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The stable roommates problem is a well-known problem of matching n people 
into n/2 disjoint pairs so that no two unmatched persons both prefer each other to 
their partners under the matching. We call such a matching “a complete stable 

matching.” It is known that a complete stable matching may not exist. Irving 
described an O(n’) algorithm that would find one complete stable matching if 
there is one, or would report that none exists. In this paper, we give a necessary 
and sufficient condition for the existence of a complete stable matching; namely, 
the non-existence of any odd party, which will be defined subsequently. We define 
a new structure called a “stable partition,” which generalizes the notion of a 
complete stable matching, and prove that every instance of the stable roommates 
problem has at least one such structure. We also show that a stable partition 
contains all the odd parties, if there are any. Finally we have an O(n*) algorithm 
that finds one stable partition which in turn gives all the odd parties. Q 1991 

Academic Press, Inc. 

1. INTROD~JCTION 

The stable roommates problem is defined as follows. There is a set S of 
n people. Each person i has a preference list that includes a subset Si of 
S - {i} and a rank ordering (most preferred first) of the persons in Si. For 
person i, the set Si has the meaning that the only persons he is willing to 
be matched with are those in Si. A complete matching M is a partition of 
the n persons into n/2 disjoint pairs of roommates such that for every 
pair {a, b) in M, a is on b’s list and b is on a’s list. A complete matching 
M is unstable if there are two persons who are not matched and both 
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prefer each other to their partners under the matching; such a pair is said 
to block the matching M. A complete matching which is not unstable is 
called stable. The problem here is to find a complete stable matching. 

Gale and Shapley Ill proposed this problem and gave the following 
example to show that a complete stable matching may not exist. In this 
example anyone paired with person 4 will cause instability. 

Person Preference list 

1 234 
2 314 
3 124 
4 Arbitrary 

Knuth [ll] demonstrated that multiple solutions could exist and asked 
for an efficient algorithm to generate a solution, if one exists. Irving [61 
solved this problem by proposing an 0(n*> algorithm that would find one 
complete stable matching if there is one, or would report that none exists. 
Recently, Gusfield [4] gave a detailed analysis of the structure of the 
complete stable matchings for those instances that contain at least one 
solution. We refer the reader to the recently published book of Gusfield 
and Irving [5] for a general introduction and comprehensive discussion of 
this and related problems. However, for a given instance without any 
complete stable matching, it is not immediately clear why it does not have 
one except by tracing Irving’s algorithm step by step. Therefore, it is 
desirable to have a “compact” condition that would support the existence 
or non-existence of a solution. 

In this paper, we give a necessary and sufficient condition for the 
existence of a complete stable matching; namely, the non-existence of any 
odd party, which will be defined subsequently. We define a new structure 
called a “stable partition,” which generalizes the notion of a complete 
stable matching and prove that every instance of the stable roommates 
problem has at least one such structure. We also show that a stable 
partition contains all the odd parties, if there are any. Finally, we have an 
U(n*) algorithm, which is a modified version of Irving’s [6], that finds one 
stable partition which in turn gives all the odd parties. 

Remark. One of the main contributions of this paper is to provide an 
easy way to convince a person (not a computer) who knows only the 
definition of the problem that a given problem instance has no stable 
matching. Once a stable partition has been computed, and it has an odd 
party, we can easily convince the person as follows: show them the stable 
partition and point out the odd party; then show the person a proof of 
Theorem 3.3 (it shows that if there is a stable partition with an odd party 



156 COMPLETE STABLE MATCHING 

then there can be no stable matching) which has been specialized to that 
particular stable partition. The proof of Theorem 3.3 is short and easy, 
and so this provides a simple convincing demonstration for the person that 
no stable matching is possible. In contrast, while the execution trace of 
Irving’s algorithm provides a good machine-verifiable proof that no stable 
matching exists, it provides a proof for a human only if that person 
understands Irving’s algorithm. 

2. DEFINITIONS 

An instance of the stable roommates problem is specified by its prefer- 
ence lists. We define a preference relation to be a pair (S, T), where S is a 
set of n persons, and T is the table of preference lists of these 12 people. 
Throughout this paper, we assume that the table T is symmetric, i.e., 
person a is on b’s list if and only if b is on a’s. If person b is on the 
preference list of person a, then write (alb) to denote the entry b in a’s 
preference list. 

Define da, b) = k, if person b occupies position k in u’s preference 
list. If da, b) < da, c>, it means that person a prefers b to c. 

Let (S, T) be a preference relation, and let A be a subset of S. Denote 
IA I the cardinality of set A. A cyclic permutation II(A) = (a,, u2, 
a3,. . . , uk> of the persons in A, where k = IA I, is called a semi-party 
permutation if one of the following three conditions holds: 

(iI IA I 2 3, ai+, and ai-, are on ai’s preference list, and r(ui, ai+ 1) 
< r(ai, a,-,>, i = 1,2,3,. . . , k (subscripts modulo k); 

(ii) IA I = 2, and a,-, is on ui’s preference list, i = 1,2 (subscript 
modulo 2); 

(iii> IAl = 1. 

For example, 

Person Preference list 

Arbitrary 

Arbitrary 

2 . 5 * 
3 . 1 . 
4 Arbitrary 2 Arbitrary 
5 . 3 * 
1 . 4 . 

7 
Arbitrary 

6 

In this example, (1,2,3,4,5> and (6,7) are semi-party permutations for 
persons {1,2,3,4,5) and (6,7), respectively. 
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With a specified semi-party permutation II(A) = (a,, a2,. . . , ak> for 
persons in A, we classify the entries in the preference lists of A into the 
following categories: 

(I) If JAI 2 3, we say that entry (uilb> is 

(i) a superior entry with respect to II(A), if r(ai, b) < r(u,, u,-~); 

(ii) an inferior entry with respect to II(A), if da,, ai-,> I r(ai, b) 
(note: the inequality is “ < ” not “ < 9; 

(iii) a party entry with respect to II(A), if b = U~+~ or b = uiPl; for 
i = 1,2,3, . . . , k (subscripts modulo k). 

(II) If IAl = 2, i.e., k = 2, we say that (uilb) is 

(i) a superior entry with respect to II(A), if r(ai, b) < r(ai, a,-,>; 

(ii) an inferior entry with respect to II(A), if r(ui, uiel> < r(u,, b) 
(note: the inequality is “ < ” not “ I “); 

(iii) a party entry with respect to II(A), if b = ai-,; for i = 1,2 
(subscripts modulo 2). 

(III) If IA I = 1, we say that (u,lb> is a superior entry with respect to 
II(A) for every person b on ai’s preference list. 

In the above definition, if there is no ambiguity, we will omit the words 
“with respect to II(A).” 

