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“. . . any color that he [the customer] wants so

long as it is black.”

— Henry Ford, My Life and Work (1922)

“. . . Illogical approach to advertising budgets . . .”

— Michael Schudson, Advertising, The Uneasy
Persuasion: Its Dubious Impact on American
Society (1984)

ABSTRACT
We consider budget constrained combinatorial auctions where
bidder i has a private value vi for each of the items in some
set Si, and a budget constraint bi on his total payment. The
value to agent i of a set of items R is |R ∩ Si| · vi when his
payment does not exceed his budget. Such auctions cap-
ture adword auctions, where advertisers offer a bid for those
adwords that (hopefully) reach their target audience, and
advertisers have budgets as well. It is known that even if
all items are identical and all budgets are public it is not
possible to be truthful and maximize social welfare. Our
main result is a novel auction that runs in polynomial time,
is incentive compatible, and ensures efficiency by Pareto-
optimality. The auction is incentive compatible with respect
to the private valuations, vi, whereas the budgets, bi, and
the sets of interest, Si, are assumed to be public knowl-
edge. This extends the result of Dobzinski et al. [7, 8] for
auctions of multiple identical items and public budgets to
single-valued combinatorial auctions with public budgets.
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1. INTRODUCTION
In recent years ad auctions have attracted considerable at-

tention from computer scientists. In ad auctions advertisers
bid on given set of keywords. Their valuation for keywords
depends on the click-through-rate and can be included into a
generalized second price auction, which is used by firms such
as Google, Yahoo, and Microsoft [9]. Such an auction can
be used if keywords are linearly ordered by their valuations.

In contrast, we consider every potential advertising slot
as an different “item”. We assume that advertisers have the
same valuation for each item they are interested to get. We
consider the problem of agents with additive valuations that
have single (private) value for any of an agent-specific set of
items. E.g., adwords “Corn” or “Gold” are worth 75 cents
per impression to agent A, adwords “Gold” or “Silver” or,
sometimes, “Lead”, (“Lead only if between 5-9PM EST), are
each worth 60 cents to agent B, and so forth. I.e., the sets
of items the two agents are interested in are potentially dif-
ferent, and may overlap. Each agent has a private value, the
same value for each of the items in the agent’s set of interest.
In addition, every agent has an agent-specific budget, e.g.,
agent A has a budget of $55, agent B has a budget of $7.

The Vickrey multiunit auction [15] was designed to deal
with a setting where all items are different and agents can
have arbitrary valuation functions. However, it cannot be
used when agents have budgets. In a seminal paper on
multiunit auctions with budgets by Dobzinski, Lavi and
Nisan [7, 8], they consider the case when all units are iden-
tical, i.e., all agents are interested in getting all items.

Dobzinski et al. give an incentive-compatible auction (with
respect to valuation) that produces a Pareto-optimal alloca-
tion. This result holds if one assumes that the budgets are
public information. They also show that this assumption
cannot be dropped, i.e., there is no incentive-compatible
auction with respect to both valuation and budgets that
produces a Pareto-optimal allocation.

This paper is an extension of [7, 8] to a single valued com-
binatorial auction. This shows that even in the single-valued
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combinatorial setting achieving some notion of efficiency is
possible. Pareto-optimality is a basic notion for efficiency of
allocation, i.e., it seems to be the least one should aim for.
If an allocation were not Pareto-optimal then agents could
trade amongst themselves and improve their lot, thus in-
creasing efficiency. However, in many settings we would like
to achieve something stronger. We would like to produce
an allocation such that no trades are possible because such
allocations are less prone to speculations [11]. The main
technical part of our approach is to show that in our set-
ting both “no trade” and Pareto-optimality conditions are
equivalent. This result is of independent interest.

For a comparison between the different settings see Ta-
ble 1.

Our work seeks to map out the frontier of the possible.
We give an incentive compatible combinatorial auction that
produces Pareto-optimal allocation in the case when agents
have budgets and their valuations are private. This setting
is not entirely general but also gives a non-trivial class of
auctions that contains some existing auctions, e.g., Google’s
auctions for TV ads [13]. Furthermore, we show that these
restrictions are unavoidable.

The Setting

Figure 1: Example with four bidders, each inter-
ested in a subset of items, with a value per item and
an overall budget.

In this paper we study combinatorial auctions of the fol-
lowing general form:

• Every agent (bidder) 1 ≤ a ≤ n has a publicly known
budget, ba ≥ 0, and an unknown (private) valuation
va > 0;

• Every agent a is “interested” in some publicly known
set of items, Sa. We assume that there is at least one
agent interested in every item. Agent a is allocated
some (possibly empty) subset of Sa. An example is
given in Figure 1.

• The auction produces an allocation (M,P ).

1. M ⊆ {1, . . . , n}×{1, . . . ,m} is a (partial) assign-
ment of agents to items: items are assigned to
some agent, there may be agents that have no
items assigned to them.

2. P ∈ <n is a vectors of payments made by the
agents.

• For agent 1 ≤ a ≤ n, let Ma be the number of items
sold to agent a over the course of the auction and Pa be
the total payment made by agent a during the course
of the auction. The allocation (M,P ) must obey the
following conditions:

1. The payment by agent a, Pa, cannot exceed the
budget ba.

2. The utility for agent 1 ≤ a ≤ n is ua = Mava−Pa.

3. The utility for the auctioneer is
Pn
j=1 Pj .

4. Bidder-rationality: for all agents 1 ≤ a ≤ n, ua ≥
0.

5. Auctioneer-rationality: the utility of the auction-
eer,

Pn
j=1 Pj ≥ 0.

