
An optimal algorithm for the on-line closest-pair problem

Christian Schwarz* Michiel Smid* Jack Snoeyinkt

Abstract

We give an algorithm that computes the closest pair

in a set of n points in k-dimensional space on-line, in

O(n log n) time. The algorithm only uses algebraic func-

tions and, therefore, is optimal. The algorithm main-

tains a hierarchical subdivision of k-space into hyper-

rectangles, which is stored in a binary tree. Centroids

are used to maintain a balanced decomposition of this

tree.

1 Introduction

The closest pair problem is one of the classical prob-

lems in computational geometry. In this problem, we

have to compute the closest pair—or its distance—in

a set of n points in k-dimensional space. Distances

are measured in an arbitrary, but fixed, Lt-metric. Let

P = (PI,pk) and q = (ql , ~~) be two points in

k-dimensional space. Then the Lt-distance dt (p, q) be-

tween p and q is defined by

‘t(p’)’=($’pi-q’’’tift<’sm’sm
* Max-Planck-Institut fiir Informatik, W-6600 %arbriicken,

Germany. These authors were supported by the ESPRIT II B*

sic Research Actions Program, under contract No. 3075 (project

ALCOM).

t Dept. of Computer Science, University of British Columbia,

Vancouver, B.C. V6T 1Z2, Canada.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee andlor specific permission.

and for t = m, it is defined by

‘W(P} q) ‘= ~~$~k IF%– %1
.-

We observe, as many other researchers have observed,

that if we are satisfied with computing a closest pair

without knowing their exact distance we can compare

t-th powers of distances to avoid the computation of the

t-th root. If t is an integer or co, then these comparisons

can be performed using algebraic functions. In this pa-

per, we fix t and measure all distances in the Lt-metric.

We write d(p, q) for c&(p, q).

In the off-line version of the problem, the complete

set of points is known at the start of the algorithm,

This version of the problem has been solved optimally

for a long time, In 1975, Shames and Hoey [9] gave an

O(n log n) algorithm for the planar case. One year later,

Bentley and Shames [1] gave an O(n log n) algorithm for

the k-dimensional case. See also Vaidya [14], who solved

the all-nearest-neighbors problem within the same time

bound. All these algorithms can be implemented in the

algebraic decision tree model, for which an O(n log n)

lower bound holds. See Preparata and Shames [6].

In this paper, we consider the on-line closest pair

problem. Here, the points arrive one after another. Af-

ter a point arrives, we have to update the current closest

pair. This version of the problem has only been studied

recently.

In Smid [1 I], an algorithm is given that computes

the closest pair on-line, in O(n(log n)k - 1, time. This

algorithm only uses algebraic functions. Therefore, it is

optimal for the planar case.

Smid [11] and Schwarz and Smid [8] give al-

gorithms that run in O(n(log n)2/ log log n) and in

O(n log n log log n) time, respectively, for any fixed di-

mension k. These algorithms, however, use the non-

algebraic floor function. If additionally the functions

8th Annual Computational Geometry, 6/92, Berlin, Germany

@1992 ACM 89791-518-6/92/0006/0330 $1.50

330

EXP and LOG are available at unit-cost, the run-

ning time of the algorithm in [8] can be improved to

O(nlogn).

In this paper, we give an O(n log n) algorithm for any

fixed dimension k that uses only algebraic functions.

Hence, the algorithm is optimal. More precisely, we

give a data structure that maintains the closest pair

in O(log n) amortized time per insertion. Our structure

can also solve the problem of computing on-line the clos-

est pair that existed over the history of a fully dynamic

point set in O(log n) amortized time per insertion or

deletion.

Note that recently there haa been much interest in

the dynamic closest pair problem. For the case, where

only deletions are allowed, see Supowit [13]. For the

fully dynamic case, see Smid [10, 12], Salowe [7] and

Dickerson and Drysdale [3].

The algorithm in this paper is based on the algorithm

of Smid [11]. To update the closest pair when a point is

inserted, that algorithm makes some queries into a data

structure for the k-dimensional rectangular point loca-

tion problem. In this data structure, one query takes

O((log n)k - 1, time, which causes the entire algorithm

to have an amortized insertion time of O((log n)h - l).