Given a preference relation (S, T), a stable partition II of (S, T) consists 
of a partition of the set S; S = lJ im_iAi, A, n Aj = 0 if i f j, and a 
specified semi-party permutation II for each Ai, i = 1,2,. . . , m, such 
that the following stable condition is satisfied: 

If (a I b) is a superior entry then (b la) is an inferior entry. 

Remark. Recall that the table T of preference lists is assumed to be 
symmetric, i.e., a is on b’s list if and only if b is on u’s. If T is not 
symmetric, then the above stable condition should be modified as follows: 
If (a lb) is a superior entry then either (blu) is an inferior entry or a is not 
on b’s preference list. 

In the context of the above definition, the associated semi-party permu- 
tation IN Ai) is called a party permutation for A,; and each A, is called a 
party. An odd party (even party, respectively) is a party having odd (even, 
respectively) cardinality. More precisely, these terms are defined with 
respect to the given stable partition II. If there are ambiguities, we will say 
that Ai is a party in II, and (ulb) is a superior entry in II, etc. 

A stable partition II is specified by its party permutations and will be 
denoted by II = {II( INA,), IKA,), . . . , II(A Persons a and b are 



158 COMPLETE STABLE MATCHING 

said to be a matching pair (or matched) in II if {a, b) forms a two-person 
party in II. A subset A of the all-person set S is said to form a party (an 
odd party, respectively), if there exists a stable partition II such that A is 
a party (an odd party, respectively) in II. 

We have two remarks about the definition of a stable partition. 

Remark 1. (ulb) is a party entry in stable partition II if and only if 
(blu) is. 

Remark 2. Let A be a party in stable partition II: 

If IA) r 3, then any entry on u’s list is either superior or inferior in 
IJ, for each a EA. 

If (A( = 2, then the party entry (ulb) is neither superior nor inferior 
in II, for each a EA. 

For a given preference relation, it is not clear whether any stable 
partition exists. We will show later that such a partition does exist and 
describe an efficient algorithm to find one. On the other hand, there may 
exist many distinct stable partitions. However, we will prove that any two 
stable partitions have exactly the same odd parties (not only having the 
same persons involved in a corresponding odd party, but also with the 
same party permutation). Therefore, the existence of an odd party de- 
pends on the preference relation, not on a particular stable partition. 
Moreover, we will show that there exists a complete stable matching if and 
only if there does not exist any odd party. 

To illustrate the above definitions, we give the following example: 

Person 

1 
2 
3 

4 
5 
6 
7 
8 

9 
10 
11 

12 

Superior 

Superior 

Superior 

Preference list 

2 . 
3 . 
4 

Superior 
5 * 
1 . 

Superior 
8 . 
9 

Superior 
10 . 
7 . 

12 

5 . 
1 . 
2 

Inferior 
3 . 
4 . 

10 . 
7 

Inferior 
8 . 
9 . 

Inferior 
11 



JIMMY J. M. TAN 159 

A stable partition is shown above, there are four parties; namely 
A, = {1,2,3,4,5), A, = (61, A, = (7,8,9, lo), A, = (11,121, and II = 
((1,2,3,4,5), (6), (7,8,9, lo), (11,12)}. To complete this example, we just 
have to fill in all the other entries and follow the rule that whenever (a lb) 
is a superior entry, then @Ia) is inferior. 

A preference relation may have more than one stable partition. We can 
identify at least two other stable partitions in the above example: 

and 

II, = {(1,2,3,4,5>,(6),(7,S),(9,10),(11,12)} 

II2 = { (1,2,3,4,5), (6), (g,9), (7, lo), (11,12)). 

3. STABLE PARTITIONS AND STABLE MATCHINGS 

The notion of the stable partition generalizes that of the complete 
stable matching in the following sense. 

PROPOSITION 3.1. A complete stable matching is a stable partition in 
which every party has cardinal@ two and vice versa. 

Proof This is directly from the definitions. M = ((a,, bJli = 1 to n/2} 
is a complete stable matching if and only if II = {(ai, b2) Ii = 1 to n/2} is 
a stable partition. 0 

PROPOSITION 3.2. A stable partition without any odd party induces a 
complete stable matching. 

Proof Suppose that II is a stable partition without any odd party. Let 
A be an even party in IT with party permutation (a,, a*, u3,. . . , azk), 
k 2 2. Then decomposing party A into k matching pairs (a,, 
a&, (as, ad), . . . , (a2k-1, alk), we have a new stable partition II’ = (II - 
((a,, a2,. . . , a,,>)> u {(a,, a,>, (as, ad), . . . , (azkF1, azk>). This is be- 
cause every superior entry in II’ is a superior entry in II, and every 
inferior entry in II, other than the party entries, is an inferior entry in II’. 
By continuing to decompose any even party having cardinality four or 
more, eventually we obtain a stable partition in which every party has 
cardinality two. q 

The next theorem shows that having an odd party is a sufficient 
condition for not having a complete stable matching. 

THEOREM 3.3. For any preference relation, if it has a stable partition 
containing an odd party, then there does not exist any complete stable 
matching . 



160 COMPLETE STABLE MATCHING 

Proof. Suppose not. Let II be a stable partition which contains at least 
one odd party and let M be a complete stable matching. Hence M is a 
stable partition in which every party has cardinality two. Let S, be the set 
of persons whose partners in M are superior entries in IT, and let Z, be 
the set of persons whose partners in M are inferior entries in II. For the 
stability of II, every person in S, has an M-partner in I,. So IS,1 I 11,l. 
Consider a party A in stable partition Il, and let (a,, a2,. . . , ak> be the 
associated party permutation of A. For the stability of M, no two consecu- 
tive persons a, and a,,, (subscripts module k) can be in I,, otherwise a, 
and aj+ t block the matching M. 

Therefore, if A is an odd party in II, then 

IA n s,I > IA n r,l. 

And if A is an even party in II, then 

IA n s,/ 2 IA flZ,l. 

Since stable partition Il contains at least one odd party, we have 

IS,1 = C IMi n S,l > C IA, n z,I = lZ,l. 
A, is a party A, in a party 

in Il in Il 

This is a contradiction, and the theorem follows. 0 

We will prove that the inverse of Theorem 3.3 is also true. Let us point 
out one use of the above theorem. Suppose that we want to convince a 
person that a particular roommates instance has no complete stable 
matching. There are two efficient ways available to do so; one is the 
execution trace of Irving’s algorithm, and the other is the construction of a 
stable partition containing an odd party. Of course, to find a stable 
partition one has to, for example, apply the algorithm described later in 
this paper; once obtained it gives a certificate of non-solvability. A person 
needs only to know the definition of the roommates problem to follow the 
proof of Theorem 3.3. So anyone who has the certificate in hand for an 
instance can use it to prove that no complete stable matching is possible. 
While the trace of Irving’s algorithm is only convincing if one understand 
the correctness of the whole algorithm, which may not be trivial. 