Note1 that auctioneer-rationality is implied by no positive
transfers: Pa ≥ 0 for all 1 ≤ a ≤ n.

Given valuations, va, budgets, ba, and sets of interest, Sa,
we define (M,P ) to be Pareto-optimal if there is no other
allocation (M ′, P ′) such that2

1. The utility of a bidder in (M,P ) is no less than her
utility in (M ′, P ′); and

2. The utility of the auctioneer in (M,P ) is no less than
the utility in (M ′, P ′); and

3. At least one bidder or the auctioneer is better off in
(M ′, P ′) compared with (M,P ).

An auction is said to be incentive compatible if it is a dom-
inant strategy for all bidders to reveal their true valuation.
An auction is said to be Pareto-optimal if the allocation it
produces is Pareto-optimal. An auction is said to make no
positive transfers if the allocation it produces has no positive
transfers.

Related work.
The Dobzinski et al. [7, 8] multi-unit auction with budgets

is based on the clinching auction by Ausubel [3]. Our setting
is an extension of their work to single valued combinatorial
auctions with budgets.

One possible justification for such auctions is the paper
of Nisan et al. [13] describing Google’s auction for TV Ads.
Google’s auction allows bidders to select shows, times, and
days they wish to advertise on; and then give a per-ad im-
pression bid and a total budget. The auction is not incentive
compatible (even if budgets are assumed to be public). The
Google TV ad interface allows agents to describe a set of
interest, Si, and a (single) per-impression bid. I.e., if all
slots have the same number of impressions then this fits our
setting.

Ascending clinching auctions are used in the FCC spec-
trum auctions [12, 4, 3]. We believe that studying properties
of such auctions, is not only of theoretical interest, but could
help to design better auctions in practice.

1In [8] the authors refer to what we call auctioneer rational-
ity by the term “weakly no positive transfers”.
2Note that no restrictions are placed on the matching M ′ or
on the payments P ′.
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Setting Valuation Auction
Private
Data

Public
Data

Properties

Multiunit
Value function (fa)
No Budgets

fa(# items)
Vickrey [15]
Multiunit

fa —
Maximizes
Social
Welfare

Multiunit
Additive Value va
Finite Budgets (ba)

va ·#items DLN [7] va ba
Pareto
Optimal

Combinatorial (Sa)
Additive Value (va)
Finite Budgets (ba)

va ·#(items ∈ Sa)
This
Paper

va ba, Sa
Pareto
Optimal

Table 1: Incentive compatible Multi unit and Single Valued Auctions

Bhattacharya et al. [5] showed that for one infinitely di-
visible good, a bidder cannot improve her utility by under
reporting her budget. This leads to a randomized truthful in
expectation algorithm (of one infinitely divisible good) with
private budgets and private valuations. In [6] Bhattacharya
et al. also consider revenue optimal Bayesian incentive com-
patible auctions with budgets.

Aggarwal et al. [1] (and independently Ashlagi et al. [2])
considered the case where bidders seek at most one item
— not quite relevant for ad auctions. In this setting they
give an incentive compatible auction, with respect to both
valuation and budgets.

Our auction is simultaneously a specialization and a gen-
eralization of the Ausubel-Milgrom ascending package auc-
tion [4]. The Ausubel-Milgrom ascending package auction is
a non-transferable utility core allocation, even when budgets
are present. I.e., no coalition can perform a “trade”, pre-
serving budgets, where the coalition members are better off.
However, the combinatorial complexity of the set of possible
packages makes this a non-polynomial time algorithm, and
the incentive compatibility (with respect to valuation) was
only known if all items are identical (the multi-unit case) and
the budgets are public. Hatfield and Milgrom [10] present a
unified way of viewing the Ausubel-Milgrom auction as well
as various other matching problems (not quasi-linear) .

Our Results.
In this paper we give a combinatorial auction with the

properties described above (“The Setting”). I.e., our auc-
tion is incentive compatible with respect to private valu-
ations, individually rational, and the auctioneer makes no
positive transfers. We describe the auction as an ascending
clinching auction. Alternately, agents may supply the mech-
anism with their valuation, (the budget and set of interest
is assumed to be public), and the mechanism will simulate
the ascending clinching auction described herein.

Our combinatorial auction is polynomial time and deter-
ministic. This would not be possible if we were to consider
the full generality of combinatorial auctions.

Our result is an extension of [7] from the case of multiple
identical items to a new combinatorial setting where items
are distinct and different agents may be interested in differ-
ent items. In particular, for the non-combinatorial multi-
unit setting of [7, 8], our auction and their auction produce
the same allocation.

In light of the impossibility results of Dobzinski et al. [7]
we cannot hope to achieve this result when budgets are
private knowledge. We further show that the requirement

that budgets are public knowledge is insufficient for Pareto-
optimality and incentive compatibility. We show that one
cannot avoid the following restrictions:

• If budgets are public but the sets of interest and the
valuations are private then no truthful Pareto-optimal
auction is possible.

• if budgets are public and private arbitrary valuations
are allowed, no truthful and Pareto-optimal auction
is possible. This follows by simple reduction to the
previous claim on private sets of interest.

In Section 3 we present our mechanism. It is straightfor-
ward to show that the mechanism is truthful with respect
to valuations. However, it is more involved to prove that
the mechanism is Pareto-optimal — we show that the allo-
cation produced by the mechanism is in fact Pareto-optimal
in Section 4. In Section 5 we complement our positive re-
sult by showing that with public budgets, private valuations,
and private sets of interest, there can be no truthful Pareto-
optimal auction.

