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ex, into a minimum number of convex regions without the addition of Steiner verticescan be computed in O(n + r2minfr2; ng) time and space. A Java demo is available athttp://www.cs.ubc.ca/spider/snoeyink/demos/convdecompKeywords: simple polygons, dynamic programming, convex decomposition1. IntroductionSuppose that P is a simple polygon in the plane with n vertices, of which r arere
ex vertices having interior angles greater than �. The minimum convex decom-position problem asks for a decomposition of the interior of P into the minimumnumber of convex regions.There is an anomaly in the literature on minimum convex decomposition: If,as in Figure 1, segments of the decomposition can end at arbitrary points, oftencalled Steiner points, then Chazelle and Dobkin2;3 have shown that a minimumdecomposition can be computed by dynamic programming in O(n + r3) time. Onthe other hand, if the segments must end at vertices of the polygon, as in Figure 2,then the best published bound is a dynamic programming algorithm of Keil9;10that computes a minimum decomposition in O(nr2 log r) time. As Chazelle andDobkin3 noted in 1985, this is asymptotically slower for any non-constant r, eventhough allowing Steiner points usually makes optimization problems more di�cult.1



After some de�nitions, we show in Sec-
Figure 1: Minimum convexdecomposition with Steiner points

tion 3 that Keil's dynamic programmingalgorithm can be implemented using stacksin place of a search structure, which re-moves a log r factor from the running time.Then we show in Section 4 how to reducethe input, in O(n + r2 logn) time, to apolygon that has the same minimum de-composition but at most r2 sides. Thus, aminimum decomposition of P can be com-puted in O(n+minfnr2; r4g) time, match-ing Chazelle and Dobkin's running time atleast when r = O( 4pn). If we apply a similar reduction when Steiner points areallowed, we obtain a polygon that has the same minimum decomposition but onlyO(r) sides. This may explain why the problem without Steiner points appearsharder.A related problem is that of �nding a convex decomposition with \minimumink"|that is, having minimum total edge length. We can simplify the search struc-ture from Keil's minimum ink algorithm9 to achieve O(n2r2) time, but cannotreduce the dependence on n. Greene7 already achieved this time bound with adouble dynamic programming algorithm that was a contemporary of Keil's.2. Notation for simple polygonsAssume that we are given the n ver-
Figure 2: A minimum convexdecomposition without Steiner points

tices of a polygon P = fp0; p1; : : : ; pn�1gin counter-clockwise (ccw) order. We as-sume that P is simple: that is, the only in-tersections between the polygon edges, thesegments pipi+1 that form the boundary ofP , are at the shared endpoint of adjacentedges.A diagonal of P is a segment that joinstwo vertices of P and remains strictly in-side P . We use the notation dij for thediagonal pipj with i < j. Diagonals for agiven vertex pi can be found by computing the visibility polygon for pi in lineartime6.One important observation for visibility algorithms will also be important forus: that diagonals appear in the same order as vertices.Observation 1 The angular order of diagonals dij1 , dij2 , . . . dijk , counter-clockwise(ccw) around a vertex pi is identical to the order of the vertices pj1 , pj2 , . . . pjk ccwaround P .A vertex of P is re
ex if its interior angle is greater than �. It is not hard to seethat a minimum convex decomposition without Steiner points must use diagonals2