4. IRVING’S ALGORITHM 

Given Proposition 3.2 and Theorem 3.3, we now must prove that having 
an odd party is also a necessary condition for not having a complete stable 
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matching. Our proof is a constructive one, and is based on a modified 
version of Irving’s algorithm [6], which finds a complete stable matching if 
one exists, or reports that none exists. We show that there exists at least 
one stable partition for every preference relation, and it leads to an 0(n2> 
algorithm to find one. We also obtain an interesting result that every 
stable partition contains exactly the same odd parties. Combining these 
facts and Theorem 3.3, we conclude that having an odd party is a 
characterization for not having a complete stable matching. 

Before describing our modifications and extensions, we first summarize 
Irving’s algorithm [6]. 

IRVING’S ALGORITHM. 

Input: A table of preference lists. 
Output: Either output a complete stable matching or report that none 
exists. 

The algorithm successively deletes entries from preference lists until 
either each person has only one entry on his list, or until someone has no 
entries. In the first case, the entries specify a complete stable matching, 
and in the second case, there are no solutions. For ease of exposition, we 
need a definition. 

DEFINITION. The current set of preference lists an any point in the 
algorithm is called a table. 

Irving’s algorithm is divided into two phases: 

Phase 1. The first phase of the algorithm is based on a sequence of 
“proposals” from one person to another. When a person receives a 
proposal, then 

(i) he holds it for consideration if it is the best proposal he has so far 
received, simultaneously rejecting any poorer proposal already held; 

(ii) he rejects it at once if he already holds a better proposal. 

Each person proposes to the others in the order in which they appear in 
his preference list, pausing when a promise of consideration is received; 
and resuming his sequence of proposals upon any subsequent rejection. 

This phase of the algorithm will terminate either 

(i) with every person holding a proposal, or 

(ii) with one person rejected by everyone. 

We note that, in this phase of the algorithm, each person both receives 
and makes proposals; unlike the classical stable marriage case [l, 121, 
where only the persons of one sex make proposals and the members of the 
opposite sex receive proposals. 
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(a) Original table (b) Phase 1 table 

Person Preference list 

1 3 2 4 5 6 
2 6 3 1 5 
3 5 4 2 1 
4 1 3 6 
5 1 2 6 3 
6 1 4 5 2 

Person Preference list 

1 3 2 4 
2 6 3 1 5 
3 5 4 2 1 
4 1 3 6 
5 2 6 3 
6 4 5 2 

FIGURE 1 

It is proved in [l, 6, 121 that if b rejects a in the proposal sequence, then 
a and b cannot be partners in any complete stable matching. Moreover, at 
any stage of the proposal process, if a proposes to b, then in any complete 
stable matching: 

(i) a cannot have a better partner than b; 

(ii) b cannot have a worse partner than a. 

Therefore, the following entries can be deleted from the table when 
person b holds a proposal from a: 

(i) every entry (blx), with r(b, a> < r(b, x); 

(ii) every entry (x(b), where entry (blx) is described in case (9. 

The remaining set of lists at the end of phase 1 is called the Phase 1 table. 

EXAMPLE (Fig. 1). Checking the resulting table at the end of Phase 1, 

(i) if some list is empty then there is no complete stable matching, 

(ii) if every list contains just one person then the lists specify a 
complete stable matching, 

(iii) if none of(i) and (ii) hold and some of the lists contain more than 
one person, this brings us to the second phase of the algorithm. 

Phase 2. In this phase, entries are also deleted successively from the 
table, in a very special way, until either each person has only one entry on 
his list, or until someone has no entries. The basic idea in the second 
phase of the algorithm is that of a rotation. 

DEFINITION. Let T be a table. A rotation R exposed in table T, 
denoted by R = (a,, a2,. . . , a,)l(bl, b,,. . . , b,), is a cyclic sequence a,, 
a2,. . . , a, of distinct people, where bi is the first person on ai’s list in T, 
i = 1 to r, such that the first person bi on a,‘s list is the second person on 
ai-l 7 ‘s i = 1 to r (subscript modulo r). 
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EXAMPLE. In Fig. lB, (1,5,2)1(3,2,6) is an exposed rotation in Phase 1 
table. 

DEFINITION. A table T is said to be in the second phase, or in Phase 2, 
if 

(i) the table has been subjected to Phase 1 reduction as described 
before, 

(ii) the table has been subjected to zero or more Phase 2 reductions 
(so-called rotation eliminations), as described below. 

DEFINITION. Let T be a table. A complete stable matching M is said to 
be contained in a table T, if and only if every matched pair in M is in T, 
i.e., a is on b’s list and b is on a’s list for every pair (a, b} in M. 

Consider a table T in the second phase of the algorithm; the following 
crucial result is proved in [6]. 

THEOREM 4.1. Let T be a table in phase 2 and let R = (a,, 
a2,. . . , a,)l(bI, b,, . . . , b,) be a rotation exposed in T. Then 

(i) in any complete stable matching contained in T, either ai and b, are 
matched for all values of i, or for no value of i; 

(ii> if there is a complete stable matching in which ai and bi are 
matched, then there is another in which they are not. 

We need one more definition. 

DEFINITION. Let R = (a,, a2,. . . , a,)](bl, b,, . . . , b,) be a rotation ex- 
posed in table T. Rotation R is said to be eliminated from T, if the 
following entries are deleted from T: 

(i) every entry (biIx) with r(bi, aiel) < r(bi, x), i = 1 to r (subscript 
modulo r); 

(ii) every entry (x Ibi), where entry (bi]x) is described in case (i>. 

As a consequence of Theorem 4.1, if the original problem instance 
admits a complete stable matching, then there is one contained in the 
resulting table after eliminating an exposed rotation. Furthermore, Irving 
[6] proved algorithmically that, given a table T in Phase 2, if there is a 
person whose current list has more than one entry, then there is a rotation 
exposed in T. Since the concept of a rotation also plays a central role later 
in our algorithm for finding a stable partition, we give a formal statement 
of this result. 

PROPOSITION 4.2 (Irving [6]). Let T be a table in Phase 2; if there is a 
person whose current list has more than one entry, then there is a rotation 
exposed in T. 
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In summary, the second phase of Irving’s algorithm can be stated as 
follows 

(i) While some person has more than one entry on his list, and no 
list is empty, find and eliminate an exposed rotation. 

(ii) If every person has exactly one entry on his list, then the lists 
specify a complete stable matching. 

(iii) If there is an empty list, then there are no complete stable 
matchings. 

