Geometria Computacional

Cristina G. Fernandes

Departamento de Ciência da Computação do IME-USP

http://www.ime.usp.br/~cris/

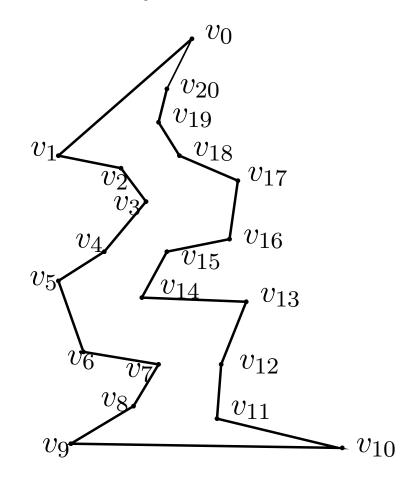
segundo semestre de 2018

Um polígono P é monótono em relação a uma reta L se $P \cap L'$ é conexo para toda reta L' perpendicular a L.

Se L é o eixo y, dizemos que P é y-monótono.

Um polígono P é monótono em relação a uma reta L se $P \cap L'$ é conexo para toda reta L' perpendicular a L.

Se L é o eixo y, dizemos que P é y-monótono.



Seja P um polígono y-monótono com n vértices.

Podemos ordenar os vértices de P por y-coordenada em tempo $\mathrm{O}(n)$.

Seja P um polígono y-monótono com n vértices.

Podemos ordenar os vértices de P por y-coordenada em tempo $\mathrm{O}(n)$.

 δP : fronteira de P

- ullet determine a curva poligonal esquerda de δP
- determine a curva poligonal direita de δP
- intercale as duas curvas

Seja P um polígono y-monótono com n vértices.

Podemos ordenar os vértices de P por y-coordenada em tempo $\mathrm{O}(n)$.

 δP : fronteira de P

- ullet determine a curva poligonal esquerda de δP
- ullet determine a curva poligonal direita de δP
- intercale as duas curvas

Cada um destes passos pode ser feito em tempo O(n).

Algoritmo

Entrada: polígono monótono P com n vértices

Saída: triangulação de P

Algoritmo

Entrada: polígono monótono P com n vértices

Saída: triangulação de P

Primeiro passo: ordenar os vértices de P por y-coordenada, obtendo u_1, \ldots, u_n

Restante: é iterativo e usa uma pilha

Algoritmo

Entrada: polígono monótono P com n vértices

Saída: triangulação de P

Primeiro passo: ordenar os vértices de P por y-coordenada, obtendo u_1, \ldots, u_n

Restante: é iterativo e usa uma pilha

O algoritmo produz uma seqüência de polígonos

$$P = P_0, P_1, \dots, P_n = \emptyset$$

onde o polígono

 P_i é obtido de P_{i-1} após o algoritmo processar u_i

Invariantes do algoritmo

Entrada: polígono monótono P com n vértices

Saída: triangulação de P

Primeiro passo: ordenar os vértices de P por y-coordenada, obtendo u_1, \ldots, u_n

Restante: é iterativo e usa uma pilha $S = (s_1, \ldots, s_t)$

Invariantes do algoritmo

Entrada: polígono monótono P com n vértices

Saída: triangulação de P

Primeiro passo: ordenar os vértices de P por y-coordenada, obtendo u_1, \ldots, u_n

Restante: é iterativo e usa uma pilha $S = (s_1, \ldots, s_t)$

No início de cada iteração, valem os seguintes invariantes:

- s_1, \ldots, s_t em ordem crescente de y-coordenada e incluem todos os vértices abaixo de s_1 e acima de s_t
- s_1, \ldots, s_t são vértices consecutivos na cadeia esquerda ou direita de P_{i-1}
- s_2, \ldots, s_{t-1} são vértices reflexos de P_{i-1}
- $ightharpoonup P_i$ é o que falta triangular de P

Invariantes do algoritmo

Entrada: polígono monótono P com n vértices

Saída: triangulação de P

Primeiro passo: ordenar os vértices de P por y-coordenada, obtendo u_1, \ldots, u_n

Restante: é iterativo e usa uma pilha $S = (s_1, \ldots, s_t)$

No início de cada iteração, valem os seguintes invariantes:

- s_1, \ldots, s_t em ordem crescente de y-coordenada e incluem todos os vértices abaixo de s_1 e acima de s_t
- s_1, \ldots, s_t são vértices consecutivos na cadeia esquerda ou direita de P_{i-1}
- s_2, \ldots, s_{t-1} são vértices reflexos de P_{i-1}
- $ightharpoonup P_i$ é o que falta triangular de P

Cadeia reflexa corrente: s_1, \ldots, s_t

Casos do algoritmo

Seja u_i o vértice processado nessa iteração.