In this paper, we also use a data structure for the

rectangular point location problem. The subdivisions of

k-space that arise, however, are regular enough to allow

point location queries to be solved in logarithmic time.

The data structure for these queries is implemented us-

ing centroids and tree decompositions. Chazelle [2] in-

troduced such decompositions to computational geom-

etry with his polygon cutting theorem. Guibas et al. [4]

gave a procedure to compute them in linear time.

In Section 2, we give the basic algorithm for main-

taining the closest pair under insertions. We define the

subdivision that is used during this algorithm, and give

an initial data structure that implements the insertion

operation using point location.

In Section 3, we use centroids for the implementation

of point location. In this way, the time for one query

is improved to O(log n). (In Section 2, this time could

be linear.) In order to maintain this improved data

structure, we use the partial rebuilding technique. (See

e.g. Overmars [5].)

In Section 4, we apply our solution to computing

the closest pair in history and give some concluding re-

marks.

2 The basic algorithm

In this section, we give a data structure th~at maintains

the closest pair in a point set under insertions of points.

The basic idea is the same as in Smid [11]. We give all

details, however, to keep the paper self-contained.

The algorithm maintains a subdivision of k-space into

axes-parallel hyperrectangles, called k-bolces for short,

Formally, a k-~oz has the form

[a, :b~]x[az: b~]x,,. x[a~:b~],

where ai c ~U {–co}, bi c lRU {00} and ai < bi for

i=l,k.

We say that a point p = (P1, pz, ..., p~)t is contained

in the above k-box, if ai ~ pi < bi for all i. In this way,

even if a point Iies on the boundary of many k-boxes,

the notion of containment is uniquely defined.

The data structure: The essential component of

the closest-pair data structure is a hierarchical subdivi-

sion of space into k-boxes. Let V be the current set of

points, and let n be its cardinality. The data structure

stores the following information:

A pair of points (P, Q) that are a closest pair in V

and a variable 6 whose value is the distance cl(P, Q).

A binary tree T representing the current subdi-

vision of k-space. The nodes of T store k-boxes,

where the k-boxes stored in the leaves form a sub-

division of k-space.

For each non-leaf node v, the k-box stored in it

is equal to the union of the two k-boxes that are

stored in the two children of v.

With each leaf of T, we store a list of all points in V

that are contained in the k-box stored in this leaf.

(These points are stored in an arbitrimy order.)

The k-boxes stored at the leaves of this data structure

have some additional constraints that we enforce.

(1) each leaf k-box has sides of length at least 6, where

6 is the distance of the closest pair in V.

(2) each k-box contains at leaat one and at most (2k -!-

2)k points of V.

(3) all k-boxes are non-overlapping and together they

partition the entire k-space.

Initializing the structure: Suppose that we start

with a set V of size two. Then the initial subdivision of

331

k-space consists of one k-box, namely the entire space.

The binary tree T consists of one leaf node, whose k-box

is the only box in the subdivision. With this leaf, we

store a list containing the two points. The pair (P, Q)

stores the two points, and the value of 6 is equal to its

distance.

Clearly, after the initialization, the subdivision and

the data structure satisfy the above constraints.

Our algorithm to insert a new point will use point

location as a subroutine. Thus, before giving the algo-

rithm we describe a simple-minded method to use the

binary tree T to answer point location queries in linear

time. In Section 3 we improve point location to loga-

rithmic time.

Point location: Let p be a point in k-space. In

a point location query, we have to locate the k-box in

the current subdivision that contains p. This query is

answered as follows.

Starting in the root of the tree T, we visit the nodes

of T on the path to the leaf whose k-box contains p.

We maintain as an invariant that p is contained in the

k-box that is stored in the current node. Suppose we

have reached the non-leaf node v. Point p is contained

in exactly one of the k-boxes that are stored in the two

children of v. The search proceeds in the child storing

this k-box.

The procedure ends if we reach a leaf. By the in-

variant, the k-box stored in this leaf cent ains the query

point p.