that have at least one re
ex vertex, since removal of a diagonal from a minimumdecomposition must result in a non-convex region. In fact, an easy way to obtain adecomposition into at most four times the minimum number of convex pieces7;8 isto start with any triangulation of P , and consider removing each diagonal in turnunless doing so forms a re
ex angle.Note that a particular diagonal d that joins two re
ex vertices of P is notnecessarily present in a minimum convex decomposition|a decomposition of Pmay use several diagonals that intersect d instead.3. Dynamic programming for convex decompositionTo �nd a minimum set of diagonals and solve the minimum convex decomposi-tion problem we use dynamic programming, which is an algorithmic paradigm that�nds the best solution to a problem by combining optimal solutions to subproblems1.We de�ne a subproblem for each diagonal dik such that pi or pk is a re
ex vertex:let Pik denote the polygonal line pi, pi+1, . . . , pk. The size of subproblem Pik is thenumber of vertices in Pik. We want to associate with each Pik a weight wik , which isthe minimum number of diagonals in a convex decomposition of Pik . We make theconvention that d0(n�1) is also a diagonal, so we compute the number of diagonalsin a minimum convex decomposition by computing the weight of P0(n�1) = P .We can identify three approaches to apply dynamic programming to �nd theweight of Pik from the weights of smaller subproblems.1. Consider each convex polygonC that can be constructed adjacent to dik in Pik .Removal of C from Pik leaves a number of subproblems; the weight of usingC is the sum of subproblem weights plus the number of subproblems, sinceeach is cut o� by a diagonal. The weight of Pik is the minimum weight overall polygons C. This is the basis of Greene's approach7, but is complicatedby the fact that the polygons must be explored very e�ciently.2. Consider each triangle T that can be constructed adjacent to dik in Pik. Re-moval of T leaves two subproblems; the weight of using T is the sum ofsubproblem weights plus the 0, 1, or 2 edges of T that may need to be intro-duced to avoid re
ex vertices when merging the subproblem solutions. Thisapproach of Keil9 must keep several solutions for each subproblem, as sketchedin Subsection 3.1.3. Consider each triangle T that could be part of a \canonical triangulation,"which will be de�ned in Subsection 3.2. The decomposition always uses 1 or2 edges of these triangles, so the task of merging becomes easier. Multiplesolutions must still be stored, but the following subsections show that thesolutions can be stacked to be ready when needed.Although we have described these three approaches as top-down recursive pro-cedures, we prefer to implement them by bottom-up iteration, solving subproblemsin order of increasing size to end with the weight of a minimum decomposition of P .We initialize by the convention that wi(i+1) = �1.3



3.1. Equivalent decompositions and narrowest pairsSince there may be exponentially-many de-
0

1

2
43

5

6
7

8
9

Figure 3: Useful diagonals of P09
compositions of Pik that attain weight wik, Keil9suggests storing only certain equivalence classesof decompositions. Associate a pair of vertexindices [a; b] with each decomposition of Pik bynoting that one convex polygon of the decom-position will be incident on diagonal dik andwill have vertices a, i, k, b in clockwise order,where possibly a = b. Two decompositions ofPik are considered equivalent if they have thesame weight and the same associated pair of indices.Consider the example of polygon P09, shown in Figure 3, Its minimum convexdecompositions, shown in Figure 4, are labeled with their associated pairs. Toobserve that these are all the minimum decompositions, note that any convex de-composition of P09 must use diagonals to eliminate the re
ex vertices 3, 4, and 6;there are eleven ways to do so with only three diagonals.
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Figure 4: The eleven minimum convex decompositions ofpolygon P09 with narrowest pairs circledIn this example, certain \narrowest" pairs have been circled. The narrowestpairs are those whose convex region in a small neighborhood of dik does not containthe convex region of any other minimum decomposition of Pik . Keil observed thatonly subproblems with narrowest pairs need to be used to assemble a minimumconvex decomposition.9According to Observation 1, we can test for narrowest pairs for Pik by simplycomparing indices|we discard any interval [a; b] that contains a smaller interval.Notice that this means that if a set of narrowest pairs is ordered by their �rst indices,then they will also be ordered by their second indices. As we compute indices ofnarrowest pairs for subproblem Pik , we will store them on a stack Sik in order, sothat the segments from bottom to top are in ccw order around pi and pk. StackS09 for Figure 4 would contain [1; 3], [3; 4], and [6; 8], from bottom to top. Thus,4