Casos do algoritmo

Seja u_i o vértice processado nessa iteração.

Três casos:

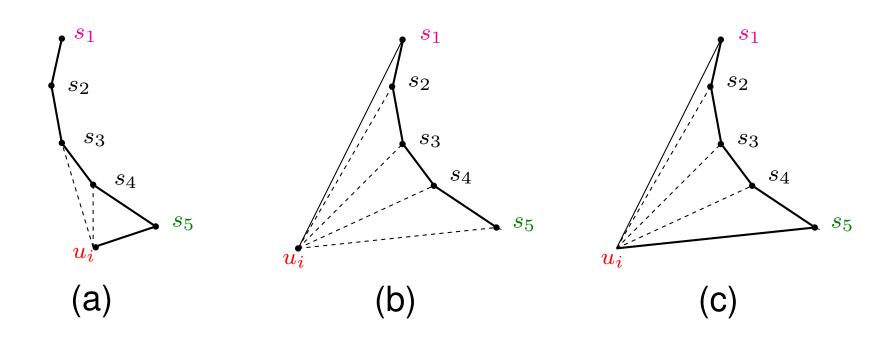
- (a) u_i é adjacente (em δP) a s_t mas não a s_1
- (b) u_i é adjacente a s_1 mas não a s_t
- (c) u_i é adjacente a s_1 e a s_t

Casos do algoritmo

Seja u_i o vértice processado nessa iteração.

Três casos:

- (a) u_i é adjacente (em δP) a s_t mas não a s_1
- (b) u_i é adjacente a s_1 mas não a s_t
- (c) u_i é adjacente a s_1 e a s_t



```
DIVIDEEMMONÓTONO-LP(n, P)
 1 u_1, \ldots, u_n \leftarrow \mathsf{Ordena}(n, P)
 2 S \leftarrow (u_1, u_2) D \leftarrow \emptyset
     para i \leftarrow 3 até n faça
 3
        sejam s_1, \ldots, s_t os vértices de S
 4
 5
        Caso (a): u_i adjacente a s_t mas não a s_1
11
        Caso (b): u_i adjacente a s_1 mas não a s_t
19
        Caso (c): u_i adjacente a s_1 e a s_t \triangleright u_i = u_n
```

25

devolva D

```
DIVIDEEMMONÓTONO-LP(n, P)
```

```
5 Caso (a): u_i adjacente a s_t mas não a s_1
6 enquanto t>1 e Ângulo(u_i, s_t, s_{t-1}) < \pi faça
7 Desempilha(S)
8 t \leftarrow t-1
9 D \leftarrow D \cup \{u_i s_t\}
10 Empilha(S, u_i)
```

```
DIVIDEEMMONÓTONO-LP(n, P)
```

```
Caso (a): u_i adjacente a s_t mas não a s_1

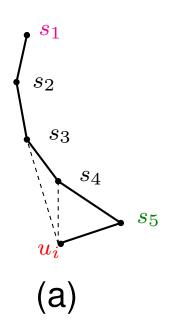
enquanto t > 1 e Ângulo(u_i, s_t, s_{t-1}) < \pi faça

Desempilha(S)

t \leftarrow t - 1

D \leftarrow D \cup \{u_i s_t\}

Empilha(S, u_i)
```

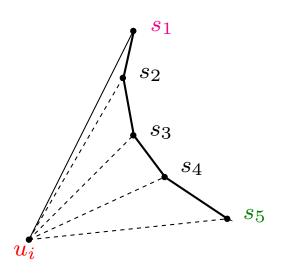


```
DIVIDEEMMONÓTONO-LP(n, P)
```

```
11
        Caso (b): u_i adjacente a s_1 mas não a s_t
12
           aux \leftarrow s_t
13
           enquanto t > 1 faça
14
              D \leftarrow D \cup \{\mathbf{u_i} s_t\}
15
              Desempilha(S)
16
              t \leftarrow t - 1
17
           \mathsf{Desempilha}(S)
                                                \triangleright desempilha s_1
18
           Empilha(S, aux)
                                         Empilha(S, u_i)
```

```
DIVIDEEMMONÓTONO-LP(n, P)
```

