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Abstract. We consider the problem of secret sharing among n rational
players. This problem was introduced by Halpern and Teague (STOC
2004), who claim that a solution is impossible for n = 2 but show a
solution for the case n > 3. Contrary to their claim, we show a protocol
for rational secret sharing among n = 2 players; our protocol extends to
the case n > 3, where it is simpler than the Halpern-Teague solution and
also offers a number of other advantages. We also show how to avoid the
continual involvement of the dealer, in either our own protocol or that
of Halpern and Teague.

Our techniques extend to the case of rational players trying to securely
compute an arbitrary function, under certain assumptions on the utilities
of the players.

1 Introduction

The classical problem of t-out-of-n secret sharing [I3I2] involves a “dealer” D
who wishes to entrust a secret s to a group of n players P, ..., P, so that (1) any
group of ¢ or more players can reconstruct the secret without further intervention
of the dealer, yet (2) any group of fewer than ¢ players has no information about
the secret. As an example, consider the scheme due to Shamir [13]: assume the
secret s lies in a finite field F, with |F| > n. The dealer chooses a random
polynomial f(x) of degree at most ¢ — 1 subject to the constraint f(0) = s,
and gives the “share” f(i) to player P; (for ¢ = 1,...,n). Any set of ¢ players
can recover f(z) (and hence s) by broadcasting their shares and interpolating
the polynomial; furthermore, no set of fewer than t players can deduce any
information about s.

The implicit assumption above is that at least ¢ players are willing to cooperate
and pool their shared!] when it is time to recover the secret; equivalently, at least
t players are honest but up to n—t players may be arbitrarily malicious. Halpern
and Teague [7] consider a scenario in which players are neither completely honest
nor arbitrarily malicious, but instead all players are assumed to be rational
(however, up to n — t players may be unavailable at the time the secret is to be

* This research was supported by NSF Trusted Computing grants #0310499
and #0310751; NSF CAREER award #0447075; and US-Israel Binational Science
Foundation grant #2004240.

! We assume adversarial behavior is limited to refusal to cooperate, and ignore the
case that a player reports an incorrect share. In the present context, reporting an
incorrect share is easily prevented by having the dealer sign the shares.

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 229-241] 2006.
© Springer-Verlag Berlin Heidelberg 2006



230 S.D. Gordon and J. Katz

recovered). Depending on the utility functions of the players, Shamir’s protocol
may no longer succeed in this scenario [7]. Specifically, assume that all players
prefer to learn the secret above all else, but otherwise prefer that the fewest
number of other players learn the secret. (We will treat the utilities of the players
more precisely later in the paper.) Given these utility functions, no player has
any incentive to reveal their share. Consider P;: if strictly fewer than ¢t — 1 other
players reveal their shares to the rest of the group, then no one learns the secret
regardless of whether P; reveals his share or not. If more than ¢t — 1 players
reveal their shares, then everyone learns the secret and P,;’s actions again have
no effect. On the other hand, if exactly t — 1 other players reveal their shares,
then P; learns the secret (using his share) but P; can prevent other players from
learning the secret by not publicly revealing his share.

Let ¢t,n be as above, and let t* > ¢ denote the number of players present
when the secret is to be reconstructed. Given the above discussion, we can thus
conclude the following about the game-theoretic equilibria of “standard” Shamir
secret sharing in the above situation (definitions of Nash equilibria and weakly
dominating strategies are given in Section [2)):

— For any ¢,n,t*, it is a Nash equilibrium for no one to reveal their share.

— If t* > t, it is a Nash equilibrium for all ¢* participating players to reveal
their shares. However, as discussed above, it is a weakly dominating strategy
for each player not to reveal his share; thus, the Nash equilibrium likely to
be reached is the one mentioned earlier in which no one reveals their share.

— If t* = ¢, then having all t* participating players reveal their shares is not
even a Nash equilibrium, since each player can profitably deviate by not
revealing his share.

