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ABSTRACT

It is typically expected that if a mechanism is truthful, then
the agents would, indeed, truthfully report their private in-
formation. But why would an agent believe that the mech-
anism is truthful? We wish to design truthful mechanisms
that are “simple”, that is, whose truthfulness can be veri-
fied efficiently (in the computational sense). Our approach
involves three steps: (i) specifying the structure of mech-
anisms, (ii) constructing a verification algorithm, and (iii)
measuring the quality of verifiably truthful mechanisms. We
demonstrate this approach using a case study: approximate
mechanism design without money for facility location.

Categories and Subject Descriptors

F.m [Theory of Computation]: Miscellaneous; J.4 [Social
and Behavioral Sciences]: Economics
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cation, Approximation

1. INTRODUCTION

The mechanism design literature includes a vast collection
of clever schemes that, in most cases, provably give rise to a
specified set of properties. Arguably, the most sought-after
property is truthfulness, more formally known as incentive
compatibility or strategyproofness: an agent must not be able
to benefit from dishonestly revealing its private information.
Truthfulness is, in a sense, a prerequisite for achieving other
theoretical guarantees, because without it the mechanism
may receive unpredictable input information that has little
to do with reality. For example, if the designer’s goal is to
maximize utilitarian social welfare (the sum of agents’ utili-
ties for the outcome), but the mechanism is not truthful, the
mechanism would indeed maximize social welfare — albeit,
presumably, with respect to the wrong utility functions!
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An implicit assumption underlying the preceding (rather
standard) reasoning is that when a truthful mechanism is
used, (rational) agents would participate truthfully. This
requires the agents to believe that the mechanism is actu-
ally truthful. Why would this be the case? Well, in principle
the agents can look up the proof of truthfulness.! A more
viable option is to directly verify truthfulness by examining
the specification of the mechanism itself, but, from a compu-
tational complexity viewpoint, this problem would typically
be extremely hard — even undecidable. This observation
is related to the more general principle that the mechanism
should be transparent and simple, so that bounded-rational
economic agents can reason about it and take decisions effi-
ciently.

Motivated by the preceding arguments, our goal in this
paper is to design mechanisms that are wverifiably truthful.
Specifically, we would like the verification to be efficient —
in the computational sense (i.e., polynomial time), not the
economic sense. In other words, the mechanism must be
truthful, and, moreover, each agent must be able to effi-
ciently verify this fact.

1.1 Our Approach and Results

Our approach to the design of verifiably truthful mecha-
nisms involves three steps:

(I) Specifying the structure of mechanisms: The verifica-
tion algorithm will receive a mechanism as input —
so we must rigorously specify which mechanisms are
admissible as input, and what they look like.

(I1) Constructing a verification algorithm: Given a mech-
anism in the specified format, the algorithm decides

whether the mechanism is truthful.

(III) Measuring the quality of verifiably truthful mechanisms:
The whole endeavor is worthwhile (if and) only if the
family of mechanisms whose truthfulness can be ver-
ified efficiently (via the algorithm of Step 2) is rich

enough to provide high-quality outcomes.

We instantiate this program in the context of a case study:
approximate mechanism design without money for facility lo-
cation [27]). The reason for choosing this specific domain is
twofold. First, a slew of recent papers has brought about a
good understanding of what quality guarantees are achiev-
able via truthful facility location mechanisms [1, 21, 20, 25,

LA related, interesting question is: If we told human players
that a non-truthful mechanism is provably truthful, would
they play truthfully?



13, 14, 15, 29, 30, 8, 32]. Second, facility location has also
served as a proof of concept for the approximate mechanism
design without money agenda [27], whose principles were
subsequently applied to a variety of other domains, includ-
ing allocation problems [17, 16, 12, 9], approval voting [2],
kidney exchange [3, 7], and scheduling [19]. Similarly, fa-
cility location serves as an effective proof of concept for the
idea of verifiably truthful mechanisms, which, we believe, is
widely applicable.

We present our results according to the three steps above:

(I) In §2, we put forward a representation of facility loca-
tion mechanisms. In general, these are arbitrary functions
mapping the reported locations of n agents on the real line
to the facility location (also on the real line). We present
deterministic mechanisms as decision trees, which branch
on comparison queries in internal nodes, and return a func-
tion that is a convex combination of the reported locations
in the leaves. Roughly speaking, randomized mechanisms
are distributions over deterministic mechanisms, but we use
a slightly more expressive model to enable a concise rep-
resentation for certain randomized mechanisms that would
otherwise need a huge representation.

(IT) The cost of an agent is the distance between its (ac-
tual) location, which is its private information, and the fa-
cility location. A deterministic mechanism is truthful if an
agent can never decrease its cost by reporting a false loca-
tion. In §3, we show that the truthfulness of a deterministic
mechanism can be verified in polynomial time in the size of
its decision tree representation and number of agents. We
also demonstrate that one cannot do much better: it is nec-
essary to at least inspect all the tree’s leaves. We establish
that the efficient verification result extends to randomized
mechanisms, as long as the notion of truthfulness is universal
truthfulness: it must be impossible to gain from manipulat-
ing one’s reported location, regardless of the mechanism’s
coin tosses.

(III) Building on the results of Step II, we focus on de-
cision trees of polynomial size — if such mechanisms are
truthful, their truthfulness can be efficiently verified. In §4,
we study the quality of polynomial-size decision trees, via
two measures of quality: the social cost (the sum of agents’
cost functions) and the maximum cost (of any agent). Fig-
ure 1 summarizes our results. The table on the top shows
tight bounds on the (multiplicative, worst-case) approxima-
tion ratio that can be achieved by truthful mechanisms [27]
— deterministic in the first row, randomized in the sec-
ond. The (lower) bound for the maximum cost of univer-
sally truthful mechanisms is new. The results for efficiently
verifiable mechanisms are shown in the bottom table. Our
main results pertain to the social cost (left column): while
deterministic polynomial-size decision trees only achieve an
approximation ratio of ©(n/logn), we construct (for any
constant € > 0) a polynomial-size, randomized, universally
truthful decision tree approximating the social cost to a fac-
tor of 1 +e.