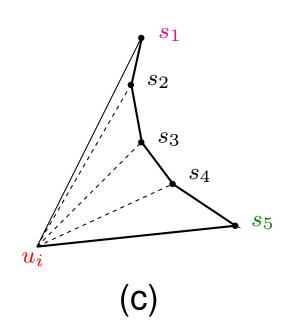
```
11
        Caso (b): u_i adjacente a s_1 mas não a s_t
12
            aux \leftarrow s_t
13
           enquanto t > 1 faça
14
              D \leftarrow D \cup \{ \mathbf{u_i} s_t \}
15
              Desempilha(S)
16
              t \leftarrow t - 1
17
           \mathsf{Desempilha}(S)
                                                \triangleright desempilha s_1
18
           Empilha(S, aux)
                                          Empilha(S, u_i)
```



```
DIVIDEEMMONÓTONO-LP(n, P)
```

DIVIDEEMMONÓTONO-LP(n, P)

```
19 Caso (c): u_i adjacente a s_1 e a s_t \triangleright u_i = u_n
20 Desempilha(S) \triangleright desempilha s_t
21 enquanto t > 2 faça
22 t \leftarrow t - 1
23 D \leftarrow D \cup \{u_i s_t\}
24 Desempilha(S)
```



```
para i \leftarrow 3 até n faça
        sejam s_1, \ldots, s_t os vértices de S
 4
 5
        Caso (a): u_i adjacente a s_t mas não a s_1
           enquanto t > 1 e Ângulo(u_i, s_t, s_{t-1}) < \pi faça
 6
              Desempilha(S); t \leftarrow t-1; D \leftarrow D \cup \{u_i s_{t-1}\}
           Empilha(S, u_i)
10
11
        Caso (b): u_i adjacente a s_1 mas não a s_t
12
            aux \leftarrow s_t
13
           enquanto t > 1 faça
              D \leftarrow D \cup \{u_i s_t\}; Desempilha(S); t \leftarrow t-1
14
           Desempilha(S)
                                                \triangleright desempilha s_1
17
            Empilha(S, aux) Empilha(S, u_i)
18
19
         Caso (c): u_i adjacente a s_1 e a s_t \triangleright u_i = u_n
            Desempilha(S)
20

ightharpoonup desempilha s_t
21
           enquanto t>2 faça
              t \leftarrow t - 1; \quad D \leftarrow D \cup \{u_i s_t\}; \quad \mathsf{Desempilha}(S)
22
```

O número de chamadas de Empilha é não mais que 2n.

O número de chamadas de Empilha é não mais que 2n.

O número de chamadas de Desempilha portanto também é no máximo 2n.

O número de chamadas de Empilha é não mais que 2n.

O número de chamadas de Desempilha portanto também é no máximo 2n.

O consumo de tempo do algoritmo é proporcional ao número de chamadas de Empilha mais o número de chamadas de Desempilha.

O número de chamadas de Empilha é não mais que 2n.

O número de chamadas de Desempilha portanto também é no máximo 2n.

O consumo de tempo do algoritmo é proporcional ao número de chamadas de Empilha mais o número de chamadas de Desempilha.

Portanto o consumo de tempo é O(n).

P: polígono arbitrário com n vértices

Idéia do algoritmo:

P: polígono arbitrário com n vértices

Idéia do algoritmo:

- particionar P em polígonos monótonos
- triangular cada um deles em tempo linear

P: polígono arbitrário com n vértices

Idéia do algoritmo:

- particionar P em polígonos monótonos
- triangular cada um deles em tempo linear

Partição tem que consumir tempo $O(n \lg n)!$

P: polígono arbitrário com n vértices

Idéia do algoritmo:

- particionar P em polígonos monótonos
- triangular cada um deles em tempo linear

Partição tem que consumir tempo $O(n \lg n)!$

Como fazemos isso?

P: polígono arbitrário com n vértices

Idéia do algoritmo:

- particionar P em polígonos monótonos
- triangular cada um deles em tempo linear

Partição tem que consumir tempo $O(n \lg n)!$

Como fazemos isso?

Usando uma trapezoidação especial de P.

Trapezoidação

Trapézio: quadrilátero com duas arestas paralelas

Trapezoidação

Trapézio: quadrilátero com duas arestas paralelas

Trapezoidação horizontal de um polígono P: resultado de traçar segmentos horizontais maximais contidos em P, passando por cada vértice de P.

Trapezoidação

Trapézio: quadrilátero com duas arestas paralelas

Trapezoidação horizontal de um polígono P: resultado de traçar segmentos horizontais maximais contidos em P, passando por cada vértice de P.