2. PARETO-OPTIMALITY AND
TRADE PATHS

The main aim of this section is to introduce the main def-
initions: trading paths and Pareto-optimality, and to show
the equivalence between allocations with no trading paths
and Pareto optimal allocations. At the end of the section
we will attempt to give some intuition as to why these two
notions are related. First, let us define formally the notion
of Pareto-optimality.

Definition 2.1 An allocation (M,P ) is Pareto-optimal if
for no other allocation (M ′, P ′) are all players at least as
well off, M ′ivi − P ′i ≥ Mivi − Pi, including the auctioneer,P
i P
′
i ≥

P
i Pi, with at least one of these inequalities being

strict.

We now define alternating paths.

Definition 2.2 Consider a path

π = (a1, t1, a2, t2, . . . , aj−1, tj−1, aj),

in a bipartite graph G. We say that the path π is an alter-
nating path with respect to an allocation M if (ai, ti) ∈ M
and ti ∈ Si+1 for all 1 ≤ i < j. We say that an alternating
path is simple if no agent appears more than once along the
path. Note that all alternating paths are of even length (even
number of edges).
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An example of an alternating path from agent i to agent
j that includes three items is shown on Figure 2. The solid
edge indicates the allocation of an item to an agent whereas a
dotted edge indicates that the item belongs to the preference
set of the agent.

Figure 2: An alternating path

Definition 2.3 A path π = (a1, t1, a2, t2, . . . , aj−1, tj−1, aj)
is called a trading path with respect to the allocation (M,P )
if the following hold:

1. π is a simple alternating path with respect to M , (which
implies that agent ai, i < j, was allocated item ti dur-
ing the course of the auction).

2. The valuation of agent aj, vaj is strictly greater than
the valuation of agent a1, va1 .

3. The remaining (unused) budget of agent aj at the con-
clusion of the auction, b∗aj

, is ≥ the valuation of agent
a1, va1 .

Intuitively, trading paths, as their name suggests, repre-
sent possible trades amongst agents. A trading path de-
scribes a possible trade, i.e., item ti is given to agent ai+1

for each i = 1, . . . , j − 1. After this trade the endpoints of
the path are better off and the interior agents are not worse
off. (In fact, they can all be made better off by paying a
“commission” along the path).

We now move to the following equivalence:

Theorem 2.4 Any allocation (M,P ) is Pareto-optimal3 if
and only if

1. All items are sold in (M,P ), and

2. There are no trading paths in G with respect to (M,P ).

Proof. Let Q be the predicate that (M,P ) is Pareto-
optimal,R1 be the predicate that all items are sold in (M,P ),
and R2 the predicate that there are no trading paths in G
with respect to (M,P ). We seek to show that Q ⇔ R1∩R2.
Q ⇒ (R1 ∩ R2): to prove this we show that (¬R1 ∪
¬R2)⇒ ¬Q.

If both R1 and R2 are true then this becomes False⇒ Q
which is trivially true.

If the allocation (M,P ) does not assign all items (¬R1)
then it is clearly not Pareto-optimal (¬Q). We can get a
better allocation by assigning all unsold items to any agent
i with such items in Si. This increases the utility of agent i.

If ¬R2 then there exists a trading path π in G with re-
spect to (M,P ), let π = (a1, t1, a2, t2, . . . , aj−1, tj−1, aj), as
vaj > va1 and b∗aj

≥ va1 then we can decrease the pay-
ment of agent a1 by va1 , increase the payment of agent aj
3We remark that an analogous (but simpler) claim made
in the proceedings version of the multi unit auction with
budget paper [7] was incorrect but was corrected in [8].

by the same va1 , and move item ti from agent ai to agent
ai+1 for all i = 1, . . . , j − 1. In this case, the utility of
agents a1, a2, . . . , aj−1 is unchanged, the utility of agent aj
increases by vaj − vai > 0, and the utility of the auctioneer
is unchanged. The sum of payments by the agents is likewise
unchanged. This contradicts the assumption that (M,P ) is
Pareto-optimal.

We now prove that (R1 ∩ R2) ⇒ Q. Again we show the
contrapositive: ¬Q ⇒ (¬R1 ∪ ¬R2). Assume ¬Q, i.e., as-
sume that (M,P ) is not Pareto-optimal. Further assume
R1, that M assigns all items. We will show ¬R2, i.e. that
there is a trading path with respect to (M,P ). Since (M,P )
is not Pareto-optimal, there must be some other allocation
(M ′, P ′) that is not worse for all players (including the auc-
tioneer) and strictly better for at least one player. We can
assume that (M ′, P ′) assigns all items as well, as otherwise
we can take an even better allocation that would assign all
items.

By Lemma 2.5 (see below) we know that M and M ′ are
related by a set of simple paths and cycles. On a path, the
first agent gives up one item, whereas the last agent receives
one item more, after items are exchanged along the path.
Cycles represent giving up one item in return for another
by passing items around along it. Cycles don’t change the
number of items assigned to the bidders along the cycles so
we will ignore them. Let x1, . . . , xz and y1, . . . , yz denote the
start and end agents along these z alternating paths. Note
that the same agent may appear multiple times amongst xi’s
or multiple times amongst yi’s, but cannot appear both as
an xi and as a yi (we can concatenate two such paths into
one). Such an alternating path represents a shuffle of items
between agents where agent xj looses an item, and agent yj
gains an item when moving from M to M ′. In general, these
two items may be entirely different.