1.2 Related Work

Verification is a common theme in algorithmic mechanism
design, but in the past it was always the agents’ reports
that were being verified, not the properties of the mecha-
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Gener.al Social Cost | Max Cost
Mechanisms
Truthful 1 2
Univ. Truthful 1 2 (%)

Polynomial-size
Decision Trees

Truthful
Univ. Truthful
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Figure 1: The results of §4, outlined in §1.1. The lower
bound (*) for general mechanisms is also shown here

nism itself. In fact, in the eponymous paper by Nisan and
Ronen [24], a class of mechanisms with verification (and
money) for scheduling was proposed. These mechanisms are
allowed to observe both the reported types and the actual
types (based on the execution of jobs), and payments may
depend on both. Verification of agents’ reports has subse-
quently played a role in a number of papers; of special note
is the work of Caragiannis et al. [6], who focused on different
notions of verification. They distinguished between partial
verification, which restricts agents to reporting a subset of
types that is a function of their true type (e.g., in schedul-
ing agents can only report that they are slower than they
actually are, not faster), and probabilistic verification, which
catches an agent red handed with probability that depends
on its true type and reported type. There are also exam-
ples of this flavor of verification in approximate mechanism
design without money [19].

A small body of work in multiagent systems [26, 5, 28] ac-
tually aims to verify properties of mechanisms and games.
The work of Tadjouddine et al. [28] is perhaps closest to
ours, as they verify the truthfulness of auction mechanisms.
Focusing on the Vickrey Auction [31], they specify it using
the Promela process modeling language, and then verify its
truthfulness via model checking techniques. This basically
amounts to checking all possible bid vectors and deviations
in a discretized bid space. To improve the prohibitive run-
ning time, abstract model checking techniques are applied.
While model checking approaches are quite natural, they
inevitably rely on heuristic solutions to problems that are
generally very hard. In contrast, we are interested in mecha-
nisms whose truthfulness can be verified in polynomial time.

Mu’alem [23] considers a motivating scenario similar to
ours and focuses on testing extended monotonicity, which is
a property required for truthfulness in the single parameter
domain studied therein. In particular, Mu’alem shows that
if a function f is e-close to extended monotonicity, then there
exists an associated payment function p such that the mech-
anism given by the tuple (f,p) is (1 — 2¢)-truthful. She also
describes a shifting technique for obtaining almost truth-
ful mechanisms and a monotonicity tester. While studying
truthfulness in the context of property testing remains an
interesting question for future work, we would like to obtain
mechanisms whose truthfulness can be verified exactly and
in polynomial time (independent of the size of the domain
— in fact, our domain is continuous). On a technical level,
we study a setting without payments, which does not admit
a close connection between monotonicity and truthfulness.



Kang and Parkes [18] consider the scenario in which mul-
tiple entities (e.g. companies, people, network services) can
deploy mechanisms in an open computational infrastructure.
Like us, they are interested in verifying the truthfulness of
mechanisms, but they sidestep the question of how mecha-
nisms are represented by focusing on what they call passive
verification: their verifier acts as an intermediary and mon-
itors the sequence of inputs and outputs of the mechanism.
The verifier is required to be sound and complete; in par-
ticular, if the mechanism is not strategyproof, the verifier
is guaranteed to establish this fact after observing all the
possible inputs and outputs.

Our work is also related to the line of work on automated
mechanism design [10], which seeks to automatically design
truthful mechanisms that maximize an objective function,
given a prior distribution over agents’ types. In an informal
sense, this problem is much more difficult than our verifica-
tion problem, and, indeed, in general it is computationally
hard even when the mechanism is explicitly represented as
a function whose domain is all possible type vectors. Auto-
mated mechanism design is tractable in special cases — such
as when the number of agents is constant and the mechanism
is randomized — but these results do not yield nontrivial in-
sights on the design of verifiably truthful mechanisms.

2. STEPI: SPECIFYING THE STRUCTURE
OF MECHANISMS

We consider the (game-theoretic) facility location prob-
lem [27]. An instance includes a set N = {1,...,n} of
agents. Each agent ¢« € N has a location z;. The vector
x = (x1,...,Zn) represents the location profile. We relegate
the presentation of the strategic aspects to Section 3.

2.1 Deterministic Mechanisms

A deterministic mechanism (for n agents) is a function
M : R™ — R, which maps each location profile x to a facility
location y € R. We put forward a simple, yet expressive, rep-
resentation of deterministic mechanisms, via decision trees.

In more detail, given input x = (z1,..., %), the mecha-
nism is represented as a tree, with:

e [nternal nodes: used to verify sets of constraints over
the input variables. We focus on a comparison-based
model of computation, in which each internal node ver-
ifies one constraint, of the form (z; > z;), (z; < x;),
(zi > xj), or (x; < x;), for some 4, j € N. The node
has two outgoing edges, that are taken depending on
whether the condition is true or false.

e Leaves: store the outcome of the mechanism if the
path to that leaf is taken, i.e. the facility location.We
require that for each leaf £, the location of the facil-
ity at £, yc(x), is a convex combination of the input
locations: ys(x) = Y i, Az,i - €5, where the Az ; are
constants with Az ; > 0and Y ;| Az = 1.