EXAMPLE. Consider the example given in Fig. la. The Phase 1 table is 
shown in Fig. lb. Eliminate exposed rotations successively in the following 
order, R, = (1,5,2)1(3,2,6), R, = (3,6)/C&4), and R, = (2,4))(3,1). Then 
the resulting table is as follows, and {{1,21, {3,4), (5,611 is a complete 
stable matching: 

Person Preference list 

1 2 
2 1 
3 4 
4 3 
5 6 
6 5 

The correctness of Irving’s algorithm is proved in [6] and will not be 
repeated here. The overall time complexity is 0(n2). Our modifications 
and extensions in the following sections will be self-contained and fully 
proved. 

5. PHASE 1 OF THE STABLE PARTITION ALGORITHM 

Given a preference relation (S, T), we now consider the problem of 
finding a stable partition. Our algorithm basically utilizes the idea used in 
Irving’s algorithm with some modifications and extensions. We examine 
closely the processes of the two phases in Irving’s algorithm, and investi- 
gate the effect of these processes on the structure of the stable partitions. 
By doing so, we discover new information concerning stable partition and 
obtain an algorithm for finding one. To locate a stable partition, it suffices 
to identify all its party entries, 

DEFINITION. A stable partition II is said to be contained in a table T, 
if every party entry in II is in T. 
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Our first observation is that no entry removed in Phase 1 of Irving’s 
algorithm can be a party entry in any stable partition. The following 
proposition justifies this fact. 

PROPOSITION 5.1. Given a preference relation, let T,, be the initial table, 
and let T, be a table obtained from TO by removing zero or more entries 
which are not the party entries in any stable partition. Suppose that person c 
is the current first person on both a’s and b’s lists in T,, and r(c, a) < r(c, b). 
Then no entry (c Ix), with r(c, a) < r(c, x1, can be a party entry in any stable 
partition. 

Proof Suppose, on the contrary, that some entry (clx) with r(c, q) < 
r(c, X) is a party entry in stable partition II. Then (cla) is superior in II, 
and so (a Ic) is inferior in II. Therefore, in a’s original list, there should be 
a party entry before the inferior entry (a lc). This is a contradiction, since 
in a’s list no entry before (a Ic) can be a party entry in any stable partition. 
Hence the proposition follows. 0 

So the first phase of our algorithm for finding a stable partition is simply 
applying the proposal and rejection process, and removing impossible 
entries from the table, as stated in Proposition 5.1, until each person 
either 

(i) holds a proposal; or 

(ii) has an empty list. 

PROPOSITION 5.2. No entry removed in Phase 1 can be a party entry in 
any stable partition. More precisely, if a person a proposes to c, then all the 
entries (clx) and (xlc), with r(c, a) < r(c, x1, can be removed from the 
table; no stable partition is affected. 

Proof This follows by inductively applying Proposition 5.1 during 
Phase 1, i.e., when a proposes to c. 0 

Similarly as before, the table obtained at the end of this phase is also 
called the Phase 1 table. Before going into details of Phase 2, we summa- 
rize some useful properties which are either immediately, or are explicit or 
implicit in [6]. 

Let TO be the original table of preference lists. We assume that the 
table TO is symmetric, i.e., person a appears on b’s list if and only if b 
appears on a’s. Let T, be a resulting table obtained from T,, after Phase 1 
process and after eliminating zero or more rotations. Recall that such a 
table T2 is called a table in Phase 2. We note that the Phase 1 table is also 
a table in Phase 2. 
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Properw 5.3. Let T2 be a table in Phase 2. Person a appears on b’s list 
in T2 if and only if b appears on a’s list in T2. 

Property 5.4. Let Tz be a table in Phase 2. Person a appears first on 
b’s list in T2 if and only if b appears last on a’s list in T2. 

Property 5.5. Let TO be the original table, and let T2 be a table in 
Phase 2 (obtained from TO). Suppose that entry (a lb) is originally in table 
TO, but is not in T2. Let x and y be the persons who appear last on a’s 
and b’s lists in T,, respectively. Then either b appears after x on a’s list in 
TO, or a appears after y on b’s list in TO. 

Property 5.5 follows directly from the rules of entry deletion in Irving’s 
algorithm. Let (S, TO) be a preference relation, and let T be a table 
obtained from TO by deleting some entries. Then (S, T) can be viewed as a 
new preference relation. We say that II is a stable partition for instance T, 
if II is a stable partition of the preference relation (S, T). From Property 
5.5, the following result follows immediately. 

PROPOSITION 5.6. Let TO be the original table, and let T2 be a table in 
Phase 2 (obtained from T,,). 

(i) If n is a stable partition for instance TO and n is contained in T2, 
then H is a stable partition for instance T2. 

(ii> Conversely, if n is a stable partition for instance T2, then n is a 
stable partition for instance TO. 

Pro05 (i> By Property 5.3, this is trivial. 

(ii) This follows directly from Property 5.5; i.e., if (alb) is superior in 
TO, then (bla) must be inferior in TO. q 

At the end of Phase 1, let T1 be the resulting table obtained. Then we 
have the following result. 

PROPOSITION 5.7. In table T,, if every person has zero or one entry on 
his list, then the lists specify a stable partition. 

Proof: By Properties 5.3 and 5.4, if b is the only person on a’s list in 
T,, then a is also the only person on b’s list in T1. So a and b form a pair 
in table T1. Let {{ai, bill i = 1 to k) be the set of all such pairs in T,, and 
let {cjl j = 1 to ml be the set of all persons whose lists are empty in T,. 
Then it is obvious that II = {(ai, bi>l i = 1 to k) U I( j = 1 to m) is a 
stable partition for instance T,. Thus, by Proposition 5.6, TI is also a stable 
partition for the original instance TO. 0 
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So, checking the Phase 1 table at the end of this phase, 

(i) if every person has zero or one entry on his list, then the lists 
specify a stable partition, 

(ii) if someone has more than one entry on his list, this brings us to 
the second phase of the algorithm. 

6. PHASE 2 OF THE ALGORITHM 

In the second phase of our algorithm, we also use rotation elimination 
to delete more entries from the table. We have to investigate the effect of 
the rotation elimination on a stable partition. Let T be a table in Phase 2. 
Suppose that there is a person whose current list in T has more than one 
entry; then, by Proposition 4.2, there is a rotation exposed in T. In the 
following, we have a series of results which reveal the relationship between 
the structure of an exposed rotation and that of a stable partition. We 
start our discussion by considering the case that the elimination of a 
rotation results in some list empty, and study the structure of such a 
rotation. Let us use the following example to get some intuition (espe- 
cially, for part (iv) of Lemma 6.1 below). 