The insertion algorithm: Let P = (PI,..., P~) be

the point to be inserted, The algorithm makes two

steps. The first step updates the closest pair; the second

updates the rest of the data structure.

1. Update the closest pair: Observe that only

boxes intersecting the 6-ball around the new point p can

contain points q such that d(p, q) < 6. Therefore, we

first identify these boxes, For this purpose, we perform

3k point location queries, with query points

(PI + cl , ..ojn+~k)j forcl,cheb. o, b},},

Then, for each k-box that is located, we walk through

its list of points. For each point q that is in one of

these lists, if d(p, q) < 6, we set (P, Q) := (p, q) and

6 := Ct(p, q).

2. Update the rest of the data structure: In the

previous step, we have located the leaf v of the binary

tree T whose k-box contains point p. We insert p into

the list that is stored with v.

If afterwards this list contains at most (2k + 2)k

points, the algorithm is finished. That is, the subdi-

vision is not changed,

Otherwise, if.it contains 1 + (2k + 2)b points, we per-

form a split operation on the k-box stored in v. This

split operation is defined as follows.

Suppose we want to split the k-box B = [al : bl] x

. . . x [ak : bk] of the current subdivision. Let V’ be the

set of points that are stored in the list of B.

Fori=l ,. ... k, we compute the values mi and Mi,

which are, respectively, the minimal and msximal i-th

coordinate of any point of V’. Let i be an index such

that Mi – m~ >28, (In Lemma 2, we show that there

is such an index.) Let ci := mi + (Mi – mi)/2.

Then we split the k-box B into two k-boxes

Br = [al : bl] x . . . x [ai_l : hi-l]

x[a~ : c~] X [a~+l : b~+l] x . . . X [a~ : b~]

and

B, = [al : bl] x . . . x [ai_l : hi-l]

x[c~ : b~] X [a~+l : b~+l] x . . . x [a~ : b~].

In the tree T, the leaf v corresponding to B gets two

children, one child for the k-box Bt and one for the k-

box B,. The list that is stored with v is removed, and

it is split in two lists for the new leaves.

This concludes the insertion algorithm. First, we

prove a sparseness result that is needed in the proof

of Lemma 2.

Lemma 1 Let V be a set of points in k-dimensional

space, and let 6 denote the minimal distance in V. Then

any k-dimensional cube having sides of length 26 con-

tains at most (2k + 2)k points of V.

proof: Partition the cube into (2k + 2)k subcubes with

sides of length 6/(k -i- 1). Now assume that the cube

contains at least (2k + Z)k + 1 points of V. Then one of

the sub cubes contains at least two points of V. These

two points have a distance that is at most equal to the

L~-diameter of this sub cube. This diameter, however, is

at most k . 6/(k + 1) <6. This contradicts the fact that

the minimal distance of V k 6, m

In the next lemma, we show that the index i that is

used in the split operation indeed exists.

332

Lemma 2 Let V be a set of points in k-space, and let

6 be the distance of a closest pair in V. Let B be a k-

box that contains more than (2k + 2)k points of V. For

i= l,..., k, define the minimal, mi, and maximal, Mij

i-th coordinates of any point in Vfl B. Then there is an

index i, such that AIi – mi >26.

Proofi Assume that Mi – mi <26 for all i = 1,..., k.

Then, there is a k-cube B’ having side lengths 26 that

cent ains all points of V n B. By the previous lemma,

however, the cube B’ contains at most (2k + 2)k points

of V. This is a contradiction. m

Lemma 3 Let B be a k-box in the subdivision of k-

space whose list contains 1 + (2k + 2)k points of V. Let

6 be the minimal distance of V. Suppose, we perform

a split operation on B. Afier this operation, the sides

of the two newly created k-boxes have length at least 6,

and each such k-box contains at least one and at most

(2k + 2)k points of V.

Proof: The lemma follows immediately from the split

algorithm. m

Lemma 4 The insertion algorithm correctly maintains

the closest pair data structure.