Dictatorship of Agent i

x1+x+...%
n

For example, the left figure (above) shows the decision tree
representation of the average mechanism, which returns the
average of the reported locations. It is just a single leaf, with

The Average Mechanism
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Figure 2: The median mechanism for 3 agents.

coefficients A\; = 1/n for all 4 € N. The right figure shows
a dictatorship of agent i — whatever location is reported
by agent ¢ is always selected. Figure 2 shows the median
mechanism for n = 3, which returns the median of the three
reported locations; this mechanism will play a key role later.

We remark that our positive results are based on mech-
anisms that have the so-called peaks-only property: they
always select one of the reported locations. However, our
more expressive definition of the leaves of the decision tree
(as convex combinations of points in x) is needed to com-
pute optimal solutions under one of our two objectives (as
we discuss below), and also strengthens our negative results.

2.2 Randomized Mechanisms

Intuitively, randomized mechanisms are allowed to make
branching decisions based on coin tosses. Without loss of
generality, we can just toss all possible coins in advance, so
a randomized mechanism can be represented as a probability
distribution over deterministic decision trees. However, this
can lead to a large representation of simple mechanisms that
consist of the same (fixed) subroutine executed with possi-
bly different input variables. For example, the mechanism
that selects a (not very small) subset of agents uniformly at
random and computes the median of the subset can be seen
as a median mechanism parameterized by the identities of
the agents. In order to be able to represent such mechanisms
concisely, we make the representation a bit more expressive.

Formally, a randomized mechanism is represented by a
decision tree with a chance node of degree K as the root,
such that the r’th edge selects a decision tree 7, and is
taken with probability p,, where Zfil p; = 1. Each tree 7,
is defined as follows:

e There is a set of agents N, C N, such that the loca-
tions x; for i € N appear directly in the internal nodes
and leaves of the tree.

e There is a set of parameters Z, = {zr1,..., 2rm,
that also appear in the internal nodes and leaves of
T, where 0 < m, < [N\ N,|.

e The description of 7, includes a probability distribu-
tion over tuples of m, distinct agents from N \ N;.

The semantics are as follows. At the beginning of the exe-
cution, a die is tossed to determine the index r € {1,..., K}
of the function (i.e. tree 7;) to be implemented. Then, the
parameters z, ; are bound to locations of agents from N\ N,
according to the given probability distribution for 7.; each



zr,j is bound to a different agent. At this point all the pa-
rameters in the nodes and leaves of 7, have been replaced
by variables x;, and we just have a deterministic decision
tree, which is executed as described above.

For example, say we want to implement the mechanism
that selects three agents uniformly at random from N and
outputs the median of these three agents. This mechanism
requires a randomized decision tree with a chance node of
degree one, that selects with probability p1 = 1 a single
decision tree 77, which is the tree in Figure 2 with the z;
variables replaced by z;. We set N1 = () (thus the tree 77 is
completely parameterized), and the probability distribution
over distinct subsets of size 3 from N \ N1 = N is just the
uniform distribution over such subsets.

3. STEPII: CONSTRUCTING A VERIFICA-
TION ALGORITHM

In Section 2 we focused on the non-strategic aspects of the
facility location game: agents report their locations, which
are mapped by a mechanism to a facility location. The po-
tential for strategic behavior stems from the assumption that
the agents’ locations x are private information — x; repre-
sents agent ¢’s ideal location for the facility (also known as
agent 4’s peak). Like Procaccia and Tennenholtz [27], and
almost all subsequent papers, we assume that the cost of
agent ¢ for facility location y is simply the Euclidean dis-
tance between (the true) z; and y,

cost(zs,y) = |zi — y|-

3.1 Deterministic Mechanisms

A deterministic mechanism M : R" — R is truthful if for
every location profile x € R", every agent k£ € N, and ev-
ery =, € R, cost(zx, M(x)) < cost(zk, M(x),x_r), where
X—k = (T1, ...y The1, Thtl,--.,Tn). Our next goal is to con-
struct an algorithm that receives as input a deterministic
mechanism, represented as a decision tree, and verifies that
it is truthful.

The verification algorithm is quite intuitive, although its
formal specification is somewhat elaborate. Consider a mech-
anism M : R" — R that is represented by a tree 7. For
a leaf £, denote the location chosen by M at this leaf by
ye(x) =37 Az,i - . In addition, let C(£) denote the set
of constraints encountered on the path to £. For example,
the set of constraints corresponding to the leftmost leaf in
Figure 2 is {(z1 > z2),(z2 > x3)}, while the second leaf
from the left verifies: {(z1 > x2), (2 < z3), (1 > x3)}. We
define a procedure, BUILD-LEAF-CONSTRAINTS, that gath-
ers these constraints (Algorithm 2). One subtlety is that
the procedure “inflates” strict inequality constraints to con-
straints that require a difference of at least 1; we will explain
shortly why this is without loss of generality.

The main procedure, TRUTHFUL (given as Algorithm 1),
checks whether there exist location profiles x and x’ that
differ only in the k’th coordinate, such that x reaches leaf £
(based on the constraints of the BUILD-LEAF-CONSTRAINTS
procedure, given as Algorithm 3), x’ reaches leaf £, and

cost(zr, yrr(x')) + 1 < cost(zx, yc(x))

That is, the reduction in cost is at least 1.