EXAMPLE (Fig. 2). In Fig, 2a, the current table contains an exposed 
rotation R = (1,2,3,4,5,6)1(4,5,6,7,1,2,3). After eliminating R, the lists 
of all the persons involved in this rotation become empty. Let us write this 
exposed rotation as R = (a,, q,. . , ,a,)l(b,, b,, . . . , b,) and point out 
some special properties about it. 

(i) Each person uk has only two persons on his list. 

(ii) A = B, where A = (a,, u2,. . . ,a,) and B = (b,, b,, . . . , b,). 

(a) Person Preference list (b) Person Preference list 

1 45 4 71 
2 56 7 34 
3 67 3 67 
4 71 6 23 
5 12 2 56 
6 23 5 12 
7 34 1 45 

The rest The rest The rest The rest 

FIGURE 2 
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(iii) This rotation contains an odd number of persons, i.e., r is odd. 
(iv) (1,2,3,4,5,6,7} forms an odd party with the cyclic permutation 

(4,7,3,6,2,&l> as shown in Fig. 2b. 

Let us explain the sequence of this permutation as follows: In this case 
r = 2m - 1, where r = 7 and m = 4. Consider Fig. 2a, the cyclic permu- 
tation starts from the “middle” person, 4 (= m), goes down to the 
“bottom” person, 7 (= 2m - l), then the pattern follows: 4 and 7, 3 and 
6, 2 and 5, and ends up at the “top” person 1. 

These are not mere coincidences; in fact, we will see in Theorem 6.2, 
that in some sense this is the only situation that the elimination of a 
rotation results in some list empty. We now begin to state and prove the 
results. We need the following lemma later in Theorem 6.2 and in 
Theorem 6.5; one may wish to skip the proof temporarily, and come back 
for it afterwards. 

LEMMA 6.1. Let T be a table in Phase 2, and let R = 
(a,, a2,. . . , a,>l(bl, b,, . . . , b,) be a rotation exposed in T. Suppose that, 
for some fixed i and j, ai = bj, and suppose that the second person on ai’s list 
in T is the same as the last person on bj’s, i.e., bi+, = aj (subscript mod&o 
r). Then 

(i) in table T, each person ak has only two persons on his current list 
(i.e., b, and bk+ ,>, for k = 1,2, . . . , r (subscript mod&o r), 

(ii) A = B, where A = (a,, a2,. . . , a,} and B = {b,, b,, . . . , b,), 

(iii) A has odd cardinality , 

(iv) the cyclic permutation II(A) = (a,, a,, _ ,, a,- ,, azrnp2,. . . , 

a,-k~a2m-(k+l)~*~~~a2~atn+l~ a, ) is a semi-party permutation for A, where 
[AI =r=2m- 1. 

Remark. We will see later that, with the cyclic permutation II(A), A 
forms an odd party in every stable partition. 

Proof With respect to the given table T and the given rotation 
R = (a,, a2,. . . , a,)l(bl, b,, . . . , b,), we define property (i, j> to be the 
following property: ai = bj and the second person on a,‘s current list is the 
same as the last person on bj’s current list. Suppose that, for some fixed i 
and j, property (i, j) is true. We claim that property (i - 1, j - 1) is also 
true (index module r). 

AI1 the subscripts considered below are module r. We first prove that if 
property (i, j) is true, then so is property (j - 1, i). All we have to show is 
that (1) aj-, = bi, and (2) bi = ai (i.e., the second person on aj-,‘s list is 
the same as the last person on hi’s list). Because property (i, j) is true, we 
know that a, = bj, so (2) holds. By property (i, j) again, the second person 
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on ai’s list is the last person on his list (since ai = bj), so there are only 
two persons on ai’s current list. Since a, = bj, bj also has only two persons 
on his current list. Then by the definition of a rotation, bi and bi+l (ajpl 
and aj, respectively) are the only two persons on aj’s list (bj’s list, 
respectively). Thus bi = aj- r and bi + 1 = aj. This proves (1). Hence prop- 
erty (j - 1, i) holds. Replacing (i, j) by (j - 1, i), it follows that property 
(i - 1, j - 1) is true. 

Repeating this argument shows that property (i - k, j - k) holds, for 
k = 0, 1,2, . . . , r - 1 (index modulo r). We now start to prove the results: 

(i) Since, for some fixed i and j, property (i - k, j - k) holds for 
k = 0, 1,2, . . . , r - 1, we know that ai-k = bjek and the second person on 
aiek’s current list is the last person on his list. So uiek has only two 
persons on his current list, k = 0, 1,2,. . . , r - 1 (subscript modulo r). 
This proves (i). 

(ii) Again by property (i - k, j - k), we have uiek = bjpk and 
b;- k+l =ajek, k=0,1,2 ,..., r - 1 (subscript modulo r). Thus A = B. 

(iii) We now show that the cardinality of A is odd. Since aiek = bjpk 
and b,- k+l = aj-ky for k = 0, 1,2,. . . , r - 1, substituting k = i - 1 into 
the first equality, and k = j - 1 into the second, we have a, = bj-i+ r and 
bi-j,2 = a, (subscript modulo r): 

-j -i+l=i-j+2(modulor). 

* 2( j - i) = 1 (modulo r). 

Since 2( j - i) is even, r must be odd. This proves that IA I = r is an odd 
number. 

We need the following result in part (iv): 

Let m = j - i (modulo r) and Ormlr-1 

=$ 2m = 1 (modulo r) . 

Note that 0 I m I r - 1, the last equation has only one solution 2m = 
1 + r. So r = 2m - 1. 

(iv) We claim that the cyclic permutation 

n(A) = (a,,b,,a,-,,b,-,,...,a,,b,,a,) 

is a semi-party permutation for A. Observe that ak and b, have only two 
persons on their current list; the first person on ak’s, bk’s, and u,‘s current 
lists are b,, akWl, and b,, respectively, k = 1,2,. . . , m (note b, = a,; this 
is because biek+ 1 = aj...k, for k = 0,1,2 ,..., r - 1, substituting k = i, we 
have b, = aidi = a,,,). Put all this information together and trace the 
current table T; the claim follows. 
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Notice that biek+, = ajex-, k = 0, 1,2,. . . , r - 1; substituting k = 
i - t + 1, we have b, = aCj-ij-l+t, t = 1,2,. . . , r (subscripts rnodulo r). 
Since m = j - i (module r), so that 6, = a,- ,+I, t = 1,2,. . . , r (sub- 
scripts modulo r). Thus 

n(A) = (a,,b,,a,-l,bm-,, . . . . am-k,bm-k....,a2,b2,a~) 
= (a mra2m-l,am-lTa2m-2T.. . Tam-k,a2m-(k+l), . . . , a2ya,+1? 4 

and (iv) follows. III 

We are now ready to state and prove the following theorem as claimed 
before. 