Proofi Let 6 be the minimal distance just before the

insertion of point p. If this minimal distance changes,

there must be a point inside the L~-ball of radius 6

centered at p. This ball is contained in the k-box

kl–~’Pl+6] x””” X ~k – 6 : Pk -f- 6]. Therefore,

it suffices to compare p with all points of the current set

V that are in this box. Let

~:=vn(~l –6:pl+6]x... x~6–6 :Pk+d])

be the set of these points, and let W’ be the set of points

that are contained in the lists corresponding to the k-

boxes that result from the 3k point location queries. The

algorithm compares p with all points in W’. Hence, if we

show that W ~ W’, then it is clear that the algorithm

correctly maint sins the closest pair.

Let q = (ql, qk) be a point in W. Assume w.1.o.g.

that qi~pifori=l,. ..jk. ‘1’henpi<~i<pi+~

fori=l ,..., k. Let B be the k-box in the current

subdivision of k-space whose list cent sins q. Assume

that q @ W’. Then B does not contain any of the 2k

points (pl + al,pk+Q’k). WheKQ’1,GE {0,6}.

These 2k points are the corners of the k-box

B’:= ~1:~1+6] X... X~k:lU +6],

having sides of length 6. (Note that in general B’ is

not part of the current subdivision of k-space.) Since

q c B’, and since B does not contain any of the corner

points of B’, it follows that the box B must have at least

one side of length strictly less than 6. This contradicts

the definition of our data structure. Hence, q G W’

and, therefore, W c WI. This proves that the insertion

algorithm correctly maintains the closest pair.

It remains to show that the new subdivision satisfies

the invariants (l)–(3). Consider a k-box of the current

subdivision that is not split during the insertion. Since

the value of 6 can only decrease, the side lengths of

this box remain at least equal to 6. Clearly, if the box

contains at least one point before the insertion, so it

does afterwards. Also, the box still contains at most

(2k + 2)k points.

If a k-box is split, then Lemma 3 guarantees that

the new k-boxes have sides of length at least 6, that

they cent ain at least one and at most (2k + 2)k points.

Finally, it is clear that the k-boxes that are not split,

together with the two new k-boxes, are ncm-overlapping

and partition k-space. n

The central operations of the insertion algorithm are

point location and splitting a k-box of the subdivision.

The following theorem expresses the running time of the

algorithm in terms of the cost of these two operations.

Theorem 1 Let Q(n) be the time for one point location

query and S(n) be the time for one split operation. The

given data structure has linear size and maintains the

closest pair of the set V in O(Q(n) + S(n)) time pe~

insertion.

Proofi The binary tree T has at most n leaves, because

each leaf corresponds to a non-empty k-box. Therefore,

T has linear size. Since any point is stored in exactly one

list, all these lists together also have linear size. This

proves the space bound.

In the insertion algorithm, we need 0(3hQ(n)) time

for all point location queries. Then, we walk through at

most 3k lists, each of which has size at most (2k + 2)k.

This takes time 0(3k(2k + 2)k).

In case no split operation is necessary, the data struc-

ture needs O(1) time to update the rest of the data

structure. Otherwise, we need S(n) time for the split

operation.

It follows that the overall insertion time is bounded

by

0(3kQ(71) + 3k(2k + 2)k + S(n)),

333

which is O(Q(n) + S(n)), because k is a constant. E

Let h denote the height of the binary tree T. Then,

clearly, it takes O(h) time to solve one point location

query. Since h can be linear in n, it follows that Q(n)

can be ~(n). Consider a split operation. First, it takes

0(k(2k + 2)b) time to find the index i. Then, the op-

eration can be completed within the same time bound.

Hence, since k is a constant, S(n) = O(l). Therefore,

an insertion takes O(n) time in the worst-case.

In the next section,” we build an additional search

structure on T that improves the point location time,

Q(n), to O(log n). In order to maintain the search struc-

ture, we increase the split time, S(n), to O(log n) in

the amortized sense. Hence, it follows from Theorem 1

that the insertion algorithm will need O(log n) amor-

tized

3

time for one insertion.