So why can we “inflate” strict inequalities by requiring a
difference of 1?7 Assume that we are given a mechanism 7T
and an agent ¢ such that for some strategy profiles x and

Algorithm 1: TRUTHFUL(T) // Verifier for Determin-
istic Mechanisms
Data: mechanism T
Result: true if 7 represents a truthful mechanism,
false otherwise

1 BUILD-LEAF-CONSTRAINTS(7)
2 foreach k € N do
3 foreach leaf L € T do
4 // yc(x) is the symbolic expression for the
facility at £ on x and di(x) is agent k’s
distance from the facility
5 foreach dj(x) € {zr —yc(x), —xr +yc(x)}
do
6 // two cases, for xy to the left or right of the
facility yo(x)
7 foreach leaf L € T do
8 foreach
z}c(x’) € {ah —yo (x'), =2 + yo (x)}
o
o inc(x, %) — {(dk(x) — dy(x) > 1),
di(x) > 0,d,(x') > 0}
10 // utility increase from x to x’,
distances are non-negative
11 if ExisTs-SOLUTION(k,Cz,Crr, inc)
then
12 L return False

13 return True

x’ with x_; = x__;, agent i can strictly benefit by switching
from x to x’. Then there exists ¢ > 0 such that agent i’s
improvement is at least €, and for every strict inequality
satisfied by x and x’, the difference between the terms is
at least €; for example, if xx > x;, then it is the case that
xr — x; > €. Since each facility location is a homogeneous
linear function of the input x, all variables can be multiplied
by % to obtain that x/e and x’/e satisfy the more stringent
constraints (with a difference of 1) on agent locations and
facility locations.

Finally, this algorithm works in polynomial time because
the procedure EXISTS-SOLUTION, which checks whether there
is a solution to the different constraints (corresponding to a
profitable manipulation), just solves a linear program using
the procedure SOLVE.

We summarize the preceding discussion with the theorem:

THEOREM 1. Let N = {1,...,n}. The truthfulness of a
deterministic mechanism M represented as a decision tree
T can be verified in polynomial time in n and |T|.

Algorithm 1 essentially carries out a brute force search
over pairs of leaves to find a profitable manipulation. Un-
der the decision tree representation, is it possible to verify
truthfulness much more efficiently? Our next result answers
this question in the negative.

THEOREM 2. Let N = {1,...,n} withn > 2, and £ <
n!. Then any algorithm that verifies truthfulness for every
deterministic decision tree with £ leaves for n agents must
inspect all the leaves in the worst case.

PROOF. Assume by contradiction there exists a verifica-
tion algorithm that can check truthfulness for every tree
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Algorithm 2: BUILD-LEAF-CONSTRAINTS(T)

Data: mechanism T

Result: set of symbolic constraints C; the location at
leaf L is selected on input x <= constraints
Cr(x) hold

1 C «+ 0 // Initialize the set of constraints

2 foreach leaf L € T do

3 Q<+ L

4 while Q # Null do

5 // Add the constraint that must hold for Q to be

reached from parent(Q)

6 ¢ < constraint(parent(Q).Next() = Q)

7 switch c do

8 case r;, > Tj,

9 L Cr(x) « Cr(x)U{z;, —x;. >0}
10 case ;. > Ij,
11 L Ce(x) « C[;(X) (@] {JZ-L'C - x5, > 1}
12 case z;, < Tj,
13 | Ce(x) + Ce(x) U {xj, — i, >0}
14 case r;, < Tj,
15 | Ce(x) = Ce(x)U{xj, —xi, > 1}
16 | Q<+ parent(Q)
17 return C

Algorithm 3: EXIsTS-SOLUTION(k, Cz,C7/, inc)

Data: agent k and symbolic constraint sets Cz,Cr,, inc
Result: true <= I x1,...,2,, 2}, € RT subject to
Cﬂ(x) & CQ:(l’ém x*k) & inc(x7 (.II;C, X*k))
1 x (@1, i1, T, Tit1,y oy T
2 W+ {Cr(x),Cr(x), inc(x,x")}
3z (T1,...,Tn,T])
4 return SOLVE(z, W,z > 0) // Linear program solver

with ¢ leaves without inspecting all the leaves. Let T be
a decision tree in which every internal node has the form
x; < xj, for 4,7 € N such that i < j, and the location is set
to z1 in every leaf. Since there are n! possible orders of the
agent locations, we can generate such a tree with £ leaves.
Clearly, 7T is truthful since it coincides with the mechanism
in which agent 1 is a dictator.

Consider the execution of the verification algorithm on
input 7 and let £ be a leaf that is not inspected by the al-
gorithm. Construct a tree 7" that is identical to T, with the
exception of leaf £, where the selected location is yz(x) =
ZitTn  Pirgt note that mechanism 77 is not truthful. For
every leaf of 77, the mechanism cannot enforce that two vari-
ables are equal, since that would require comparing z; < z;
and z; < z; (similarly if weak inequalities are used). How-
ever, if i < j then 7’ can only check if z; < z;; similarly,
if j < i, then T’ can only check if z; < z;. Thus the leaf
L can be reached when the input x is consistent with some
strict ordering 7 on n elements.

Define x € R™ such that -, < r, < ... < Zx,. Then
yr(x) = Lo and the cost of agent 7, is cost(zr,, , yc(x))
= Zr, — Yc(x). There exists § > 0 such that by reporting
{E;rn = z., + 0, agent 7, ensures that leaf £ is still reached
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and the new cost is lower:

(S, 7)) + (@ +9)

cost(ar,,, yr (@7, X))

< Tg, —

cost(zn, , yr(x)).

However, since the verification algorithm does not inspect
leaf £, it cannot distinguish between 7 and 7, and so it
decides that 7 is also truthful. This contradicts the cor-
rectness of the verification algorithm. []

Crucially, our decision trees are binary trees, so the num-
ber of leaves is exactly the number of internal nodes plus
one. Theorem 2 therefore implies:

COROLLARY 1. Let N = {1,...,n}, n > 2. Any verifi-
cation algorithm requires superpolynomial time in n (in the
worst-case) to verify the truthfulness of trees of superpoly-
nomial size in n.