Assume there are no trading paths with respect to (M,P ).
Then it must be the case that for every one of these z alter-
nating paths either

α. vyj ≤ vxj holds. Define I = {j|vyj ≤ vxj}.

β. b∗yj
< vxj holds (where b∗yj

is the budget left over for
agent yj at the end of the mechanism). Define J =
{j|b∗yj

< vxj}.

Now, no bidder is worse off in (M ′, P ′) (in comparison
to (M,P )), and the auctioneer is not worse off, and, by
assumption, either

A. Some bidder is strictly better off. Or,

B. The auctioneer is strictly better off.

First, we rule out case B above: Consider the process of
changing (M,P ) into (M ′, P ′) as a two stage process: at
first, the agents x1, . . . , xz give up items. During this first
stage, the payments made by these agents must decrease
(in sum) by at least Z− =

Pz
i=1 vxi . The 2nd stage is

that agents y1, . . . , yz receive their extra items. In the 2nd
stage, the maximum extra payment that can be received
from agents y1, . . . , yz is no more than

Z+ =
X
j∈I

vyj +
X
j∈J

b∗yj
≤
X
j∈I

vxj +
X
j∈J

vxj = Z−, (1)

by definition of sets I and J above. Thus, the total increase
in revenue to the auctioneer is Z+ − Z− ≤ 0. This rules
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out case B. Moreover, as the auctioneer cannot be worse off,
Z+ = Z− and from Equation (1) we conclude thatX

j∈I

vyj +
X
j∈J

b∗yj
=
X
j∈I

vxj +
X
j∈J

vxj . (2)

By definition, we have for j ∈ I, that vyj ≤ vxj ; and
for j ∈ J , we have that b∗yj

< vxj . Thus, if J 6= ∅ then
the lefthand side of Equation (2) is strictly less than the
righthand side, a contradiction.

Therefore, case A must hold and it must be that J = ∅,
we will conclude the proof of the theorem by showing that
these two are inconsistent. So, we have that

M ′ava − P ′a = Mava − Pa
for agents a
whose utility is unchanged

M ′âvâ − P ′â > Mâvâ − Pâ for some agent âX
a

P ′a =
X
a

Pa.

We can now derive thatX
a

M ′ava >
X
a

Mava −

 X
a

P ′a −
X
a

Pa

!
=

X
a

Mava.

⇒
X
a

(M ′a −Ma)va > 0. (3)

Now, whenever a = xj we decrease M ′a−Ma by one, when-
ever a = yj we increase M ′a −Ma by one. Thus, rewriting
Equation (3) we get thatX

a

(|{j|a = yj}| − |{j|a = xj}|)va > 0

⇒
zX
j=1

vyj −
zX
j=1

vxj > 0

⇒
zX
j=1

vyj >

zX
j=1

vxj . (4)

But, Equation (4) is inconsistent with Equation (2) as
J = ∅ implies that I = {1, . . . , z}.

The following technical lemma was required in the proof
of Theorem 2.4 above; its proof is deferred to the full version
of this paper.

Lemma 2.5 Let M and M ′ be two allocations that allocate
all items, then, the symmetric difference between these two
allocations, M ⊕M ′, can be decomposed into a set of simple
alternating paths (with respect to M) and alternating cycles
(also with respect to M) that are edge disjoint. Moreover,
there are no two simple alternating paths such that one ends
and the other begins at the same agent.

The following comments will hopefully help in clarifying
the notion of Pareto-optimality we use.

1. Pareto-optimality as given in Definition 2.1, allows any
alternative allocation and pricing, even allowing posi-
tive transfers to the bidders. If Pareto-optimality was
defined only with respect to any other allocation with
no positive transfers, i.e., “such that P ′i ≥ 0 for all i”,
then “Pareto-optimal” assignments could in fact con-
tain trading paths.

2. Pareto-optimality as given in Definition 2.1 is a more
desirable social goal than “Pareto-optimal” with no
positive transfers. If we only insisted on“Pareto-optimal”
assignments that forbid positive transfers then we could
get assignments that are inefficient in the sense that,
after the auction, bidders could trade amongst them-
selves and improve their utilities.

3. However, it may also be desirable that no agent ac-
tually get paid from the mechanism. Thus, it may
be desirable that the actual allocation has no positive
transfers (Pi ≥ 0 for all i), yet at the same time is
Pareto-optimal in the strong sense of Definition 2.1.
By Theorem 2.4 after such allocation is presented, no
agents will desire to trade amongst themselves. The
existence of such allocation is the claim of Theorem 4.1
that applies to the auction we present in the next sec-
tion.

3. DYNAMIC CLINCHING
In this section we describe our auction in detail. It can be

viewed as an incentive compatible ascending auction (where
incentive compatible means ex-post Nash) in the spirit of
the mechanism proposed by [7] for the simpler case of mul-
tiunit auction. The ascending auction raises the price of
unsold items until all items are clinched, i.e., allocated to
the bidders. We describe the mechanism as a direct reve-
lation mechanism and assume that the private value ṽa is
equal to the bid va.

We make extensive use of maximalB-matchings (on bipar-
tite graphs) in the course of our auction. A B-matching [14]
in a graph G is a subgraph of G where vertices have degree
constraints, i.e. Bv ≥ 0 is an upper bound on the degree
of v in the B-matching. Given the vector B, and a graph
G = (V,E) one can compute a maximal weight B-matching
in polynomial time. Often in the paper we denote such B-
matchings simply by matchings.