Point location

decomposition

using the tree

In the previous section, the point location algorithm

started in the root of the tree T and followed a path

until it reached a leaf. We observe, however, that it is

not necessary to start in the root; the algorithm can

start in an arbitrary node.

Suppose we start in node v, Let B, be the k-box that

is stored with v. If the query point p is contained in L%,

the search continues in one of the two subtrees rooted

at children of v, Otherwise, if p is not cent ained in B“,

the search continues in the tree that is obtained by re-

moving the subtree rooted at v. These searches proceed

recursively, i.e., again they do not necessarily start in

the root of the subtree. If we choose our initial node

v such that the two subtrees have roughly equal size

and repeat choosing nodes in this way for the recursive

searches, then we get a logarithmic search time.

In the rest of this section we do three things. First, we

define the fl-decomposition tree TP on the nodes of the

tree T. A procedure of Guibas et al. [4] can be used to

compute ~-decomposition trees suitable for our purpose.

Second, we define our new data structure that uses the

tree decomposition. Third, with this new data struc-

ture, we implement the two central operations of our

on-line closest pair algorithm (cf. the remark preceding

Theorem 1): we show how to do logarithmic-time point

location in the subdivision of k-boxes, and we show how

to do a split operation on a leaf of the tree representing

the subdivision.

We call an internal node v 6 T a $centroid if the re-

moval of v results in three connected components, each

containing at most /31T1 nodes. (Here, ITI denotes the

number of nodes in T.) Notice that a fl-centroid is

also a @-centroid for all @ > ~. A ,f?-decomposition

tree of T, denoted Tp, is defined recursively: The B-

decomposition tree of a leaf is just the leaf. Otherwise,

the root of T@is a $centroid v E T, and the children are

@-decomposition trees for the connected components of

T – v. The trees T and T@ have the same set of leaves

and the same set of internal nodes.

Since T is binary, the &decomposition tree TP is

ternary. For any node v c T@ we have three point-

ers, left(v), right(v), and up(v), that point to the f?-

decomposition trees for the connected components of

T – v that contain the left child of v in T, the right

child of v in T, and the parent of v in T, respectively.

The nodes that are stored in the subtree of TO rooted at

v form the component of v, denoted by C(v). From the

decomposition scheme, we have C(v) = C(ieft(v)) U

C(f’ight(v)) U C(tip(v)) u {v}. Finally, we note that

the depth of T@ is O(logfllp) ITI).

In [4], Guibss et al. give an algorithm that computes

a centroid decomposition of a binary tree T in linear

time. In that paper, the tree T is decomposed by re-

moving a centroid edge which decomposes T into two

parts, each of size at least ~(ITI + 1)/3J. A straight-

forward modification of theu aigorithm, however, also

computes a @decomposition tree Tp for T in linear time!

with @ = 1/2.

The improved data structure: As in Section 2,

the data structure comprises the . i,sest pair and a tree

T storing a subdivision of k-space into k-boxes, whose

leaves store the current subdivision and satisfy (l)-(3).

Each internal node v stores the union of the k-boxes

stored in the leaves of the subtree rooted at v. For each

leaf c, there is a list of the points of V lying in the k-box

stored at z.

We also maintain a ternary &decomposition tree Tp
of T, where ,6 = 3/4. As described above, C(v), the

component of v, consists of the nodes in the subtree of

Tp rooted at v. With each node v E Tp, we store the

size of C(v).

Point location: The ~-decomposition tree To guides

point location in the tree T that represents the subdi-

vision of k-space into k-boxes.

Let p be a point in k-space, and let s be the unique

334

leaf in T whose k-box contains p. Our task is to find s.

The algorithm consecutively checks nodes v, starting in

the root of the decomposition tree T~. We maintain the

invariant that, if v is the current node, then s E C(v).

At the start of the algorithm, when v is the root of TP,

the invariant is trivially true, since in this case all nodes

are in C(v).