3.2 Randomized Mechanisms

In the context of randomized mechanisms, there are two
common options for defining truthfulness: truthfulness in ex-
pectation and universal truthfulness. In our context, truth-
fulness in expectation means that an agent cannot decrease
its expected distance to the facility by deviating; univer-
sal truthfulness means that the randomized mechanism is a
probability distribution over truthful deterministic mecha-
nisms, i.e., an agent cannot benefit from manipulation re-
gardless of the mechanism’s random coin tosses. Clearly,
the former notion of truthfulness is weaker than the lat-
ter. In some settings, truthful-in-expectation mechanisms
are known to achieve guarantees that cannot be obtained
through universally truthful mechanisms [11].

We focus on universal truthfulness, in part because we do
not know whether truthful-in-expectation mechanisms can
be efficiently verified (as we discuss in §5). Using Theorem 1,
universal truthfulness is easy to verify, because it is sufficient
and necessary to verify the truthfulness of each of the deci-
sion trees in the mechanism’s support. One subtlety is the
binding of agents in N\ N, to the z, ; parameters. However,
for the purpose of verifying truthfulness, any binding will do
by symmetry between the agents in N \ N,. We therefore
have the following result:

THEOREM 3. Let N = {1,...,n}. The universal truth-
fulness of a randomized mechanism M represented as a dis-
tribution over K decision trees T1,..., Tk can be verified in

. K . . R . K
polynomial time in n and its representation size, > ,_, |Tr|.

4. STEP III: MEASURING THE QUALITY
OF VERIFIABLY TRUTHFUL MECHA-
NISMS

We have shown that the truthfulness of mechanisms rep-
resented by decision trees of polynomial size can be verified
in polynomial time. This result is encouraging, but it is
only truly meaningful if decision trees of polynomial size
can describe mechanisms that provide good guarantees with
respect to the quality of the solution.

Like Procaccia and Tennenholtz [27], and subsequent pa-
pers, we measure solution quality in the facility location do-
main via two measures. The social cost of a facility location



y € R for a location profile x € R" is
se(x,y) = 3 cost(wi,y),
i=1

and the mazximum cost is

me(x,y) = max cost(z;, y).

We denote the optimal solutions with respect to the social
cost and maximum cost by sc* (x) = minyer Y ., cost(z, y),
and mc* (x) = minyer max;en cost(z;, y), respectively.

4.1 Deterministic Mechanisms

Let us first review what can be done with deterministic
mechanisms represented by decision trees of arbitrary size,
without necessarily worrying about verification.

For the maximum cost, the optimal solution is clearly the
midpoint between the leftmost and rightmost reported loca-
tions. It is interesting to note that the midpoint may not be
one of the agents’ reported locations — so, to compute the
optimal solution, our expressive representation of the leaves
as convex combinations of points in x is required. Procaccia
and Tennenholtz [27] have shown that any truthful mech-
anism cannot achieve an approximation ratio smaller than
2 for the maximum cost. A ratio of 2 is achieved by any
solution that places the facility between the leftmost and
rightmost reported locations. It follows that the optimal
ratio is trivial to obtain truthfully, e.g., by always select-
ing the location x; reported by agent 1. This mechanism is
representable via a tiny decision tree with one leaf.

We conclude that, in the context of deterministic mecha-
nisms and the maximum cost objective, truthful mechanisms
that are efficiently verifiable can do just as well as any truth-
ful mechanism.

Let us therefore focus on the social cost. For any number
of agents n, it is easy to see that selecting the median of the
reported locations is the optimal solution. Indeed, if the fa-
cility moves right or left, the facility would get further away
from a majority of locations, and closer to a minority of loca-
tions. The median mechanism was observed by Moulin [22]
to be truthful. Intuitively, this is because the only way an
agent can manipulate the median’s location is by reporting
a location that is on the other side of the median — but
that only pushes the median away from the agent’s actual
location. Moreover, the median can be computed by a deci-
sion tree in which every internal node contains comparisons
between the input locations, and each leaf £ outputs the
location of the facility (the median) when £ is reached.

In contrast to the maximum cost, though, the optimal
mechanism for the social cost — the median — requires
a huge decision tree representation. The number of com-
parisons required to compute the median has been formally
studied (see, e.g., Blum et al. [4]), but, in our case, simple
intuition suffices: if there is an odd number of agents with
distinct locations, the median cannot be determined when
nothing is known about the location of one of the agents, so
(n —1)/2 comparisons are required in the best case, leading
to a tall binary tree of exponential size.

Our next result strengthens this insight by giving a lower
bound on the approximation ratio achievable by polynomial
size decision trees (i.e., trees efficiently verifiable by our al-
gorithm of §3).
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THEOREM 4. For every constant k € N, every truthful

deterministic decision tree for n agents of size at most n®

n

has an approrimation ratio of ) (m

) for the social cost.

PrOOF. Let M be a deterministic mechanism represented
by some decision tree T of size at most n*. Recall that every
internal node in 7 checks the order of two input variables
with one of the following inequalities: {z; > z;, x; < xj,
i < Xj, Ti > Ij}.

Since 7 is binary and |7] < n”, there exists at least one
leaf £ € T of depth

d < 2-1og(|T]) < 2log(n*) = 2klog(n).

Let Sz = {é1,...,im} be the set of agents whose locations
are inspected on the path to £. It holds that |Sz| = m <
2 - d < 4k - log(n), since £ has depth d and each node on
the path to £ inspects two locations. Note that if Sz = (),
then M is a dictatorship, and so its approximation ratio is
no better than n — 1. Thus we can assume that S # 0.

Recall that the facility at £ is a convex combination of
the input locations; that is, y,(x) o1 Az, - T, where
Az €10,1),¥i € N and >°7 Az = 1. Let m be a weak
ordering consistent with the leaf £ and Dy = {i1,...,4}
a “deduplicated” version of S, such that D, contains one
representative agent ¢ for each maximal subset W C S with
the property that under w, x; = z;, Vj € W. Note that D,
is consistent with some strict ordering o on [ elements.