Thus, Shamir’s protocol with the trivial reconstruction procedure does not
suffice in the presence of rational players. Does there exist any protocol for
reconstructing the secret in which it is in rational players’ best interests to
follow the protocol? Generalizing the argument above, Halpern and Teague rule
out any protocol terminating in a fized number of rounds. (Essentially, the above
argument is applied to the last round and then backwards induction is used.)
This leaves open the possibility of probabilistic protocols without a fixed upper
bound on their round complexity, and indeed Halpern and Teague show the
existence of such protocols for t,n > 3. In contrast, they claim a solution is
impossible for n = 2 even if probabilistic protocols are allowed.

1.1 Our Results

We revisit the question of rational secret sharing, in the model of Halpern and
Teague [7]. As perhaps our most surprising result, we show a simple, probabilis-
tic protocol for n = 2 parties to reconstruct a shared secret, thus disproving the
claim of Halpern and Teague mentioned earlier. Interestingly, the proof given
by Halpern and Teague appears to be correct; the problem is that their assump-
tions regarding the types of protocols that might be used are too restrictive
(and are not implied by the model). By relaxing their assumptions in a manner
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consistent with the model of rational secret sharing they introduce, we are able
to circumvent their impossibility result.

Our protocol generalizes in a straightforward way to the case of n > 3 and
arbitrary ¢. Although Halpern and Teague also claim a general solution of this
sort, our solution is much simpler. Furthermore, for n > 3 our solution has
a number of advantages as compared with the solution offered by Halpern and
Teague; perhaps most importantly, our solution eliminates a second (undesirable)
equilibrium that is present in the Halpern-Teague protocol. Other advantages of
our approach are summarized in Section

Both the Halpern-Teague protocol and our protocol (as initially described)
require the continual, periodic involvement of the dealer. At best, this is incon-
venient; at worst, this calls into question the motivation for the problem in the
first place. We show in Section ] an intuitively simple way to avoid the involve-
ment of the dealer (after the initial share distribution phase) that applies in all
scenarios considered here.

As in [7], our techniques extend to the more general case of rational players
trying to securely compute an arbitrary function of their inputs, under certain
assumptions on the utilities of the players. See Section [f] for further details.

1.2 Related Work

There has been much interest of late in bridging cryptography (in which guaran-
tees are provided in the face of worst-case adversarial behavior) and game theory
(which concerns itself only with rational deviations). A point to bear in mind is
that neither the cryptographic or the game-theoretic model is strictly stronger
than the other: typical cryptographic protocols tolerate arbitrary malicious be-
havior under the assumption that some fraction of the players will follow the
protocol exactly as specified; game-theoretic protocols are designed to tolerate
“only” rational behavior but do not assume any completely honest players.
Besides the work of Halpern and Teague, the most relevant prior work is
the recent sequence of papers by Lepinski, et al. [9/I0] and Izmalkov, et al. [§].
Lepinski, Micali, Peikert, and Shelat [9] show a protocol for completely fair se-
cure function evaluation (SFE), in which all players receive output if any player
receives output, even if up to n — 1 players are malicious. In “standard” commu-
nication networks this is known to be impossible [3], and therefore Lepinski, et
al. rely on the physical assumption of “secure envelopes” (see the discussion in [9]
for the exact properties these should satisfy) to achieve their result. They then
show how to use any protocol for completely fair SFE to implement cheap talk
in the presence of malicious coalitions; basically, this enables players to reach a
correlated equilibrium without having to rely on any external trusted party.
The work of Lepinski, Micali, and Shelat [10] and Izmalkov, Micali, and Lep-
inski [§] deals (directly or indirectly) with mechanisms for preventing coalitions
in the first place. More specifically, these works are concerned with eliminating
covert (e.g., steganographic) channels in the secure computation protocol itself
so as to prevent signaling between players. Again, they achieve this by relying
on physical assumptions (secure envelopes and, in the case of [§], ballot boxes)
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in addition to standard communication channels. A consequence of the work of
Izmalkov, et al. (indeed, the main motivation for their work) is a protocol IT for
securely implementing any mediated game I" such that (informally) any equilib-
rium in I corresponds to an equilibrium in 7, and vice versa.