we would know that diagonal d06 and edge d89 formed the narrowest pair that wasfurthest counter-clockwise.3.2. Canonical triangulationsOne way to decompose the subproblem Pik into smaller subproblems wouldbe to determine a convex polygon C that is incident on dik in some minimumconvex decomposition of Pik . Removing that C leaves smaller subproblems, whoseoptimal decompositions could have already been computed. This is essentially theapproach taken by Greene7. Since this approach can involve turning one subprobleminto many, we instead extend any minimum convex decomposition to a canonicaltriangulation by adding extra diagonals. Removing the triangle incident on dikleaves at most two smaller subproblems, each of which have canonical triangulations.Consider any convex decomposition in
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Figure 5: Canonical triangulationfrom minimum decomposition
which every diagonal is incident on a re-
ex vertex. We assume that vertex p0 isre
ex either by convention, or by renum-bering vertices of P if P is not already con-vex. We can complete such a decompositionto a canonical triangulation as follows: eachconvex region C has at least one vertex thatwas re
ex in P|connect the re
ex vertexin C with lowest index to all vertices withhigher index in C. If C is not yet triangu-lated after this step, then the vertex with highest index was re
ex in P ; connect itto the remaining vertices in that region. In Figure 5 shows an example in whichvertices between p8 and p12 and between p20 and p26 connect to the highest indexin their region; all other vertices connect to the lowest.We can make the following observations about the diagonals of a canonicaltriangulation and the subproblems that they form.Observation 2 In a canonical triangulation, each diagonal dik, with i < k, hasthree properties:1. The diagonals with endpoints in Pik de�ne a canonical triangulation of Pik.2. If pi is re
ex in P , then the adjacent triangle 4pipjpk, with i < j < k, eitherhas j = k � 1 or djk is a diagonal used in the convex decomposition.3. If pi is not re
ex in P , then pk must be. The adjacent triangle 4pipjpk,with i < j < k, either has j = i + 1 or dij is a diagonal used in the convexdecomposition.Now, the minimum convex decompositions of Pik can be constructed by consid-ering which vertices pj can form a canonical triangle with dik, and whether diagonalsdij and djk must be added to the decompositions of Pij and Pjk , or whether thosediagonals are merely in the canonical triangulation. In support of that decision, wewill also associate with each Pik a stack, Sik , that contains equivalence classes ofsolutions of Pik . 5



3.3. Solving subproblemsWe can use these properties to systematically explore the canonical triangula-tions of the minimum decompositions of Pik that have narrowest pairs. We assumethat we have, for each subproblem Pxy that is smaller than Pik , the narrowest pairsfor all minimum convex decompositons of Pxy. These are in ccw (increasing) orderin stack Sxy and in cw (decreasing) order in stack Txy. (The data structure can beimplemented as a single list with two independent \stack" pointers that start oneither end.) We use stack Tij or Sjk , depending on whether pi is a re
ex vertex ornot, to produce the narrowest pairs for minimum decompositions of Pik in ccw orderon stack Sik . Then we make Tik from Sik , so that both are available for subsequentcomputation.A. pi re
ex: Minimum decompositions of Pik use, for some i < j < k, thediagonal or edge djk , a decomposition of Pjk , and a decomposition of Pij , perhapswith the diagonal dij . That is, for subpolygon Pik we are using the followingdynamic programming recurrence.wik = mini < j < k& dij , djk exist� wij + wjk + 2 if dij must be includedwij + wjk + 1 otherwiseTo compute all narrowest decompositions,
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Figure 6: pi re
ex: use djk andperhaps dij

we consider, in increasing order, the vertices jwith i < j < k and dij and djk in the visibilitygraph. If vertex j were not visible from ver-tex i, then diagonal djk would not be one of anarrowest pair for Pik .For a given j, popping the cw-ordered stackTij will go through the pairs in ccw order: �ndthe last pair [s; t] such that dtj and djk do notform a re
ex angle at pj . If, as in the upperhalf of Figure 6, there is no such pair [s; t], orif dis and dik form a re
ex angle at pi, thenwe must use diagonal dij to obtain a convexdecomposition of Pik with weight wij +wjk +2and narrowest pair [j; j]. (Recall our conventionthat the weight of any polygon edge wi(i+1) =�1.) Otherwise, as in the lower half of Figure 6,we obtain a convex decomposition of Pik with weight wij + wjk + 1 and narrowestpair [s; j].To build the ccw-ordered stack Sik of narrowest pairs for Pik is easy since thesecond element is always the loop index j. For each pair [x; j] that achieves theminimum weight, push [x; j] if the �rst element of the pair on top of Sik is < x.Otherwise the pair on top of the stack Sik is narrower.Because we use djk in the decomposition, either j = k�1 so that djk is a polygonedge or at least one of pj and pk is re
ex.6