We distinguish among three cases:

Case 1: The facility at £ is a convex combination of agents
in S¢ only (i.e., Az;; =0, Vi € Sc).

Let € be fixed such that 0 < € <
following input x = (1,...,Zn):

[Scl

n

and define the

e For each i € D, let r; be the number of agents in Dz
strictly to the left of ¢ according to o; set z; < e- (%)

e For each j € Sz \ Dg, set x; < x;, where ¢ € Dz and
x; = x; according to .

e For each j & S, set z; < 1.

The optimal location of the facility given x is y* = 1, since
most agents are situated at 1 (except the agents in Sz, of
which there are at most: 4klog(n) < n/2). The optimal
social cost is:

> (=) <1-Scl.

i€Sp

n
sc*(x) = Zcost(xi,y*) =
i=1

On the other hand, the output of the mechanism is y. (x) =
2ics, Azt @i < € the social cost incurred by M on x is:

se(x, M(x)) = > cost(i,yr(x)) > (n—[Sc]) - (1 —e).
=1

Choosing € < 1/n, the approximation ratio of M is no
better than:

sc(x, M(x)) (n=18c))-(1-¢
sc* (x) ISc|
TSl s T
> 4k log(n) -2e0 (log(n)) ’



Case 2: The facility coincides with the location of some
agent t  Sg (i.e. yo(x) = z4).

Similarly to Case 1, let € be fixed such that 0 < € < %
and define x = (x1,...,2y) as follows:

e For each i € D, let r; be the number of agents in D,
strictly to the left of ¢ according to o; set x; < €- (%)

e For each j € S; \ D, set z; < x;, where i € D, and
x; = x; according to 7.

e Set z; = 0.
e For each j & Sc,j #t, set x; < 1.

The optimal location on x is y* = 1, since most agents
are located at 1 (except agent ¢ and the agents in Sg). As
in Case 1, by also taking agent ¢ into account, we get:

sc(x, M(x)) (n—1Sg]—1)-(1—¢) Q( n )
log(n) )~

s (%) Scl+1

Case 3: The facility is a weighted sum with at least two
terms, one of which is an agent t € Sz. We claim that no
mechanism that is truthful on the full domain (i.e. the line)
can have such an output at any leaf. Let €, > 0 be such

that
1/ 1 1= Aze(1+96)
—({——-1) ande= ——————~,
2 A[ﬂt n—1

Consider an input x consistent with the ordering 7 such
that z; = 1 and z; € (0,¢€),Vi # t. Then:

n
ye(x) = Z)\L,i Sz = <Z Az, wz) +Ace -1
i=1

it

If agent ¢ reports instead x; = 1 + 6, the output of M on
x = (zf,x_4) is:

ye(x') = (Z ALyi- Iz> + Az (14+9).

i#t

It can be verified that 0 < ys(x) < yec(x') < 1, and
so cost(zt,yc(x')) < cost(zt,yc(x)), which contradicts the
truthfulness of M. Thus Case 3 never occurs.

By the cases above, there exists at least one input on

which the approximation ratio of M is Q (ﬁ) which
O

completes the proof.

On the positive side, we show that the lower bound of
Theorem 4 is asymptotically tight.

THEOREM 5. For every n € N there is a truthful deter-
ministic decision tree of size O(nG) that approximates the

social cost within a factor of O (%)

PRrROOF. First, we claim that for every k € {1,...,n/2},
there; exists a truthful, deterministic decision tree of size
O(25%) that approximates the social cost within a factor of
O (";k) Given a fixed k, let M be the mechanism:

7xk})

That is, M always outputs the median of the fixed set of
agents {1, ..., k}. Computing the median on an input vector
of size k requires fewer than 6k comparisons [4], and since
the decision tree for M is binary, its size is O(2°%).

e Given x = (x1,...,2n), output median({z1, ...
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n—=k

We next claim that the approximation ratio of M is O (
Indeed, given any instance x € R", denote m = M(x) and
m” = argmin, psc(x,y). Without loss of generality, assume
that m < m* and let A = |[m—m*|. Let S; = {z; | ; < ™},
Sr=A{x; | & > m*}, and Sy, = {z; | m < z; < m"} be
the sets of points to the left of m, to the right of m*, and
strictly between m and m™, respectively. Denote the sizes
of the sets by n; [Si], nr = |Sr|, and nm = |Sm|, where
n + Nm +np =N

We compute the upper bound by comparing the social cost
of M on x, sc(x, M(x)) = Y7, cost(zs, M), with sc*(x)
>z cost(zi,m”). Observe that for all the points in S, the
cost increases by exactly A when moving the location from
m* to m. On the other hand, the change from m* to m
results in a decrease by exactly A for the points in S;. Thus
sc(x, M(x)) can be expressed as follows:

sc(x, M(x)) = sc*(x)+n,- A+ Z [cost(x,m)—cost(z;, m™)]—Any;
JESm
The ratio of the costs is:

sc(x, M(x)) sc*(x) +nr - A

sc* (x) = sc* (x) +
+ > jes,, [cost(z;, M) — cost(z;, m*)] — ny -A.
sc*(x)
We claim that
sc(x, M(x)) _ 3(n —k)
sc*(x) Tk &

Inequality (1) is equivalent to:

k-ny-A+k- Z [cost(xj,m)—cost(x;, m™)]—k-n;-A < (3n—4k)sc*(x)
JESm

Note that for all j € Sy, cost(z;,m) — cost(z;,m*) < A,

and so if Inequality (1) holds when cost(z;, m)—cost(z;, m*)

