NlgN) time, and Step lc requires
linear time. Each execution of Step 2a requires &lgN) operations, Step 2b
requires 0(N ‘1’ lg N), and Step 2c requires at most 10 nearest neighbor
searches, for a total of B(N’/‘lgN) time per iteration. The total running
time of Step 2 is therefore B(N V2 lg N), and this establishes the total time
required by the algorithm.

ACKNOWLEDGMENTS

The helpful comments of Donna Brown, Kevin Brown Michael Shamos, Herb Wilf, and
Andrew and Frances Yao are gratefully acknowledged

Note aaihd in proof. Three important developments occurred while this paper was in
press. Professor K. Mehlhom, in a paper entitled “Lower Bounds on the Efficiency of Static
to Dynamic Data Structures,” showed two new lower bound results. First, he showed the
optimal@ of the k-binomial transforms, without the restriction to arboreal strategies-
although his model is very general, his lower bounds are weaker than ours by a constant
factor. Mehlhom also showed the optimality of the dual 2-binomial transform, with the
restriction to arboreal strategies. Finally, the present authors have shown that the dual
k-binomial transforms are not optimal for k > 2 by demonstrating superior transforms.

REFERENCES

Since this paper was originally circulated as a technical report, a number of papers have
appeared that discuss additional aspects of static-to-dynamic transformations. Although they
are not cited in the text, for completeness we have included references to many of those
papers in the bibliography.

BENTLEY, J. L. (1976), “Divide and Conquer Algorithms for Closest-Point Problems in
Multidimensional Space,” Ph.D. thesis, University of North Carolina, December 1976.

BENTLEY, J. L. (1979). Decomposable searching problems, Znfonn. Process. L&t. 8, No. 5
(June) 244-251.

BENTLEY, J. L., DETIG, D., GUIBAS, L., AND S~xn, J. B. (1978). “An Optimal Data Structure
for Minimal-Storage Dynamic Member Searching,” Carnegie-Mellon University, 1978.

BENTLEY, J. L., AND MAURER, H. A. (1980), Efficient worst-case data structures for range
searching, Ada Znformaricu 13, No. 2, 155- 168.

BE-, J. L., AND SHAMOS, M. I. (1977), A problem in multivariate statistics: Algorithm,
data structure, and applications, in “Proceedings, Fifteenth Allerton Conference on Com-
munication, Control and Computing, September 1977,” pp. 193-201.

358 BENTLEY AND SAXE

BEN~~Y, J. L., AND SHAW, M. (1980), An Alphard specification of a correct and efficient
transformation on data structures, in IEEE Trans. Sofhvare Engrg., in press. (Preliminary
version in “Proceedings, Specifications of Reliable Software Conference, April 1979,
IEEE,” pp. 222-237.

DOBKIN, D., AND LIPTON, R. J. (1976), Multidimensional searching problems, SIAM J.
Compufing 5, No. 2 (June), 181-186.

EDELSBRUNNJX, H. (1979), “Optimizing the Dynamization of Decomposable Searching Prob-
lems,” Report 35, Institut fuer Informationsverarbeitung, Technische Universitat Gras.

RNUTB, D. E. (1%8). “The Art of Computer Progr amming,” Vol. 1, “Fundamental Algo-
rithms,” Addison- Wesley, Reading, Mass.

KNUM, D. E. (1973). “The Art of Computer Progr amming,” Vol. 3, ‘Sorting and Searching,”
Addison- Wesley, Reading, Mass.

VAN LEEUWEN, J., AND ~~AURER, H. A. (1980), ‘Dynamic Systems of Static Data-Structures,”
Report 42, Institut fuer Informationsverarbeitung, Technische Universitat Gras.

VAN Lmwwe.~, J., AND WOOD, D. (1979) “Dynamization of Decomposable Searching
Problems,” University of Utrecht Vakgroep Informatica Report RUU-CS-79-6.

LIPTON, R. J., AND TARJAN, R. E. (1977) Applications of a planar separator theorem, in
“Proceedings, Eighteenth Symposium on the Foundation of Computer Science, October
1977, IEEE,” pp. 162- 170.

LUEKER, G. (1978), A data structure for orthogonal range queries, in “Proceedings, Nine-
teenth Symposium on the Foundations of Computer Science, October 1978, IEEE,” pp.
28-34.

LUEKBR, G. (1979). “A Transformation for Adding Range Restriction Capability to Dynamic
Data Structures for Decomposable Searching Problems,” UC1 Technical Report 129,
February 1979.

MAIJRER, H. A., and OTTMANN, T. (1979), “Dynamic Solutions of Decomposable Searching
Problems,” Report 33, Institut fuer Informationsverarbeitung, Technische Universitat Gras,
June 1979.

MUNRO, J. I., and S~VANDA, H. (1979), Implicit data structures, in “Proceedings, Eleventh
Symposium on the Theory of Computing, April 1979, ACM,” pp. 108- 117.

OVERMARS, M. H., and VAN LEEUWJZN, J. (1979), “Two general methods for dynamizing
decomposable searching problems,” University of Utrecht Vakgroep Informatica Report
RUU-CS-79-9a.

%EPARATA, F. P. (1978), “A New Approach to Planar Point Location,” University of Illinois
Coordinated Science Laboratory Report R-829, September 1978.

R~NOOLD, E. M., AND TARIAN, R. E. (1978), “On a Greedy Heuristic for Complete
Matching,” Technical Report, University of Illinois, September 1978.

RNEST, R. L. (1976), Partial match retrieval algorithms, SIAM J. Computing 5, No. 1 (March),
19-50.

SHAMOS, M. I. (1978), “Computational Geometry,” Ph.D. thesis, Yale University.
VUILLE~, J. (1978). A data structure for manipulating priority queues, Cornm. ACM 21, No.

4 (April), 309-315.
WILLARD, D. (1978). ‘Predicate-Oriented Database Search Algorithms,” Harvard Aiken

Computation Laboratory Report TR-2&78.