Comparison to our work. The work of Lepinski, et al. [9] as well as that of
Izmalkov, et al. [8] both offer different solutions to the problems we consider
here. Specifically:

— Completely fair SFE [9] guarantees (roughly speaking) that all players learn
the output if any player learns the output. This clearly implies a solution
for rational secret sharing (even in the presence of collusion), and can also
be used to solve the problem of rational SFHZ under certain assumptions on
player utilities.

— Since rational secret sharing can be implemented as a mediated game, the
work of [§] gives a solution to the problem (without any mediator). Their
work is in fact much more general, as it implies a protocol for rational SFE
for arbitrary player utilities and even in the presence of coalitions.

The main difference in our work is that we give intuitively-simple and/or very
efficient protocols at the expense of providing weaker guarantees. Specifically,
we focus only on single-player deviations (and do not handle collusion), and also
make specific assumptions regarding the utilities of the players. Under these
assumptions, our protocol for general secure function evaluation in Section
can be viewed as either a weak form of rational SFE, or completely fair SFE in
the presence of rational (rather than arbitrarily malicious) parties.

An additional important difference between our work and that of [9JT0/S] is that
we rely on weaker assumptions with respect to the model of communication. In-
stead of relying on “secure envelopes” and “ballot boxes” as in [9II0/8] — which
seem to be difficult primitives to realize unless parties are physically co-located —
our solutions rely on standard communication channels with the exception that, as
in [7], we assume simultaneous broadcast whereby each party broadcasts a mes-
sage at the same time. (Equivalently, we do not allow “rushing.”) Whether one
finds the assumption of simultaneous broadcast realistic or not, we note that it is
a strictly weaker assumption than secure envelopes or ballot boxes since simulta-
neous broadcast can be constructed from either of the latter but not vice versa.

Concurrent work. Concurrently and independently of our own work, Abra-
ham, et al. [I] and Lysyanskaya and Triandopoulos [11] consider problems related
to those considered here. Abraham, et al. define a notion of resistance to coali-
tions of rational players and show a coalition-resistant protocol; we note that our
protocols are resistant to coalitions as well. Lysyanskaya and Triandopoulos ex-
amine the case of “mixed” security when both arbitrarily malicious and rational
players might be present. Both papers also show, under certain conditions, how
protocols can be designed without exact knowledge of players’ utilities (though

2 There are numerous definitions of rational SFE, and so everything we say in this
section is somewhat informal.
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utilities are still assumed to have a certain form). Interestingly (and somewhat
serendipitously!), both those works as well as our own all rely on essentially the
same underlying techniques.

2 Definitions for Rational Secret Sharing

We briefly review the model of rational secret sharing we assume in this paper.
Our model is intended to match the model used by Halpern and Teague, though
there are many details they do not make explicit.

As discussed earlier, we have a dealer D holding a secret s, and n players
Py, ..., P,. There is also a threshold ¢ < n, known to all players, which is fixed
at the outset. A protocol proceeds in a sequence of iterations, where each iter-
ation may consist of multiple communication rounds. At the beginning of each
iteration, D distributes some information (privately) to each of the n players;
at this point, no subset of fewer than ¢ players should have any information
about s. During an iteration, the dealer does not take part in the protocol. In-
stead, some set of t* > ¢ players, all of whom are assumed to be rational, run
the protocol amongst themselves by simultaneously broadcasting messages in a
series of rounds. (Halpern and Teague additionally allow private communication
between the players but we do not need this.) For simplicity, we assume the same
set of t* players runs the protocol in every iteration. At the end of an iteration,
the protocol either terminates or proceeds to the next iteration. We assume the
dealer is honest, and follows the protocol as specified. To rule out trivial proto-
cols, we require that if t* > ¢ players follow the protocol in each iteration, then
the secret is eventually reconstructed (with probability 1).