THEOREM 6.2. Let T be a table in Phase 2, and let R = 
(a,,+,. . . ,aJl(b,,b,,. . . , 6,) be a rotation exposed in T. Suppose that 
there is a person c whose current list is not empty, but is so after eliminating 
R. Then (9, (ii), (iii>, and (iv) in Lemma 6.1 hold, and c E A = 
(a,, a2,. . . , a,). 

Proof: Eliminating of rotation R can be divided into three steps: 

(1) Remove entry (biIx) and entry (xlbi), with r(b,, ai-,) < r(bi, x) 
< r(b,, a,), for all such X, i = 1,2,. . . , r (subscript modulo r). 

(2) Remove entry (bilai), i = 1,2,. . . , r. 

(3) Remove entry (ailbi), i = 1,2,. . . , r. 

No list is caused to be empty after step (l), because x is not the last 
person on hi’s list and bi is not the first person on x’s. Observe that after 
step (l), ai and bi have at least two persons on their lists, i = 1,2,. . . , r, 
e.g., the entries that form the exposed rotation R. During step (21, we 
delete the last entry (bilai) on hi’s lists, i = 1,2,. . . , r. So, after step (21, 
each bi still has aiel on his list, and thus no list is caused to be empty. 

However, there is a person whose list was not empty, but is so after step 
(3). In step (3), we only delete the first entry (ailbi> on a,‘s list, i = 
1,2,..., r. Therefore, it must be some person ai whose list becomes 
empty, and this person ai has only one entry left on his list after step (2). 
Note that after step (11, a, has at least two persons on his list, but after 
step (21, ai has only one entry left. So, it must be that a, = bj, for some j, 
and that the last person on bj’s list in T is the same as the second person 
on a,‘s list in T. Then the theorem follows from Lemma 6.1. 17 

Conversely, suppose that we discover an exposed rotation R = 
(a,, a2,. . . , a,)l(bl, b,, . . . , b,) satisfying (i) to (iv) as stated in Lemma 6.1. 
Then the lists of every person involved in this rotation become empty after 
eliminating R. We will see later that such a rotation gives us an odd party 
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A = (a,, u2,. . .) a,} with the party permutation II(A) as stated in (iv) of 
Lemma 6.1. 

From the above observation, if the elimination of rotation R makes 
some list empty, it indicates an odd party. We shall backup the algorithm 
to the table, where R was eliminated, and never permit R to be elimi- 
nated again. We then separate the preference lists of persons in A = 
b,, QT. * * > a,} from the table, and treat the rest of the table as a smaller 
instance table (in Phase 2). The rest of the table is unchanged, because 
any person in A is not on the current lists of the rest of the persons. For 
convenience, such a rotation is called an odd rotation (for persons in A). 

EXAMPLE. 

Persons Preference list Person Preference list 

7 16 
5 64 
3 42 
1 27 
6 75 
4 53 
2 3 1 

The rest The rest 

1 27 
2 31 
3 42 
4 53 
5 64 
6 75 
7 16 

The rest The rest 

In this example (7,5,3,1,6,4,2)1(1,6,4,2,7,5,3) is an exposed rotation 
satisfying (i) to (iv> as stated in Lemma 6.1. Rearranging the table, we see 
that (1,2,3,4,5,6,7) is a semi-party permutation. 

The following two results are prepared for the case that the elimination 
of a rotation makes no list empty, even though they hold for odd rotation. 

THEOREM 6.3. Let T be a table in Phase 2, let 

R = (a,, a2,. . . , a,)l(b,, b,, . . . , b,) 

be u rotation exposed in T, and let II be a stable partition contained in T. If, 
for some fLved i, (u,lbJ is a party entry in n, then (ujlbj) is also a party 
entry in lI for every j = 1,2,. . . , r. 

Proof All the subscripts considered in the following are modulo r. By 
the definition of the stable partition, (uilbi) is a party entry in Il if and 
only if (bilui) is a party entry in II. Since r(b,,uiel) < r(b,, a,), so 
(bilui-I> is superior in II, and hence (~,-~(b,) is inferior in II. Before the 
inferior entry (aim1 I bi) in the current list of a,-i, there must be a party 
entry in II. The only entry before (ui-Ilb,) is (ui-l(bi-,), so (ui-l(bi-,) is 
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a party entry in II. Repeating this argument shows that (ajlbj) is party 
entry in II, for all j = 1,2,. . . , r. This completes the proof. c3 

In the context of the above theorem, in any stable partition either (ailbi) 
and (bilai) are party entries for all values of i, 1 5 i I r, or for no value of 
i. In the following proposition, notice that bi is the first person on a,‘s list 
in table T, and bit, is the second. 

LEMMA 6.4. Let T be a table in Phase 2, and let 

R = (a,,a, ,..., a,)l(b,,b,,...,b,) 

be a rotation exposed in T. Let n be a stable partition contained in T such 
that (ajlbi> is a party entry for all i = 1,2,. . . , r. Then 

6) either all the entries (a,lb,+ ,), i = 1,2,. . . , r, are party entries in II 
(subscript modulo r 1, 

(ii) or none are; in this case, A n B = 0, where A = {a,, a2, _. . , a,), 
B = {b,, b,, . . . , b,}, and (ai, bi) is a two-person party in II, for i = 
1,2, . . . , r. 

Proof Suppose that for some fixed i, (ailbi+ i) is not a party entry in 
II. We claim that (a,-,lb,) is not a party entry in II either. In the 
following, party entry, superior entry, and inferior entry are all with 
respect to the given stable partition II. 

Since r(bi+r, ai) < r(b,+,, ai+1 , ) and (ai+llbi+,) is a party entry if and 
only if (b,+,Jai+l) is, hence (bi+llai) is superior, and so (Ui(b,+l) is 
inferior. Observe that person bi+ , is the second entry on ai’s list in T, and 
(ailb,+ ,I is inferior but is not a party entry. Therefore in ai’s list, only one 
entry can be a party entry; namely, the first one (ailbi>. So {ai, bJ is a 
two-person party in II. Thus (~~-~lb~) cannot be a party entry in II, as 
claimed. Replacing i by i - 1, and repeating the same argument, it 
follows that (ajlbj+,) is not a party entry, and that {aj, bj} is a two-person 
in II, for j = 1,2,. . . , r (subscript modulo r). It remains to show that, in 
this case, A n B = 0. Note that, for any ai E A and bj E B, ai is 
matched with the first person on his list, and bj is matched with the last 
person on his list. Person a, and bj both have at least two persons on their 
lists, so a, # b, and hence A n B = 0. 0 

Now we consider the case that the elimination of a rotation makes no 
list empty. The following theorem is one of our main results. 