The main details of the auction are described by Algo-
rithms 1, 2 and 3.

Throughout the algorithm there is always some current
price p (initially zero); a set of unsold items U ; current num-
ber of unsold items, m (initally equal to to total number of
items); and current remaining budgets b = (b1, b2, . . . , bn),
where ba is the remaining budget for agent 1 ≤ a ≤ n. We
also denote by di the current demand of agent i. The auc-
tion repeatedly computes a B-matching of unsold items, i.e.,
a maximal matching that assigns to agent i at most di items
from U ∩ Si.

A key tool used in our auction is that of S-avoid match-
ings. These are maximal matchings that try to avoid, if at
all possible, assigning any items to bidders in some set S.
Finding such a matching requires a min-cost max-flow com-
putation, where there is high cost to direct flow through a
vertex of S. The mechanism will sell items only when the
S-avoid matching will still assign items to agents of S. All
items assigned to agents of S will actually be sold to agents
of S.

The algorithm also keeps a set of active agents A — those
with current demand greater than zero. Not all active agents
are in the same position with respect to the auction. The
auction will distinguish a set of value limited agents V —
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those with valuation equal to the current price:

A = {1 ≤ a ≤ n|da > 0}, (5)

V = {1 ≤ a ≤ n|da > 0, va = p}. (6)

For every agent 1 ≤ i ≤ n, the algorithm makes use of
values Di, D

+
i , and di, these values are functions of the

current values of p, m, b. Di is equal to the number of
items that agent i is interested in purchasing at current p,
m, and b (Equation 7). Later on, we omit these arguments
in the description of the algorithm. In Equation 8 we de-
fine D+

i , which is equal to the number of items that agent
ai would be interested in purchasing if the price were in-
creased by an infinitesimally small amount, thus D+

i ≤ Di.
In addition, the algorithm maintains a vector of variables
d = (d1, d2, . . . , dn). The current demand di of agent i will
either be equal to Di or to D+

i depending on the state of
the execution.

Formally:

Di[p,m, b] =


min{m, |Si|, bbi/pc} if p ≤ vi
0 if p > vi

(7)

D+
i [p,m, b] = lim

ε→0+
Di[p+ ε,m, b]; (8)

Observe that the algorithm repeatedly tries to sell items
at the current level of demand for all the players. When no
items can be sold then the demand of some active bidder a is
reduced from Da to D+

a , for . This will reflect in the decrease
by 1 of the demand of bidder a. When neither action can be
done, the price increases. A step through execution of this
mechanism, at the critical points, for the instance described
in Figure 1, appears in Figure 3.

In general, the auction prefers to sell items only at the last
possible moment (alternately phrased, the highest possible
price) at which this item can still be sold while still preserv-
ing incentive compatibility. We will prove that the auction
will in fact sell all items (Lemma 4.2).

Once a price has been updated, the auction checks to see if
it must sell items to value limited bidders. Such bidders will
receive no real benefit from the item (their valuation is equal
to their payment), but this is important so as to increase the
utility of the auctioneer. Our definition of Pareto-optimality
includes all bidders and the auctioneer. To check if this is
necessary, the auction computes a V -avoid matching, trying
to avoid the bidders in V . If this cannot be done, then items
are sold to these V bidders. After items are sold to value
limited bidders, these bidders effectively disappear and we
are only left to consider selling to active bidders. The main
loop of the mechanism checks whether any items must be
sold to any of the currently active bidders. This is where
incentive compatibility comes into play. The auction sells
an item to some bidder, a, at the lowest price where the
remaining bidders total demand is such that an item can be
assigned to a without creating a shortage. Again, this makes
use of the {a}-avoid matching, if in the {a}-avoid matching
some item is matched to a then a must be sold that item.
If no item can be sold than the demand di of a bidder with
di > D+(i) is reduced by setting di = D+(i). When neither
action can be done, the price increases.

4. PARETO-OPTIMALITY
The goal of this section is to show that the final allocation

produced by Algorithm 1 sells all items and contains no
trading paths, thus proving the following theorem:

Algorithm 1 Combinatorial Auction with Budgets

1: procedure Combinatorial Auction with Bud-
gets(v, b, {Si}) Implicitly defined Da, D+

a , A, and V
— see Equations (7), (8), (5) and (6).
B(¬{a}) - number of items assigned to agents in A\{a}
in {a}-avoid matching

2: p← 0
3: while (A 6= ∅) do
4: Sell(V )
5: A← A− V
6: repeat
7: if ∃i|B(¬{i}) < m then Sell(i)
8: else
9: For arbitrarily agent i with di > D+

i (p):
10: di ← D+

i (p)
11: end if
12: until ∀i: (di = D+(i)) and B(¬{i}) ≥ m)
13: Increase p until for some i, Di(p) 6= D+

i (p))
14: end while
15: end procedure

Algorithm 2 Computing an avoid matching, can be done
via min cost max flow
1: procedure S-Avoid Matching

Construct interest graph G:

• Active agents, A, on left, capacity constraint of
agent a ∈ A = da

• Unsold items, U , on right, capacity constraint 1.

• Edge (a, t) from agent a ∈ A to unsold item t ∈ U
iff t ∈ Sa.

Return maximal B-matching with minimal number
of items assigned to agents in S, amongst all maximal
B-matchings.