A, then it also holds for all other instances where the change
in cost is smaller for some agents j € S,,,. Formally, if:
k-nr - A+k-nm-A—k-n-A<(3n—4k)sc*(x), (2)

then Inequality (1) holds. Inequality (2) is equivalent to:

sc*(x) > k-npr- A+k-nm-A—k-n-A
3n — 4k
:k’(n”'—"_(n_nl_nr)_nl)'A (3)
3n — 4k
_k-(n—2n)-A
B 3n—4k

Each of the agents in S; pays a cost of at least A under
sc*(x), and so sc*(x) > n; - A. Moreover, since m is the

median of {z1,...,xx}, it follows that n; > £. We first

k-(n—2n;)-A,
show that n; - A > W.

k-(n—2n;)-A
3n — 4k

<~ n(3n —4k) > k(n — 2n;)

<~ n;(3n — 2k) > kn

kn

= np > ——
3n — 2k

ng - A>

In addition, we have that

k kn

= > " = 3kn—2k%>2%kn < n> 2k
2 = 3n—2k



Inequality (5) holds by the choice of k; combining it with

n; > g, we obtain:

kn
_— 6
3n — 2k ©)
By Inequality (3), it follows that n; - A > %. In
addition, sc*(x) > n; - A, thus:
k-(n—2n;)-A
3n—4k

Equivalently, Inequality (2) holds, which gives the worst

case bound required for Inequality (1) to always hold. Thus
SC(;’:\(AX()X)) < 3(",;“, for every input x.

Let £ = logn. Then M can be implemented using a
decision tree of size O(n®) and has an approximation ratio

bounded by
3(n—k) n
<
=% <9 (bg(n))

sc(x, M(x))
This completes the proof of the theorem. []

anEZ
2

sc*(x) >n; - A >

sc*(x)

In summary, polynomial-size decision trees can achieve
the best possible approximation ratio (among all truthful de-
terministic mechanisms) with respect to the maximum cost
objective and an approximation ratio of ©(n/logn) with
respect to the social cost.

4.2 Randomized Mechanisms

We next turn to randomized mechanisms. In this con-
text, we are interested in the expected social cost, or the
expected maximum cost. The latter measure is somewhat
subtle, so let us state specifically that, like Procaccia and
Tennenholtz [27], we are interested in

i€N

E[mc(x, M(X))] =E [max cost(z;, M(x))

A less stringent alternative would be to take the maximum
over agents of the agent’s expected cost.

It is immediately apparent that universally truthful, ran-
domized, small decision trees can easily beat the lower bound
of Theorem 4 for social cost. To see this, consider the ran-
dom dictator mechanism, that selects an agent ¢ € N uni-
formly at random, and returns the location x;. This mech-
anism is clearly universally truthful (it is a uniform distri-
bution over dictatorships), and it is easy to verify that its
approximation ratio is 2 — 2/n.

Our next theorem, which we view as the main result of this
section, shows that randomization allows us to get arbitrar-
ily close to 1 using universally truthful, efficiently-verifiable
mechanisms.

THEOREM 6. For every 0 < € < % and n € N, there
exists a universally truthful randomized decision tree of size
O(poly(n)), approzimates the social cost to a factor of 1+e.

PrROOF. The idea is the following: we sample a subset
of agents of logarithmic size — more exactly O (1"(?%) —
and select the median among their reported locations. To
reason about this mechanism, we define the rank of an el-
ement z in a set S ordered by >~ to be rank(z) = |{y €
S|y > xVy =z}, and the e-median of S to be z € S
such that (1/2 —€)|S| < rank(z) < (1/2+ ¢€)|S|. The follow-
ing lemma is a folklore result when sampling is done with
replacement; we include its proof because we must sample
without replacement.
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LEMMA 1. Consider the algorithm that samples t elements
without replacement from a set S of size n, and returns the
median of the sampled points. For all €,6 < 1/10, if

1001n §
% <t<en,
2

then the algorithm returns an e-median with probability 1—9.

PROOF. We partition S into three subsets:

S1 ={z € S| rank(z) < n/2 — en},

Sy ={x €S| n/2—en <rank(z) <n/2+en},
and
Ss ={z € S| rank(z) > n/2 — en}.

Suppose that t elements are sampled without replacement
from S. If less than ¢/2 are sampled from Si, and less
than ¢/2 are sampled from Ss, then the median of the sam-
pled elements will belong to S2 — implying that it is an
e-approximate median.

Let us, therefore, focus on the probability of sampling
at least t/2 samples from Si. Define a Bernoulli random
variable X; for all ¢ = 1,...,¢, which takes the value 1 if
and only if the ¢’th sample is in S;.

Note that X1, ..., X; are not independent (because we are
sampling with replacement), but for all ¢ it holds that

n

5 —en
PriX;=1|X1=21,...,Xic1 =2i—1] < ———
n—(t—1)

< 2Ten 1

- n—en — 2 3

for any (z1,...,2i—1) € {0,1}*"!, where the second in-
equality follows from i < t < en.
Let Yi,...,Y: be ii.d. Bernoulli random variables such
that Y; = 1 with probability 1/2 — ¢/3. Then for all z,

t t
Pr |:ZX1 Z:p] < Pr [ZYZ Zm] .
i=1 i=1

Using Chernoff’s inequality, we conclude that

t Mt
t t
Pr{ZXi>2 < Pr Zyizi
1=1 Li=1
Mt € t
)
Li=1 2~ € i=1
Mt ¢ t
< Pr ZYZ->(1+2)E{ZYZ}
Li=1 =1
€2 (1l _ e
(-0
3 2

The last inequality follows from the assumption that ¢t >
%2(1/5). The proof of the lemma is completed by applying

symmetric arguments to Ss, and using the union bound. [J

Let x = (x1,...,zn) be the set of inputs. For every k € N,
define the mechanism M,, ; as follows:

e Select uniformly at random a subset Sy C N, where
|Sk| = k.



e Output the median of Sk.