We stress that broadcast in a given round is assumed to occur simultaneously
for all players; that is, we do not allow “rushing” as in the standard literature
on secure multi-party computation. Rational secret sharing is easily seen to be
impossible if rushing is allowed: all players will simply wait to see what other
players do, and no one will ever broadcast anything.

In the above description, as in [7], the dealer is assumed to be involved at
the beginning of each iteration. In Section [ we show that it is possible for the
dealer to be involved only once at the beginning of the protocol.

We let o; denote the (possibly randomized) strategy employed by player P;,

and let o = (01, ...,0,) denote the vector of players’ strategies. Following stan-

. . def
dard game-theoretic notation, we let (0},0_;) = (01,...,0i-1,04,Fit1,---,0n);

that is, (o}, 0_;) denotes the strategy vector o with P,’s strategy changed to o.

Let p;(0) denote the utility of player P; for the outcome o. For a particular
outcome o of the protocol, we let §;(0) be a bit denoting whether or not P
learns the secret, and let num(o) = >, 6;(0); i.e., num(o) is simply the number
of players who learn the secret. Following [7], we make the following assumptions
about the utility functions of the players:

= 6i(0) > 6;(0") = pi(o) > pi(0").
— If 6;(0) = 6;(0'), then num(o) < num(o’) = p;(0) > pi(0").
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That is, player P; first prefers outcomes in which he learns the secret; as long
as §; remains constant, player P; prefers strategies in which the fewest number
of other players learn the secret. We let U;(o) denote the expected value of the
utility of P; under strategy vector o, and assume that rational players wish to
maximize this value.

Our notion of a protocol corresponds to a game along with a prescribed strat-
egy vector o. As in [7], we are interested in protocols whose prescribed strategy
vector o corresponds to a Nash equilibrium that survives iterated deletion of
weakly dominated strategies. We review these definitions briefly, and refer the
reader to [12J7] for more extensive discussion.

Definition 1. A wvector of strategies o is a Nash equilibrium if the following
holds for all i: for any o, # o;, we have U;(o},0_;) < U;(o).

That is, given that all other players are following o _;, there is no incentive for
P; to deviate and follow any strategy other than o;.

In general, multiple Nash equilibria may exist. An inherently “unstable” Nash
equilibrium (i.e., one unlikely to be reached) is one in which any of the players’
strategies are weakly dominated by other strategies. Informally, a strategy o;
of player P; is weakly dominated by another strategy o} if (1) P; is sometimes
better off playing o} than playing o;, and (2) P; is never worse off playing o} than
playing o;. Recalling the example from the introduction, say a secret is shared
using t-out-of-n secret sharing (with ¢ < n) and consider the strategy vector in
which all n players reveal their shares. This is a Nash equilibrium: the secret
is reconstructed even if any single player deviates. On the other hand, for each
player P;, revealing the share is weakly dominated by not revealing the share:
if fewer than ¢ — 1 other players or more than ¢ — 1 other players reveal their
shares, then nothing changes; if exactly t — 1 other player reveal their shares
then P; learns the secret but no one else does. Formal definitions follow.

Definition 2. Let S; denote a set of strategies for P;, and let S_; def Sy X e X

Si—1 X Sit1++x Sy. A strategy o; € S; is weakly dominated by a strategy o} € S;
with respect to S_; if (1) there exists a o_; € S_; such that U;(c;,0_;) <
Ui(oi,o—;) and (2) for all _; € S_;, it holds that U;(0;,0_;) < U;(o},0_;).

Strategy o; is weakly dominated with respect to S_; if there exists a o) € S;
such that o; is weakly dominated by o) with respect to S_;.

Definition 3. Let DOM;(S; x --- x S,,) denote the set of strategies in S; that
are weakly dominated with respect to S_;. Let SY denote the initial set of al-
lowable strategies of P;. For all k > 1, define SF inductively as S¥ def Sffl \
DOM; (S¥~1 x -+ x SE=1). Let §%° %' ), Sk,

We say o; survives iterated deletion of weakly dominated strategies if o; € S;°.
3 Protocols for Rational Secret Sharing

We review the Halpern-Teague solution, and then describe our protocol. We
conclude with some discussion of the relative merits of our approach.
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3.1 The Halpern-Teague Solution

We provide a high-level overview of the solution of Halpern and Teague for 3-
out-of-3 secret sharing. We later discuss how they propose to generalize their
solution for n > 3 and ¢t > 3.