2: end procedure

Algorithm 3 Selling to a set S

1: procedure Sell(S)
2: repeat
3: Compute Y = S-Avoid Matching
4: For arbitrary (a, t) in Y , a ∈ S, sell item t to

agent a.
5: until B(¬S) ≥ m
6: end procedure

228



Figure 3: Significant points during mechanism execution, input from Figure 1. Example continues in Figure 4.

Theorem 4.1 The allocation (M∗, P ∗) produced by Algo-
rithm 1 is Pareto-optimal. Moreover, the mechanism makes
no positive transfers.

We first show that the auction sells all items.

Lemma 4.2 If every item appears in ∪ni=1Si then the auc-
tion will sell all items.

Proof. We prove that throughout the auction, there is
always a matching that can sell all remaining items at the
current price without exceeding the budget of any agent. As
prices only increase, eventually all items must be sold. The
lines below refer to Algorithm 1 unless stated otherwise.

Initially, all items can be sold at price zero. The da ca-
pacity constraints are all equal to |Sa|.

Furthermore, we argue that it is always true that all un-
sold items can be sold to active agents at the current price
without violating the capacity constraints. We prove this
invariant by case analysis of the following events:

• Increase in price followed by setting da = Da for each
active bidder a ∈ A: The repeat loop in lines 6 – 12
ends with all the da’s set to D+

a and B(¬{a}) ≥ m for
all agents a.

Any increment in price in line 13 will set Da equal to
the previous D+

a , which means that the new da’s are
equal to the old ones. Thus, any matching valid at the
old price is valid at the new price.

• The Sell(V ) operation (line 4 of Algorithm 1, Algo-
rithm 3) sells items to agents in V only if all other
unsold items can be matched to agents not in V .

• Setting A ← A − V (line 5 of Algorithm 1)is OK be-
cause nothing be sold to a ∈ V at any higher price.

• The Sell(a) operation (line 7 of Algorithm 1, Algo-
rithm 3) sells items to agent a only if all other unsold
items can be matched to other agents.

• Setting di ← D+
i (p) (line 10) is done only if B(¬{a}) ≥

m, i.e., all unsold items can be matched to the other
agents (not including a).

Thus, the mechanism will sell all items.

As a warm up for the proof for the single-valued combi-
natorial auction case we show a short proof of the theorem
in the multiunit case, i.e., identical preference sets for all
players.

Theorem 4.3 The allocation (M∗, P ∗) produced by Algo-
rithm 1 is Pareto-optimal for Multi-unit auction with bud-
gets. Moreover, the mechanism makes no positive transfers.

Proof. The proof is by contradiction. Assume a final
allocation with any two bidders i, j, such that vj > vi, bj ≥
vi, and bidder i allocated with at least one item. Denote
by p the price paid for the last item allocated to bidder i
from a call to Sell(V ) (i ∈ V ) or Sell(i|d(A/i) < m) (i /∈ V ).
Denote by Mk the number of items allocated to agent k at
any time after the last item was allocated to i.

We distinguish two cases:

1. Agent i ∈ V when it receives the item. Observe j /∈ V .
We derive a contradiction to the allocation of the item
to i from the following:

m = # items to be sold to V +
X

k∈A/{V ∪j}

Mk +Mj

< # items to be sold to V +
X

k∈A/{V ∪j}

Dk +Dj .

The inequality stems from Dj ≥ Mj + 1, since bj ≥
vi = p at the end of the auction and all Mj items have
been sold to bidder j at price p or higher, and of course
∀k,Dk ≥Mk.

2. Agent i /∈ V when it receives the item. We derive a
similar contradiction from the following:

m = # items to be sold to i+
X

k∈A/{i∪j}

Mk +Mj

< # items to be sold to i+
X

k∈A/{i∪j}

dk + dj .

The inequality follows from dj ≥ Mj + 1, since from
i /∈ V and from the fact that all Mj items have been
allocated to bidder j at price p or higher we derive
bj ≥ vi > p, and of course ∀k, dk ≥Mk.

We next give the proof of the Theorem 4.1 for agents with
different preference sets. We need to show that there are no
trading paths in the final allocation (M∗, P ∗) produced by
Algorithm 1.

229



Consider the set of all trading paths Π in the final alloca-
tion M∗.

Definition 4.4 We define the following for every π ∈ Π:

• Let Y π be the S-avoid matching used the first time
some item t is sold to some agent a where (a, t) is
an edge along π. Y π is either a V -avoid matching
(line 4 of Algorithm 1) or an a-avoid matching for
some agent-item edge (a, t) along π (line 7 of Algo-
rithm 1).

• If Y π is a V -avoid matching, let V π be this set of value
limited agents.

• If Y π is an a-avoid matching, let aπ be this agent.

• Let Fπ ⊂ M∗ be the set of edges (a, t) such that item
t was sold to agent a at or subsequent to the first time
that some item t′ was sold to some agent a′ for some
edge (a′, t′) ∈ π ((a′, t′) is itself in Fπ).

• Let mπ be the number of unsold items just before the
first time some edge along π was sold. I.e., mπ is equal
to the number of items matched in Fπ.

• Let pπ be the price at which item[s] were sold from Y π.

• Let bπa be the remaining budget for agent a before any
items are sold in Sell(V π) or Sell(aπ).

We partition Π into two classes of trading paths:

1. ΠV is the set of trading paths such that π ∈ ΠV iff Y π

is some V π-avoid matching used in Sell(V π) (line 4 of
Algorithm 1).