THEOREM 6.5. Let T be a table in Phase 2, and let 

R = (a,,a,,...,a,)l(b,,b,,...,b,) 

be a rotation exposed in T. Suppose that no list, which is non-empty in T, 
will become empty after eliminating R. If there is a stable partition KI 
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contained in T, in which (ailbi), i = 1,2,. . . , r, are all party entries, then 
there is another II’ in which they are not. Moreover, II and II’ have exactly 
the same odd parties (not only having the same persons involved in a 
corresponding odd party, but also with the same party permutation). 

Proof. All the subscripts considered in the following are modulo r. By 
Lemma 6.4, either all the entries (ailbi+ r), i = 1,2,. . . , r, are party entries 
in II or none are. Suppose that the latter case holds. Then, again by 
Lemma 6.4, {ai, bi) is a two-person party in fI, i = 1,2,. . . , r, and A n B 
= 0. Break the pair a, and bi, and match ai with the second person on 
his list, let II’ = (II - {(a,, bi) I i = 1 to r}) U ((a,, b,,,) I i = 1 to r). We 
claim that ff’ is a stable partition. (Obviously, II and IT’ have the same 
odd parties). We need some observations. In stable partition II, a, (bj, 
respectively) is matched with the first person b, (the last person ai, 
respectively) on his list in table T. While in TI’, ai is matched with the 
second person bi+I, and bj is matched with ajel whom he prefers to aj. 
Therefore, in table T, any instability in fI’ must involve some ai. By 
Proposition 5.6, if we can prove that IT’ is a stable partition for instance T, 
then II’ is a stable partition for the original instance. Now, in table T, 
every person ai has only one superior entry in fI’; namely, (ailbi). Since bi 
is matched with aiel in fI’ and r(b,, ai-,) < r(b;, a,), hence (bilai) is 
inferior in II’, and the claim follows. Note that, in the stable partition fI’, 
(ailhi) is not a party entry, for i = 1,2,. . . , r. 

Now consider the former case that all the entries (ailbi+l), i = 
1,2,..., r, are party entries in II. There are two cases: (i) A n B # 0 or 
(ii) A rl B = 0, where A = (a,, a2, . . . , a,) and B = {b,, b,, . . . , b,.}. 

(i) Suppose A CI B # 0, say a, = bj for some fixed i and j. For 
person a, (bj, respectively), (ailbi) and (ailb,+l) ((bjlaj-l) and (bjlaj), 
respectively) are party entries in II. Since ai = b,, it must be that (ailbi) = 
(bjlaj-,I and (ailbi+,) E (bjlaj), i.e., bi = ajel and bi+l = aj. So the 
second person bi+ 1 on ai’s hst in T and the last person aj on bj’s are the 
same. By Lemma 6.1, the list of every person a, in A will become empty 
after eliminating rotation R. This is a contradiction, and so A n B = 0. 

(ii) Consider A n B = 0. We claim that A U B, with the permuta- 
tion (a,, b,, a,-,, b,-,, . . . , a2, b,, a,, b,), is an even party in II. Observe 
that 

1. the persons in A and B are all distinct, IA I = IBI, so IA u BI is 
an even number, 

2. (ailbi> and (bilai-l) are party entries in ff, 

3. (bilai> and (ailbi+l> are also party entries in II, 

4. r(ai, bi) < r(ai, bi+l> and r(bi, ai-l) < r(bi, a,), i = 1,2,. . . , r 
(subscripts modulo r). 
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So the claim follows. Now, decomposing the even party A U B into 
pairs, let II’ = (II - {(a,, b,,~,-l,b,-~ ,..., a2,b2,al, b,)I) U {(Uiybi+l)l 
i = 1 to r). By the proof of Proposition 3.2, II’ is a stable partition, in 
which (ai Jbi) is not a party entry for i = 1,2, . . . , r. Since no odd party is 
affected, II’ and II have exactly the same odd parties. This completes the 
proof of the theorem. q 

Before describing our modified version of Phase 2, we need the follow- 
ing definitions. Assume that the initial table of preference lists is symmet- 
ric. 

DEFINITION. Let T be the current table at a certain point of the 
algorithm. The preference list of a person is said to be inactiue, if 

(i) the list is empty, 

(ii) the list has only one person, or 

(iii) the list is involved in an odd rotation which has been discovered 
before. 

The preference list of a person is active, if it is not inactive. 

DEFINITION. The active part of a table T is the part of the table 
obtained from T by deleting all the inactive lists. 

If there is someone whose preference list is still active, then his list 
contains at least two persons. Hence by Proposition 4.2, there is a rotation 
exposed in T. Phase 2 of the algorithm for finding a stable partition can be 
summarized as follows: 

1. While the active part of the table is not empty, find an exposed 
rotation. 

(i> If the elimination of this rotation results in some list empty, 
then do not eliminate it (i.e., backup to the table where this rotation was 
eliminated), and declare inactive the lists of all the persons involved in this 
rotation. (They form an odd party.) 

(ii) Otherwise, eliminate this rotation. If some list has only one 
person left on it due to the elimination, then declare this list inactive. 

2. If the active part of the table is empty, stop, the current table 
specifies a stable partition. 

Let us discuss the above algorithm. By Theorem 6.2, going through step 
(9 of 1 results in the finding of an odd rotation. We will see soon that this 
indicates an odd party. Consider step (ii) of 1; by Theorem 6.5, if the 
original instance admits a stable partition II then there is another II’ 
contained in the resulting table after eliminating the rotation. Further- 
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more II and II’ have exactly the same odd parties. Phase 2 of the 
algorithm terminates with every list being inactive. In the final table T, 
there are a collection of persons whose lists have one person left, a 
collection (cjl i = 1 to s} of persons whose lists are empty, and a collection 
{Ril i = 1 to m) of disjoint odd rotations. Any one of these three 
collections may be empty. Recall that, throughout the algorithm, a is on 
b’s list if and only if b is on a’s. So those persons whose lists have only one 
entry appear in pairs, let {(ai, pi}1 i = 1 to k} be the set of all such pairs. 
For each odd rotation R = (al, a*,. . ., a,)l(bl,b2,. . . , b,), by Theorem 
6.2, there is a cyclic permutation II(A) such that II(A) is a semi-party 
permutation for A = (a,, u2,. . . , a,}. Let n(Ai) be that semi-party per- 
mutation for the corresponding rotation Ri, i = 1 to m. Then obviously, 
KI = ((ai, pi>1 i = 1 to k) U I( i = 1 to s} U {II i = 1 to m} is a 
stable partition for the final instance T, because there are no other entries 
in T except the party entries. By Proposition 5.6, II is also a stable 
partition for the initial instance To. The correctness of the whole algorithm 
is thus established. As for the time complexity, since our algorithm is 
basically Irving’s algorithm with some modification and extension, the time 
bound is exactly the same as that of Irving’s algorithm, namely, O(n2). The 
analysis is also similar to that of Irving’s [6] which will not be repeated 
here. 