The Halpern-Teague protocol in the 3-out-of-3 case proceeds as follows: at
the beginning of each iteration, the dealer runs a fresh invocation of the Shamir
secret-sharing scheme and sends the appropriate shares to each player. (Ac-
tually, a simpler additive secret-sharing scheme could also be used.) During an
iteration, each player P; flips a biased coin ¢; which is equal to 1 with some prob-
ability a. The players then run what is essentially an information-theoretically
secure multi-party computation protocol to compute the value ¢* = @ ¢;. (Here
is where Halpern and Teague need to assume the existence of private channels
between the players.) In particular, it is impossible for any player to cheat (ex-
cept for aborting the protocol; see below), or to learn information about the {c;}
values of the other parties that is not implied by ¢*. If ¢* = ¢; = 1, player P;
broadcasts his share. If all shares are revealed, the secret is reconstructed and
the protocol ends. If ¢* = 1 and either no shares or exactly two shares are re-
vealed, or if the secure computation of ¢* was aborted, then all players refuse to
run the protocol from then on (and so, effectively, the protocol is terminated).
In any other case, players proceed to the next iteration.

Note that the secret is only reconstructed if ¢; = ¢3 = ¢3 = 1. Thus, assum-
ing players act honestly, the expected number of iterations until the protocol
terminates is a3,

To see intuitively why the above gives a Nash equilibrium, assume P, P, follow
the protocol and consider whether P3 should deviate. First note that there is no
incentive for P5 to bias c3 to be 0 with higher probability, since when c3 = 0 at
least one of Py, P, will not broadcast their shares in that iteration. There is also
no incentive for P3 to bias c3 to be 1 with higher probability, either: although
this may cause the secret to be reconstructed sooner, it will have no effect on
Ps3’s utility. It is also easy to see that, given ¢* = 0 or ¢3 = 0, there is no incentive
for P53 to deviate from the protocol. Finally, when ¢* = ¢3 = 1, player P53 does
not know whether ¢; = ¢o = 1 (which occurs with probability a2+827a)2) or
¢1 = ¢ = 0 (which occurs with the remaining probability). Thus, if P; does
not broadcast its share it runs the risk of having the protocol terminate without
ever learning the secret. If « is set appropriately based on Pj3’s utility function,
it can be shown that it is not in P3’s best interest to deviate.

For n > 3 and ¢t > 3, Halpern and Teague suggest the following: of the t* > ¢
players who are present, ¢ players are designated. Players are split into 3 groups,
such that there is at least one designated player in each group. One designated
player in each group is chosen as a leader. The designated players send their
shares to the leader of their group, and then the leaders run essentially the 3-
out-of-3 solution described above. (When the leaders are supposed to broadcast,
they broadcast the shares of all the players in their group in such a way that all
t* players can hear.)
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Halpern and Teague also describe a solution for 2-out-of-n secret sharing for
n > 3, but in this case they require that the number of participating players ¢*
is strictly greater than 2 (and so this solution does not satisfy the model as we
have described it here).

3.2 Our Solution

Recall that Halpern and Teague claim that rational secret sharing is impossible
when n = 2. In their impossibility proof, however, they implicitly assume that
the dealer is limited to sending valid shares of the secret to the players at the
beginning of each iteration. They therefore focus only on possible actions of the
players during an iteration. We see no reason to impose any such restriction on
the dealer’s actions; note that the model, as described earlier, does not impose
any such restriction. As we show in this section, once this assumption is removed
a solution is possible even when n = 2, and things become simpler in the case
of general ¢, n.