2. Π¬V is the set set of trading paths such that π ∈
Π¬V iff Y π is some aπ-avoid matching used in Sell(aπ)
(line 7 of Algorithm 1).

Lemma 4.5 ΠV = ∅.

Proof. We need the following Claim:

Claim 4.6 Let π = (a1, t2, . . . , aj−1, tj−1, aj) ∈ ΠV be a
trading path, and let (ai, ti) be the last edge belonging to Y π

along π. Then the suffix of π starting at ai, (ai, ti, . . . , aj),
is itself a trading path.

Proof. This trivially follows as the valuation of ai is
equal to current price when Sell(V π) was done (pπ), and
the valuation of a1 is ≥ pπ as edge (a1, t1) was unsold prior
to this Sell(V π) and does belong to the final Fπ.

From the Claim above we may assume, without loss of
generality, that if ΠV 6= ∅ then ∃π ∈ ΠV such that the first
edge along π was also the first edge sold amongst all edges
of π, furthermore, all subsequent edges do not belong to Y π.

As agents a ∈ V π will not be sold any further items after
this Sell(V π), the items assigned to a1 in Y π are the same
items assigned to a1 in Fπ.

We seek a contradiction to the assumption that Y π was
a V π-avoid matching. Note that the matching Fπ is a V π-
avoid matching by itself, because exactly the items assigned
to V -type agents in Y π are sold. We now show how to

construct from Fπ another matching that assigns less items
to V -type agents.

We show that the number of items assigned to agent a1

in Fπ (which is the same as in Y π) can be reduced by one
by giving agent ak+1 item tk for k = 1, . . . , j − 1. This is
also a full matching but it remains to show that this does
not exceed the capacity constraints for agent aj , daj .

As daj = Daj for all a ∈ A when Sell(V π) is done, agent aj
has remaining budget ≥ v1 at the conclusion of the auction,
and all items assigned to agent aj in Fπ are at price ≥ pπ =
v1. This implies that at the time of Sell(V π) we have Daj >
the number of items assigned to aj in Fπ. Thus, we can
increase the number of items allocated to aj by one without
exceeding the demand constraint daj = Daj .

Now, note that aj is not V -type agent, so the new match-
ing constructed assigns less items to V type agents then the
matching Fπ. Hence, Fπ is not an V π-avoid matching, and
in turn neither Y π is V π-avoid matching.

We’ve shown that ΠV = ∅. It remains to show that Π¬V =
∅.

Assume Π¬V 6= ∅. Order π ∈ Π¬V by the first time at
which some edge along π was sold. We know that this occurs
within some Sell(aπ) for some aπ and that aπ /∈ V . Let us
define π = (a1, t1, a2, t2, . . . , aj−1, tj−1, aj) be the last path
in this order, and let e = (aπ, tπ) = (ai, ti).

Recall that Y π is the aπ-avoid matching used when item
tπ was sold to agent aπ. Also, Fπ ⊂ M∗ is the set of edges
added to M∗ in the course of the auction from this point on
(including the current Sell(ai)).

Lemma 4.7 Let π, aπ = ai, t
π = ti, be as above, we argue

that when Y π was computed as an aπ-avoid matching there
was another full matching X with the following properties:

1. The suffix of π from ai to aj:

π[ai, . . . , aj ] = (ai, ti, ai+1, ti+1, . . . , aj−1, tj−1, aj),

is an alternating path with respect to X. (I.e., edges
(ak, tk), i ≤ k ≤ j − 1, belong to X).

2. The number of items assigned to ai in X is equal to
the number of items assigned to ai in Y π.

3. The number of items assigned to aj in X is equal to
the number of items assigned to aj in Fπ.

The proof will be given in the full version of this paper.

Corollary 4.8 Π¬V = ∅.

Proof. Assume π ∈ Π¬V 6= ∅ and let aπ = ai, t
π = ti,

we now seek to derive a contradiction as follows:

• When Y π was computed there was also an an alternate
full matching Y ′ with fewer items assigned to agent ai,
contradicting the assumption that Y π is an ai avoid
matching. Or,

• We show that the remaining budget of agent aj at the
end of the auction, b∗aj

, has b∗aj
< v1, contradicting the

assumption that π is a trading path.

Let X be a matching as in Lemma 4.7 and Fπ be as
defined in Definition 4.4. Also, let X(a), Fπ(a), be the
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number of items assigned to agent a in full matchings X,
Fπ, respectively.

We consider the following cases regarding daj when Y π,
the ai-avoid matching, was computed:

1. daj > X(aj): then, like in Lemma 4.5, we can decrease
the number of items sold to ai by assigning item tk to
agent ak+1 for k = i, . . . , j − 1, without exceeding the
daj demand constraint.

2. daj = X(aj), by subcase analysis we show that bπaj
≤

(X(aj) + 1)pπ:

(a) Daj = D+
aj

: Observe that X(aj) < m, the cur-
rent number of unsold items. This follows be-
cause X(ai) = Y π(ai) ≥ 1 by assumption that
ti was assigned to ai in Y π. This means that
daj = X(aj) < m so

X(aj) = daj =
j
bπaj

/pπ
k
> bπaj

/pπ − 1

⇒ bπaj
< (X(aj) + 1)pπ.