Remark 1. Notice that every list which is non-empty at the end of 
Phase 1, remains non-empty through the whole process of our modified 
version of Phase 2. Therefore, all the single-person odd parties are found 
at the end of Phase 1. 

Remark 2. By Theorem 6.5, every stable partition contains the same 
odd parties as II does, where II is the stable partition contained in the 
final table. 

To illustrate our algorithm, we give the following example. This 
example looks complicated, so it is helpful to know the way that we 
created it. First, we have a stable partition II in mind, II = 
((1,2,3,4,5), (6), (7,8,9, lo), (l&12), (13), (14)). After putting down the 
party entries, whenever we write an entry (a lb) in a superior position, 
immediately write (b la) in an inferior position. To make the example more 
interesting, a rotation (5,10,12)1(11,1,7) is there. The example is shown in 
Fig. 3a. The Phase 1 table is displayed in Fig. 3b. After exposed rotation 
(5,10,12)((11,1,7) is eliminated from the Phase 1 table, the resulting table 
is shown in Fig. 3c. If we try to eliminate exposed rotation 
(1,4,2,5,3)1(2,5,3,1,4), then the lists of all the persons 1, 2, 3, 4, and 5 
become empty. So this rotation should not be eliminated. By Theorem 6.2, 
{1,2,3,4,5} is an odd party with party permutation (2,3,4,5,1> = 
(1,2,3,4,5). After eliminating one more rotation (8,10)((9,7), every list is 
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(a) Original table 
______- 
Person Preference list 

(b) Phase 1 table 

Person Preference list 

1 3 2 5 4 10 6 13 14 1 2 5 4 10 
2 5 3 1 6 13 14 2 3 1 

3 4 2 1 6 13 14 3 4 2 
4 51 3 6 13 14 4 5 13 
5 11 1 4 2 6 13 14 5 11 1 4 

6 1 2 3 4 5 711 6 Empty 
7 9 8 10 12 6 13 14 7 8 10 12 
8 10 9 11 7 8 9 11 7 

9 10 8 7 9 10 8 
10 17 9 8 10 1 7 9 
11 12 8 5 6 13 14 11 12 8 5 

12 7 11 12 7 11 

13 1 2 3 4 5 711 13 Empty 
14 1 2 3 4 5 7 11 14 Empty 

Person 

Cc) (d) Final table 

Preference list Person Preference list 

1 

2 
3 
4 

5 
6 
7 

8 
9 

10 
11 

12 
13 
14 

2 5 

3 1 
4 2 
5 3 
1 4 

Empty 
8 10 
9 I 

10 8 

7 9 
12 

11 
Emotv . . 
Empty 

1 
2 

3 
4 
5 
6 
7 

8 
9 

10 

11 
12 
13 

14 

2 5 
3 1 
4 2 
5 3 
1 4 

Empty 
8 

I 
10 

9 

12 
11 

. ~ 
Empty 

FIGURE 3 

inactive, and the final table is shown in Fig. 3d. We obtain a stable 
partition II, = {(1,2,3,4,5), (6), (7,8), (9, lo), (11,12), (13), (14)). 

The following two results should now be clear. 

THEOREM 6.6. For any given preference relation, there exists at least one 
stable partition. And any two stable partitions have exactly the same odd 
parties. 

The above theorem follows from the algorithm and Theorem 6.5. And 
the following theorem follows from the algorithm, Proposition 3.2, and 
Theorem 3.3. 



JIMMY J. M. TAN 177 

THEOREM 6.7. For any instance of the stable roommates problem, there 
exists a complete stable matching if and only if there does not exist any odd 
party. 

7. CONCLUSIONS 

We conclude this paper by relating our results to two others in [l, 21 
concerning the stable marriage problem. At the end, we would like to 
mention a further research result of ours. 

The stable roommates problem is a generalization of the well-known 
stable marriage problem, which has been discussed in many articles [l-3, 
8, 9, 11, 121. In the stable marriage problem, there are it men and n 
women; each person ranks all the members of the opposite sex in order of 
preference. A stable marriage is a complete matching of men and women 
such that no man and woman who are not partners both prefer each other 
to their actual partners under the matching. Gale and Shapley [l] proved 
that at least one stable marriage exists for every instance of the stable 
marriage problem. This result can also be obtained directly from our 
Theorem 6.7, because an instance of the stable marriage problem can be 
viewed as an instance of the stable roommates problem. In this particular 
instance, it is obvious that there does not exist any odd party of cardinality 
3 or more, since the preference list of each person contains only the 
member of the opposite sex. There does not exist any single-person odd 
party either, because the preference list of each person contains all the 
members of the opposite sex. Therefore, by our Theorem 6.7, there exists 
at least one complete stable matching (i.e., a stable marriage). 

In 121, Gale and Sotomayor consider another classical form of the stable 
marriage problem, namely, the college admission problem. More precisely, 
they consider the problem of medical school graduates applying to hospi- 
tals for serving a year’s residency. One of their results is as follows. 

Let M be any stable matching, let S(M) be the set of applicants 
admitted to some hospital and let n,(M) be the number of applicants 
admitted to hospital H. Then the set S(M) and numbers n,(M) are the 
same for all stable M. 

Let us restate this result in our terms. Consider the following form of 
the stable marriage problem, where the number of males and the number 
of females may not be equal and where the preference list of each person 
may include only a proper subset of the members of the opposite sex. 
Then Gale and Sotomayor’s result above can be restated as follows. 

Given an instance of the stable marriage problem described above, then 
the (single-person) odd parties are the same for all stable partitions. Our 
result, Theorem 6.6, is therefore a generalization of this one. 
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Given a preference relation (S, T), since there may not exist any 
complete stable matching, it is natural to consider the problem of finding a 
maximum stable matching; i.e., a maximum number of disjoint pairs of 
persons such that these pairs are stable among themselves. Recently, we 
obtained an algorithm for solving this problem; the result will appear in a 
subsequent paper [lo]. 

One final remark. After finishing writing this paper, we were informed 
of a research report of Irving’s [7]. We notice that our results, Lemma 6.1 
and Theorem 6.2, are already in [7], though ours extend the idea to the 
stable partition. In that report, Irving also had the following result: an 
instance of the stable roommates problem admits a stable matching if and 
only if the shortlists are non-empty and there is no improper rotation. 
Translate this result into our terms: an instance of the stable roommates 
problem admits a complete stable matching if and only if there does not 
exist any single-person odd party and there is no odd rotation. 
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