Specifically, consider the following protocol: say the dealer holds a secret s
which lies in a strict subset S of a finite field F (if s lies in some field F’, this
is easy to achieve by taking a larger field F containing F’ as a subfield). We
assume players know S. At the beginning of each iteration, with probability 3
the dealer generates a random Shamir sharing of s, and with probability 1 — 3
the dealer generates a random Shamir sharing of an arbitrary element § € F\ S;
we describe how [ is chosen below. These shares are distributed to the players.
Note that no player can tell from their share whether the players were given a
share of § or the true secret s.

During an iteration, the players simply broadcast their shares. If in any it-
eration some player does not broadcast his share, the other players all refuse
to participate in all subsequent iterations (and, effectively, the protocol is ter-
minated). Otherwise, all shares were broadcast and the players can reconstruct
some value s'. If s’ € S then the players know that this is the true secret, and
can terminate the protocol successfully. If s’ € F\ S, the players know this is an
invalid secret and proceed to the next iteration.

Theorem 1. For appropriate choice of 3, the above protocol constitutes a Nash
equilibrium for t-out-of-n secret sharing that survives iterated deletion of weakly
dominated strategies.

Proof. We first consider the case of t = n = 2, and then discuss how to generalize
the proof for arbitrary t,n. It is not hard to see that the protocol is a Nash
equilibrium for appropriate choice of 8: Say P, acts according to the protocol
and consider whether P; has any incentive to deviate. Without loss of generality,
consider a deviation in the first iteration. The only possible deviation is for P
to refuse to broadcast his share. In this case, he learns the secret (while P> does
not) with probability 3, but with probability 1 — § he will never learn the secret.

Say Py’s utility is U™ if he learns the secret but P, does not; U if both players
learn the secret; and U~ if neither player learns the secret, where Ut > U > U~.



Rational Secret Sharing, Revisited 237

If P, follows the protocol, his expected utility is U. If P; deviates, his expected
utility is 8- UT + (1 — 8) - U~. So as long as

U>p3-Ut+(1-p)-U",

it is in P;’s best interest to follow the protocol. For appropriate 8 € (0,1),
then, the strategy profile in which both parties follow the protocol is a Nash
equilibrium.

It is immediate that the same analysis holds for general ¢, n, regardless of the
number of participating players t*.

We next prove that our protocol survives iterated deletion of weakly domi-
nated strategies by showing that no strategies are weakly dominated. We again
begin with the case ¢ = n = 2. We show that for all deterministic strategies
o,0’ of Py, there exist strategies 7,7’ of P, such that Uy(o,7) > Uy (o', 7) but
Ui(o,7") < Ur(o’,7"). This proves that all deterministic strategies of P; are in-
comparable, and so none are ever deleted (and thus no randomized strategies
are deleted either).

Let h;(o,7) denote the history of actions (by both players) through iteration 4
given the indicated strategies o and 7, with hg(o, 7) denoting the empty (start-
ing) history. Let A4,(o,7) denote the action taken by Pj in iteration 4, again for
the indicated strategies. We say a player cooperates in some iteration if they
reveal their share, and defects if they do not.

Now take arbitrary deterministic strategies o # o’ for P;. Let 7° be a strategy
of P, and 7 > 1 be an integer such that

hi—1(0,7%) = hi—1(o’,7°) (1)

but
Ai(o,77) # Ai(o’,7%); (2)

i.e., iteration 7 is the first iteration in which the actions of P; differ. (Note that
some such 79,4 must exist or else o = ¢’.) Without loss of generality, assume
Ai(0,7%) is to defect and A; (o', 7Y) is to cooperate.

Consider the following strategy 7 of Py: (1) act identically to 79 through
iteration ¢ — 1; (2) in iteration 4, defect; (3) in all subsequent iterations: if P;
defected in iteration 4, then cooperate; if P; cooperated in iteration 4, defect.
Since A;(0,7) = Ai(0,7°) = “defect,” it is fairly immediate that Ui(o,7) >
Ui(o’, 7).