(b) Daj 6= D+
aj

: Observe that aj /∈ V as vaj > vai

and ai /∈ V . As aj /∈ V , the only reason that
Daj 6= D+

aj
is because the remaining budget of

agent aj , b
π
aj

, is an integer multiple of the cur-

rent price pπ. Then, D+
aj

= Daj − 1 and Daj =

bbπaj
/pπc = bπaj

/pπ, it follows that

X(aj) = daj ≥ D
+
aj

= Daj − 1 = bπaj
/pπ − 1

⇒ bπaj
≤ (X(aj) + 1)pπ.

Note that the current price pπ < vai because we as-
sume that ai was sold ti as a result of Sell(ai) and not
Sell(V ). It is also true that vai ≤ va1 as (ai, ti) was
the first edge that was sold along π. By condition 3 of
Lemma 4.7 we can deduce that

bπaj
≤ (X(aj) + 1)pπ = (Fπ(aj) + 1)pπ.

Agent aj is sold exactly Fπ(aj) items at a price not
lower that pπ, to at the end of the auction the remain-
ing budget for agent aj , b

∗
aj

, is ≤ pπ. This contradicts
the assumption that π is a trading path since

b∗aj
≤ pπ < vai ≤ va1 .

5. MAPPING THE FRONTIER
In this paper we gave a mechanism that is incentive com-

patible with respect to valuation, and produces a Pareto-
optimal allocation, but with various restrictions and assump-
tions:

• public budgets;

• public sets of interest;

• moreover, agents are restricted to have a step func-
tion valuation for items, if the item is in Si then it’s
valuation is vi, otherwise zero.

This poses the question: can we remove these assump-
tions/restrictions? Just how far can we go?

As for private budgets, it was shown by [7] that even for
the multi unit case, one cannot achieve incentive compatibil-
ity with respect to valuation along with bidder rationality,
auctioneer rationality, and obtain a Pareto-optimal alloca-
tion.

We argue that even if one assumes public budgets, the
other restrictions are also necessary. This is summarized in
the following theorems:

Theorem 5.1 There is no truthful, bidder rational, auc-
tioneer rational and Pareto-optimal auction with public bud-
gets, ba, private valuations, va, and private sets of interest,
Sa.

Proof. We assume the step function valuations (as done
throughout this paper). We also say that an agent wins an
item if the item is assigned to the agent.

For the proof of the theorem consider two agents, 1 and
2, and two items t1, t2. Let S1 = {t1} and S2 = {t1, t2}.

Recall the uniqueness result of [7]:

Theorem 5.2 (Theorem 5.1 of [7]) Let A be a truthful,
bidder-rational, auctioneer rational, and Pareto-optimal multi
unit auction (identical items) with 2 players with known
(public) budgets b1, b2 that are generic4 then if v1 6= v2 the
allocation produced by A is identical to that produced by the
Dynamic clinching auction of [7] (and, in particular, with
our auction when applied to these inputs).

For all the details of the proof please see [8], as the original
publication [7] includes only a sketch.

The next two lemmas allows us to argue about the pay-
ments of the auction. The proofs will be given in the fill
version of this paper.

Lemma 5.3 Consider any Pareto-optimal, incentive com-
patible, bidder rational and auctioneer rational combinato-
rial auction that produces an allocation (M,P ): if agent 2
wins both items than the payment P1 by agent 1 is zero.

Lemma 5.4 Consider any Pareto-optimal, incentive com-
patible, bidder rational and auctioneer rational combinato-
rial auction that produces an allocation (M,P ): if agent 2
does not win item t1 then P2 = 0.

The next lemma will tell us which matching is chosen.
The proof will be given in the full version of this paper.

Lemma 5.5 If b1 < b2, b1 < v2, and v1 < v2, then any in-
centive compatible, Pareto-optimal, bidder rational and auc-
tioneer rational combinatorial auction has to assign both
items to agent 2.

We are now ready to prove the main result of this section.
Consider the case of two agents, 1 and 2, and two items

t1, t2. Let S1 = {t1, t2} and S2 = {t1, t2}. Additionally,
Fix v1 = 10, v2 = 11, b1 = 4 and b2 = 5. In this case, by
Theorem 5.2, the allocation must coincide with the result of
the dynamic clinching auction of [7].

I.e., both agents get one of the two items, p1 = 3, and
p2 = 2. Without loss of generality assume that item t1

4Not all pairs of values are generic, but for our purposes
assume that this holds for every such pair.
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Figure 4: Significant points during mechanism execution, input from Figure 1. Sales at cost > 0.

is assigned to agent 1 with probability at least 1
2

(if the
mechanism is randomized).

Now, assume that the true set of interest for agent 1 was
in fact S1 = {t1}. We argue that agent 1 now has incentive
to lie about S1:

• if agent 1 reports her true set of interest – then by
Lemma 5.5 both items end up assigned to agent 2,
and by Lemma 5.3 P1 = 0, so her utility is zero as
well;

• if agent 1 lies and reports {t1, t2} as her set of interest
– then with probability ≤ 1

2
her utility is equal to

0 − 3, and with probability at least 1
2

her utility is
equal to 10− 3 = 7, so on average his utility is at least
−3 · 1

2
+ 7 · 1

2
= 2.

This concludes the proof as agent 1 has incentive to lie in
any incentive compatible, Pareto-optimal, bidder rational
and auctioneer rational combinatorial auction.

Corollary 5.6 There is no truthful, bidder rational, auc-
tioneer rational and Pareto-optimal auction with public bud-
gets, ba, and private item-dependent valuations vat.

Proof. This follows immediately from Theorem 5.1. Con-
sider the case where the private valuations vat are zero for
any t /∈ Sa, and va for t ∈ Sa.
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