B. pi not re
ex: This case is symmetric except that we know that pk is re
ex.Since minimum decompositions use dij , either pj is re
ex or dij is a polygon edge.We consider, in increasing order, the index j = i+1 and indices of re
ex vertices pjwith i+ 1 < j < k for which dij and djk are in the visibility graph.Popping the ccw-ordered stack Sjk will go through the pairs in cw order: �ndthe last pair [s; t] such that dij and djs do not form a re
ex angle at pj . If thereis no such pair [s; t], or if dtk and dik form a re
ex angle at pk, then we must usediagonal djk to obtain a convex decomposition of Pik with weight wij + wjk + 2and narrowest pair [j; j]. Otherwise, we obtain a convex decomposition of Pik withweight wij + wjk + 1 and narrowest pair [j; t].To build the ccw-ordered stack Sik of narrowest pairs for Pik is again easy sincenow the �rst element is the loop index j. For each pair [j; x] that achieves theminimum weight, while the second element of the pair on top of Sik is � x, popSik . Then push [j; x].Given polygon P = fp0; p1; : : : ; pn�1g, compute a minimum convexdecomposition by dynamic programming. This procedure shows the
ow of control; Subroutines TypeA and TypeB are described in text.Procedure MCD(P )Initialize weights of edges wi(i+1) = �1;for visible(i; i+ 2) f wi(i+2) = 0; push [i+ 1; i+ 1] on Si(i+2); gfor size = 3 to n do ffor re
ex vertices pi with i+ size � n dok = i+ size ; if visible(i; k) fif (pk re
ex) for j = i+ 1 to k � 1 do TypeA(i; j; k);else f =� Need pj re
ex or j = k � 1 �=for re
ex pj with i < j < k � 1 do TypeA(i; j; k);TypeA(i; k � 1; k); ggfor re
ex vertices pk with size � k < n doi = k � size ;if (pi not re
ex and visible(pi; pk)) fTypeB(i; i+ 1; k); =� Need j = i+ 1 or pj re
ex �=for re
ex pj with i+ 1 < j < k do TypeB(i; j; k);gStack Sik is complete in ccw order; form stack Tik in cw order;g Algorithm 1: MCD algorithm3.4. Correctness and analysisAlgorithm 1 shows the 
ow of control for the dynamic programming.Theorem 3 Given a simple polygon with n vertices, r of which are re
ex, we can7



solve the minimum convex decomposition problem in O(nr2) time and space.Proof: It is not di�cult to bound the total running time of Algorithm 1: thealgorithm calls subroutines TypeA(i; j; k) or TypeB(i; j; k) for triples i < j < k thatare indices of at least two re
ex vertices, or one re
ex vertex and polygon edge.Thus, there are less than nr2 calls. The work done in each subroutine is constantplus the number of pairs popped from stacks; since each subroutine adds at mostone pair to two stacks, at most O(nr2) elements can be popped. Thus, O(nr2)bounds the total time. The memory requirements in the worst case are dominatedby the O(nr2) space for the stacks.To prove the correctness of Algorithm 1 we can argue by induction that weinspect the canonical triangulations and �nd the narrowest pairs in ccw order foreach minimum convex decomposition of Pik , where pi or pk is re
ex. The key isthat by our 
ow of control|solving subproblems from smallest to largest|pairspopped from a stack will never be needed again. For example, if while solving Pikwe pop the ccw-ordered stack Sjk , then Observation 1 implies that any Pi0k withi < i0 that uses subproblem Pjk will have di0j clockwise of dij , and thus would alsorequire popping Sjk .4. Biased convex decompositionsTo reduce the dependence on n, the input size, we can look for a decomposition ofa special form. We say that a minimum convex decomposition is biased if diagonalsthat end at a convex vertex can neither be moved to the next vertex ccw, nor deletedand replaced by a re
ex-re
ex diagonal (RR-diagonal) while maintaining a convexdecomposition.We single out two special types of diago-
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Figure 7: Types of diagonals
nals that end at convex vertices; these de�ni-tions are easier to illustrate (Figure 7) than towrite down. A diagonal rp, with re
ex vertexr and convex vertex p, is a re
ex extension,or RE-diagonal, if the extension through r ofthe edge after r in ccw order �rst hits vertexp or the edge after p. Similarly, diagonal rpis a diagonal extension, or DE-diagonal, if theextension through r of an RR-diagonal or RE-diagonal incident on r �rst hits vertex p or theedge after p.Note that an RE-diagonal or DE-diagonal cannot be moved in a convex de-composition; doing so would create a re
ex angle with a polygon edge (in the RE-diagonal case) or with an RR-diagonal or RE-diagonal (in the DE-diagonal case)that is incident to its re
ex vertex. In fact, these are the only possible obstructionsto moving the lead diagonal at any convex vertex of P|the diagonal that boundsthe same face as the next polygon edge ccw from that vertex.Lemma 1 In a biased decomposition of a polygon P , the lead diagonal at anyconvex vertex pi 2 P must be an RE-diagonal or DE-diagonal.8