Next consider the following strategy 7/: (1) act identically to 7° through it-
eration ¢ — 1; (2) in iteration 4, cooperate; (3) in all subsequent iterations: if P;
defected in iteration 4, then defect; if P} cooperated in iteration ¢, cooperate.
Exactly as when we argued earlier that our protocol was a Nash equilibrium, we
have Uy (o, 7") < Uy(o’,7").

The same argument extends to the case of general ¢, n, regardless of the num-
ber of participating players t*. We simply replace 70 with a strategy profile of
n — 1 strategies such that Equations () and (2]) above are still valid, and then
define 7 and 7 as above, but modifying the strategies of all other players.
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We remark that when t* = ¢ our protocol has no additional Nash equilibrium
which is preferred, by any player, to the prescribed equilibrium.

3.3 Discussion
Our approach has a number of advantages as compared to [7]:

— Most obvious, we circumvent their impossibility result for the case n = 2.
We also show an admissible solution for the 2-out-of-n case.

— Our protocol is (in our opinion) much simpler than the Halpern-Teague
protocol. This is true for all settings of ¢,n, but is especially true for the
case of n > 3,t > 3 where the Halpern-Teague protocol requires players to
somehow delegate specific roles and select group leaders.

— Our protocol requires only a broadcast channel, in contrast to the Halpern-
Teague protocol which relies on private channels in addition to broadcast.

— At least for the case t* =t (which is always the case when ¢ = n), our proto-
col has no “undesirable” Nash equilibria. This is in contrast to the Halpern-
Teague solution for general n, where there is the undesirable equilibrium in
which the three “group leaders” pool the shares they receive from all the
designated players and reconstruct the secret only amongst themselves.

4 Removing the Dealer

A drawback of both our protocol (as described in the previous section) as well
as that of Halpern and Teague is that the dealer must be involved at the be-
ginning of every iteration. It would be much nicer to have a solution that works
exactly like standard secret sharing, where the dealer is involved only once at
the beginning of the protocol.

We sketch here a conceptually simple (though inefficient) way to avoid con-
tinual involvement of the dealer while still ensuring that parties eventually re-
construct the secret with probability 1. Our idea applies both to our protocol
and that of Halpern and Teague, but for simplicity we describe it in the context
of our protocol only. The protocol proceeds as follows:

Setup: To share a secret s, the dealer prepares a valid t-out-of-n Shamir sharing
{si} of s. The dealer also generates a signature o; on each share s; with respect
to a publicly-known verification key PK (alternately, PK can simply be sent to
each player). The dealer sends (s;,0;) to player P;.

The protocol: At the beginning of each iteration, the players proceed as follows:

1. The t* participating parties run a secure computation protocol [I5J6l/5] secure
against one malicious player. The protocol computes the following probabilis-
tic functionality:

— Each party inputs the values (s;, 0;) received from the dealer. The func-
tionality checks that each o; is a valid signature on s; (with respect to
the dealer’s public key PK), and aborts if this is not the case.
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— The t* > t input shares define a secret s. With probability &, the func-
tionality generates a fresh t-out-of-n Shamir sharing {s;} of s, and each
player P; receives output s..

— With probability 1 — 3, the functionality generates a fresh t-out-of-n
Shamir sharing {s;} of a bogus secret § € F\ S, and each player P;
receives output s;.

2. If cheating is detected in the secure computation protocol above (i.e., the
secure computation protocol is aborted), then parties terminate the overall
protocol without ever reconstructing the secret.

3. Next, parties proceed as in the previous section; specifically, each player P;
broadcasts the output s} they received from the secure computation proto-
colF If this enables reconstruction of a secret s € S , the protocol terminates
and the true secret has been reconstructed. If some player refused to broad-
cast their output share, then parties terminate the protocol without recon-
structing the secret. In any other case, players erase the {s}} and proceed to
the next iteration (using (s;, 0;) as before).