Note that M, 1 coincides with random dictator, while M,
is the median mechanism. Recall that random dictator,
M1, has an approximation ratio of 2 — 2/n for the social
cost, while the median, M, ., is optimal. The approxima-
tion ratio of M, ; improves as k grows from 1 to n and the
mechanism is universally truthful for every k; in particular,
we show there exists a choice of k£ that achieves a good trade-
off between the size of the mechanism and its approximation
ratio.

First, we describe the implementation of M,, ; as a ran-
domized decision tree. The root has outgoing degree one and
selects a function F that takes k arguments Z = {z1,..., 2}
and computes the median of z1,..., 2. At execution time,
21,...,%r are instantiated using the locations x;,,...,x;,
of k distinct agents, chosen uniformly at random from k-
subsets of N. Note that F can be implemented with a deci-
sion tree of size O(2°%).

Let ¢’,6 > 0 be fixed such that €,§ < . By Lemma 1,
1001n §
(¢)?
elements from a set of n elements returns an ¢’-median with

probability 1 — 8, as long as t < ¢'n.

Let x € R"; without loss of generality 1 < --- <
We wish to compare E[sc(x, Mn +(x))] and sc*(x). Let us
suppose that M, ; returns an €-median, call it z;. Since
x; is an €’-median, we have that 2 —e'n <1 < % + ¢'n.

Take the case where | < Z (the other case, where | > 2

2 2

is similar) and let A = |z; — |, where x,,, = median(x).
Then by moving the facility from x,, to x;, the costs of the
agents change as follows:

the algorithm that samples without replacement t = |

< Tn.

(i) Each agent to the left of z; (including agent [) has the
cost decreased by exactly A.

(ii) Each agent strictly between x; and z,, incurs an in-
crease in cost of at most A.

(iii) Each agent to the right of z,, (including agent m) has
the cost increased by A.

It follows that
sc(x,z;) <sc"(x) —1-A+(n—1)-A=sc"(x)+(n—2])-A.

On those instances where M., ; does not return the median,
the social cost is at most (n — 1) - diam(x), where diam(x)
max; jen |€; — z;|]. On the other hand, the optimal cost
satisfies: sc*(x) > diam(x) and sc™(x) > [ - A.

Since M, ¢ returns an €’-median with probability 1 — 6,
the ratio of the costs can be bounded by:

|

SCM,, 4 (X) (1= &)sc*(x) + A(1 —8)(n — 21) + §(n — 1)diam(x)
sc* (x) sc*(x)
- 1—5+(1—5)?—2(1—5)+5(n—1)
< dn—1+(1-9) <1446 -n+5¢€.

1—2¢ —

Given € < 1/10, let €
nl

t = [1()(2/1>28
ized decision tree of size O(26t), which is polynomial in n.

€/10 and § = €/(2n), and set

1. Then M, ; can be represented as a random-
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Moreover, for this choice of €, §, the approximation ratio of
M., + is bounded by

€

1+6-n+5e'=1:2+ =1+e

€
2

In stark contrast, universal truthfulness does not help ob-
tain a better bound than the trivial approximation ratio of 2
for the maximum cost — even in the case of general mecha-
nisms. The proof is included in the full version of the paper.

THEOREM 7. For each € > 0, there exists no universally
truthful mechanism given by a distribution over countably
many deterministic mechanisms that can approrimate the
maximum cost within a factor of 2 — e.

We have the following corollary for universally truthful
decision trees.

COROLLARY 2. For each € > 0, there exists no univer-
sally truthful decision tree mechanism given by a distribu-
tion over countably many deterministic decision trees that
can approximate the maximum cost within a factor of 2 —e.

S. DISCUSSION

Theorem 7 shows that universally truthful decision trees
cannot achieve a nontrivial (better than 2) approximation
for the maximum cost. In contrast, Procaccia and Tennen-
holtz [27] designed a truthful-in-ezpectation mechanism that
approximates the maximum cost to a factor of 3/2. This
motivates the study of truthful-in-expectation randomized
decision trees, as an alternative to universal truthfulness.
However, we do not know whether truthfulness in expecta-
tion can be efficiently verified (and we believe that it can-
not). Intuitively, the main difficulty is that, for every selec-
tion of one leaf from each tree in the support of the random-
ized mechanism, a naive verification algorithm would need to
reason about whether a certain location profile x can reach
this collection of leaves under the constraints imposed by
the different trees.

Our work focuses on the case of locating one facility on the
line, which is quite simple from the approximate-mechanism-
design-without-money viewpoint. Researchers have investi-
gated approximate mechanism design in generalized facility
location settings, involving multiple facilities [27, 21, 20, 25,
13, 14, 15], different cost functions [32, 15], metric spaces
and graphs [1, 20], and so on. Of these generalizations and
extensions, all but one only require a rethinking of our re-
sults of §4 — that is, mechanisms can still be represented
as polynomial-size decision trees. But moving from the real
line to a more general metric space requires a revision of the
way mechanisms are represented in our framework.

We conclude by re-emphasizing the main message of our
paper. In our view, our main contribution is the three-step
approach to the design of verifiably truthful mechanisms.
Our technical results provide a proof of concept by instanti-
ating this approach in the context of a well-studied facility
location setting, and constructing verifiably truthful mech-
anisms that achieve good quality guarantees. We firmly be-
lieve, though, that the same approach is widely applicable.
For example, is there a class of mechanisms for combinato-
rial auctions that gives rise to verifiably truthful mechanisms
providing a good approximation to social welfare? One can
ask similar questions in the context of every problem studied



in algorithmic mechanism design (with or without money).
More generally, how should economic systems be designed
so that players can reason efficiently about their decisions?
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