Proof: Let rpi be the lead diagonal under
r
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Figure 8: Replace rpj with rs
consideration in the convex decomposition. Bythe de�nition of lead diagonal, the next vertexpi+1 is also on the boundary of the convex regionon the left of rpi. Therefore, rpi+1 is a diagonalof P that does not intersect any other diagonalsof the decomposition.On the other hand, because the decompositionis biased, we cannot replace diagonal rpi with rpi+1. Because the replacementcannot cause non-convexity at pi or at pi+1, it must do so at r.We argue that if the non-convexity at r is not caused by a polygon edge or anRR-diagonal, then it is caused by an RE-diagonal at r. Assume, therefore, thatnon-convexity is caused by a diagonal rpj , with pj a convex vertex. If the convexregion that has pi, r, and pj on its boundary also has another re
ex vertex s, thenadding the RR-diagonal rs as in Figure 8, would allow us to delete rpi or rpj|oneof these deletions will maintain the convex decomposition. Thus, by the de�nitionof biased decompositions, we conclude that the portion of the boundary from pjccw to pi is a convex chain of polygon edges. Since pj cannot move ccw, it must bean RE-diagonal.This completes the proof that rpi must be an RE-diagonal or DE-diagonal.As an easy corollary, any convex decomposition can be converted to a biaseddecomposition by deleting, moving and replacing diagonals. We are not concernedabout the time complexity of this process, just that it is su�cient to look for aminimum convex decomposition among those that are biased.Corollary 4 Any convex decomposition can be converted to a biased decompositionby a �nite number of steps that delete, move and replace diagonals.Proof: Each operation either decreases the number of non-RR-diagonals, or ad-vances a non-RR-diagonal's endpoint. No endpoint is revisited.Notice that we now know a subset of vertices of P that can be used as endpointsof diagonals in a minimum, biased, convex decomposition|the set of vertices thatcan be endpoints of RE-diagonals or DE-diagonals. We can explicitly constructthis set by ray shooting,4;5 which takes logn time for each ray extended in P . Atempting idea, therefore, is to reduce P to a polygon that uses just a few convexvertices, and run the dynamic programming algorithm on the reduced polygon.This idea works well for the decomposition that allows Steiner points; Chazelleand Dobkin's algorithm for convex decomposition with Steiner points makes useof \RE-diagonals" and X-con�gurations, which are embedded trees that join re
exvertices and have all angles bounded by �. Since no DE-diagonals are needed, theonly convex vertices that are relevant are potential endpoints of RE-diagonals.Here are the steps to construct an O(r)-size polygon that contains all relevantvertices, and shows that the time complexity for minimum convex decomposition isof the form O(n+ r logn+ T (r)). In polygon P , mark the edges incident on re
exvertices, then shoot inside P from every re
ex vertex along the extensions of the9



incident edges, and mark the edges hit. Form polygon P 0 by omitting from P allvertices not incident to marked edges; P 0 has at most 7r vertices.To prove that P 0 is simple, consider
Figure 9: Forming P 0

deleting vertices one by one and stop whenthe �rst intersection occurs. This must beby an edge passing over a re
ex vertex. Asillustrated in Figure 9, however, the short-est path that joins the extensions of edgesat any re
ex vertex is the same in P 0 as itis in P since it turns only at re
ex vertices.The extensions and this path certify thatno edge of P 0 crosses a re
ex vertex.A biased minimum convex decomposi-tion of P with Steiner points will move the RE-diagonals so that they end on edgesof P that are included in P 0. The X-con�gurations will not be a�ected, but will re-main in P 0. Thus, a minimum decomposition of P 0 gives a minimum decompositionof P .To perform a similar reduction for the non-Steiner problem, we would have toadd, in the worst case, minfn; r2g endpoints for DE-diagonals, since there are poten-tially r(r�1) RR-diagonals and r RE-diagonals that must be extended. Thus, afterO(n+minfn; r2g logn) time for ray shooting and other preprocessing, the dynamicprogramming algorithm runs in O(minfn; r2gr2) time, giving O(n+minfnr2; r4g)time overall.Theorem 5 Given a simple polygon with n vertices, r of which are re
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