A subtlety (which applies also in the following section) is the question of
whether security of the secure computation protocol used above should hold
information-theoretically or computationally. In the former case, an argument
similar to that used in the previous section shows that — under appropriate
conditions on 3 — the above protocol is a Nash equilibrium surviving iterated
domination of weakly dominated strategies. To implement such a solution, how-
ever, we need the additional assumption of private channels between the players.

If a computationally-secure protocol is used, one way to proceed is to work
in a concrete setting: that is, assume all players are limited to running for at
most ¢ steps (in some fixed computational model); assume the protocol is secure
(defined appropriately) except with some (small) probability e against adver-
saries running in time ¢; and then modify the analysis appropriately. Rigorously
formalizing this is left for future work. See [11] for a slightly different approach.

5 General Secure Function Evaluation

The techniques outlined above generalize to the case of the secure computation
of an arbitrary function f. In this sense, they yield a protocol for a weak notion of
completely fair SFE [9] requiring that (1) all players are rational; and (2) players’
utility functions are such that they all prefer to learn the output. (In contrast,
the work of [9] shows a protocol for completely fair SFE tolerating malicious

3 Actually, to prevent players from broadcasting a modified value for s}, it is necessary
to have the functionality authenticate the {s;} in some way. There are many ways
to do this. Perhaps the conceptually-simplest solution is to have the dealer also
distribute shares of his secret signing key in a t-out-of-n manner among the players.
Then the functionality can also generate valid dealer signatures on the {s;} (the
iteration number should also be signed to prevent replay of an earlier output value).
We omit any further details for simplicity.
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players, but under a stronger assumption on the available communication. See
Section [[L21) We also assume (as in [7JII1]) that players prefer that their own
inputs remain private (other than what is leaked by evaluation of f).

To compute the (possibly randomized) single-output function f:

1. Let f’ be the following (multi-output, randomized) function: on inputs 1,
.+, Tp, compute y « f(z1,...,o,). Then generate a random t-out-of-n
Shamir sharing (s1, ..., sy,) of the result y, and give output s; to player P;.

2. Players run a secure computation protocol for f’, and obtain outputs s, ...,
spn. If this protocol is aborted, all players terminate the entire protocol and
the output is never reconstructed.

3. As in the previous section, players compute a functionality that takes as in-
putﬂ (s1,.-.,8n) and, with probability 8 computes a random Shamir sharing
{s;} of the value y these shares define, and with probability 1 — 8 computes
a random Shamir sharing {s}} of some default value not in the range of f.
Each player P; receives output s;. If this protocol is aborted, all players
terminate the entire protocol and the output is never reconstructed.

4. Players simultaneously broadcast the s; and reconstruct the value s’ these
shares define. If some player did not broadcast a (valid) share, then all players
terminate the protocol and do not participate in any future iterations. If s’
is in the range of f then y = s’ is the desired output and the protocol is
done; in any other case, players proceed to the next iteration.

The protocol can be suitably generalized for the case where f outputs a vector
of values, one for each player.

We remark that, as in standard formulations of secure multi-party compu-
tation, players who choose not to follow the protocol may change their “true”
inputs to an arbitrary other value. (Le., a player P; with “true” input x; may
cause f(z1,...,2},...,2,) to be evaluated for arbitrary z}.) For rational play-
ers, this may occur if a player would prefer to change his input value even if a
completely incorruptible third party were to evaluate f based on inputs given
to it by the players. Shoham and Tennenholtz [14] define the class of NCC func-
tions and argue that if f is an NCC function then no rational player has any
incentive to modify their inputs. It seems to us, however, that there are some
subtle problems with the way NCC functions are defined there. We leave further
exploration of this issue for future study.

6 Conclusions

We have provided a new approach to rational secret sharing and secure compu-
tation that improves, in many respects, on an earlier solution of Halpern and
Teague. Our work also offers an alternate approach to the generic (and more
powerful) solutions of [98]: our protocols are simpler, and rely on weaker as-
sumptions regarding the communication between players.

4 As before, there is the issue of authenticating the shares si, . .., s, provided as input
to this functionality. This can be handled in a similar manner as before.
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