Now let v be the current node. By induction, we

assume that the invariant holds for v, which means that

s c C(v). If v is a leaf of T, then the invariant implies

that v = s, and we are done. If v is not a leaf of T,

then v # s. Since s G C’(V) by the invariant, we have

IC(V)I >1 in this case. This means that the subtree of

v in T@ has more than one node, which in turn implies

that v is not a leaf in T@. Let z = left(v), ~ = right(v),

and z = up(v) be the children of v in T@. We know that

at least one of the nodes z, y, z exists.

We examine v as follows: in constant time, we check

whether point p is inside BV, the k-box corresponding

to v, If p is inside B“, then we check which one of the

two k-boxes of children of v in T also contains p. With

this knowledge, we can choose the correct child of v in

T6 to continue the search: If p lies in the box stored in

the left child of v in T, then s must be in the left subtree

in T. In this case, we choose z to be the new current

node. Since the only part of C(v) which lies in the left

subtree of v in T is C(Z), we have s E C(x). The case

that p lies in the right subtree of v in T is symmetric.

It remains to consider the case p @ B.. Here, we choose

z to be the new current node. Since p @ Btj, we know

that s @ C(Z) and s @ C(y), which implies s 6 C(z).

The search proceeds via edges of Tp and ends in a leaf

of TP. From our invariant, this leaf must be s. Therefore

we have the following lemma:

Lemma 5 Let T be a binary tree of size n, storing a

collection of k-boxes in k-space as defined in the pre-

vious section, and let p be a query point. Given a B-

decomposition tree of T, point location, i.e., identify-

ing the k-box containing p, can be done in O(log(llp) n)

time.

From the definition of the improved data structure, we

have @ = 3/4, and it follows that Q(n) = O(log n).

Next, we discuss how to maintain the tree TO if split

operations are performed. We shall show that the im-

proved data structure can be correctly maintained, and

that S(n) = O(log n) amortized.

Split operation: Let z be a leaf of T and suppose

that we perform a split operation on the k-box stored in

x, Then, x is turned into an internal node and is given

two new children xl, X2, in T as well as ink Tfl.

Updates gradually unbalance the fl-dlecomposition

tree TP; we must maintain T@ in amortized logarith-

mic time. For each node v G T@, we store the size of

C(v), as prescribed in the definition of the improved

data structure. When we add leaves to T, the nodes of

T@ whose counts change are those on the search path

to the leaves—we can update these counts in O(log n)

time. Then we can determine the higheat node in To

that is no longer a (3/4) -centroid and rebuild its subtree

in T@. Using the algorithm of [4], we compute a (l/2)-

decomposition for this subtree in time proportional to

its size.

If we build the subtree of Tfl rooted at v, then v is a

(1/2)-centroid. In order to rebuild v’a aubtree, one must

increase the size of the subtree by a quarter. Thus, if

every leaf inserted into the subtree brings along a credit,

we can use these credits to pay for the rebuilding. Since

the depth of Tfl is O(log n), each additional leaf needs

only O(log n) credits. It follows that the total coat of

rebuilding over n insertions is O(n log n). We have the

following lemma:

Lemma 6 The amortized cost of a split operation is

O(logn).

From Lemma 5 and Lemma 6, we have point location

cost Q(n) = O(log n) and split cost S(n) = O(log n)

amortized. Combining this with Theorem 1 gives the

following result.

Theorem 2 The imp~oved data structure has linear

size and maintains the closest pair in the point set V

in O(log n) amortized time.

Corollary 1 The closest pair in a set of’ n points in k-

dimensional space can be computed on-line in O(n logn)

time, using O(n) space. This is optimal in the algebraic

decision tree model.

4 The “closest pair in history”

and open problems

We have given an optimal solution to the problem of

maintaining a closest pair as points are inserted on-line.

It is natural to ask about fully dynamic point sets in

which points can be inserted and deleted.

While we cannot efficiently maintain the closest pair

under on-line insertions and deletions, we can solve

335

the problem of recording the closest pair in history—

recording the closest pair of points that existed simul-

taneously during an on-line sequence of point insertions

and deletions. Such a record could help verify that an

appropriate step size was used in a dynamic system sim-

ulation.

Theorem 3 The closest pair of points over the history

of a sequence of insertions and deletions can be com-

puted on-line in O(n log n) time, using O(n) space.

Proof: We use the improved data structure with the

insertion operation specified above. To delete a point

p, we locate the leaf node v whose k-box B. contains p.

We delete p from v’s point list in constant time. If some

points remain in B. then we are done-the invariants

still hold. (Note that 6 can only decrease, so there is no

problem with the side lengths of the k-boxes.)

Otherwise, we must delete the node v and contract

the parent and sibling of v into one node. As in the

splitting algorithm, we update the component counts

that change in T@ in O(log n) time. Then we can rebuild

the subtree of the highest node in To that is no longer

a (3/4) -centroid.

Since rebuilding forms a (1/2)-decomposition, the

number of updates between two rebuilding at a node

is still proportional to the size of its subtree. Thus, if

each deletion also comes with O(log n) credits to give

to the nodes on the search path in Tfl, these credits can

be used to pay for the rebalancing. Thus, deletion costs

also amortize to O(log n) per deletion. E

Other open problems remain. In some applications,

one would like to change the amortized time bounds

for insertions to worst-case bounds. Algorithms using

floors, randomness, or other models of computation may

have o(n log n) running times.

References

[1]

[2]

[3]

J.L. Bentley and M.I. Shames. Divide-and-conquer

in multidimensional space. Proc. 8th Annual ACM

Symp. on Theory of Computing, 1976, pp. 220-230.

B. Chazelle. A theorem on po/ygon cutting with

applications. Proc. 23rd Annual IEEE Symp. on

Foundations of Computer Science, 1982, pp. 339-

349.

M.T. Dickerson and R.S. Drysdale. Enumerating k

distances for n points in the plane. Proc. 7th ACM

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Symp. on Computational Geometry, 1991, pp. 234-

238.

L. Guibas, J, Hershberger, D. Leven, M. Sharir and

R.E. Tarjan. Linear time algorithms for visibility

and shortest path problems inside triangulated sivn-

p/e potygons. Algorithmic 2 (1987), pp. 209-233.

M.H. Overmars. The Design of Dynamic Data

Structures. Lecture Notes in Computer Science,

Vol. 156, Springer-Verlag, Berlin, 1983.

F.P. Preparata and M.I. Shames. Computational

Geometry, an Introduction. Springer-Verlag, New

York, 1985.

J .S. Salowe. Shallow interdistance selection and in-

terdistance enumeration. Proc. WADS’91, LNCS

Vol. 519, Springer-Verlag, Berlin, 1991, pp. 117-

128.

C. Schwarz and M. Smid. An O(n log n log log n)

algorithm for the on-line closest pair problem. To

appear in: Proceedings 3rd Annual ACM-SIAM

Symp. on Discrete Algorithms, 1992.

M.I. Shames and D. Hoey. Closest-pair problems.

Proc. 16th Annual IEEE Symp. on Foundations of

Computer Science, 1975, pp. 151-162.

M. Smid. Maintaining the minimal distance of a

point set in less than linear time. Algorithms Re-

view 2 (1991), pp. 33-44.

M. Smid. Dynamic rectangular point location, with

an application to the closest pair problem. Report

MPI-I-91-101, Max-Planck-Institut fiir Informatik,

Saarbrucken, 1991. See also: Proc. 2nd Annual In-

ternational Symp. on Algorithms, 1991.

M. Smid. Maintaining the minimal distance of

a point set in polylogan”thmic time (revised ver-

sion). Report MPI-I-9 1-103, Max-Planck-Institut

fur Informatik, Saarbrucken, 1991. See also: Proc.

2nd Annual ACM-SIAM Symp, on Discrete Algo-

rithms, 1991, pp. 1-6.

K.J. Supowit. New techniques for some dynamic

closest-point and farthest-point problems. Proc.

1st Annual ACM-SIAM Symp. on Discrete Algo-

rithms, 1990, pp. 84-90.

P.M. Vaidya. An O(n log n) algorithm for the

all-nearest-neighbors problem. Discrete Comput.

Geom. 4 (1989), pp. 101-115.

336

