International Journal of Computational Geometry & Applications
© World Scientific Publishing Company

ON THE TIME BOUND FOR CONVEX DECOMPOSITION OF
SIMPLE POLYGONS

MARK KEIL

Department of Computer Science, University of Saskatchewan, 57 Campus Drive, Saskatoon,
Saskatchewan, Canada STN 5A9, keil@cs.usask.ca

and

JACK SNOEYINK*

Department of Computer Science, University of British Columbia, and
Department of Computer Science, University of North Carolina,
Sitterson Hall, Chapel Hill, NC 27599-3175 USA, snoeyink@cs.unc.edu

Received received date
Revised revised date
Communicated by Editor’s name

ABSTRACT

We show that a decomposition of a simple polygon having n vertices, r of which are
reflex, into a minimum number of convex regions without the addition of Steiner vertices
can be computed in O(n + r2min{r2,n}) time and space. A Java demo is available at
http://www.cs.ubc.ca/spider/snoeyink/demos/convdecomp

Keywords: simple polygons, dynamic programming, convex decomposition

1. Introduction

Suppose that P is a simple polygon in the plane with n vertices, of which r are
reflex vertices having interior angles greater than 7. The minimum convex decom-
position problem asks for a decomposition of the interior of P into the minimum
number of convex regions.

There is an anomaly in the literature on minimum convex decomposition: If,
as in Figure 1, segments of the decomposition can end at arbitrary points, often
called Steiner points, then Chazelle and Dobkin?® have shown that a minimum
decomposition can be computed by dynamic programming in O(n + r?) time. On
the other hand, if the segments must end at vertices of the polygon, as in Figure 2,
then the best published bound is a dynamic programming algorithm of Keil?19
that computes a minimum decomposition in O(nr?logr) time. As Chazelle and
Dobkin® noted in 1985, this is asymptotically slower for any non-constant r, even
though allowing Steiner points usually makes optimization problems more difficult.

After some definitions, we show in Sec-
tion 3 that Keil’s dynamic programming
algorithm can be implemented using stacks
in place of a search structure, which re-
moves a logr factor from the running time.
Then we show in Section 4 how to reduce
the input, in O(n + r?logn) time, to a
polygon that has the same minimum de-
2 sides. Thus, a
minimum decomposition of P can be com-
puted in O(n+min{nr?,r'}) time, match-
ing Chazelle and Dobkin’s running time at
least when r = O(3/n). If we apply a similar reduction when Steiner points are
allowed, we obtain a polygon that has the same minimum decomposition but only
O(r) sides. This may explain why the problem without Steiner points appears
harder.

composition but at most r

Figure 1: Minimum convex
decomposition with Steiner points

A related problem is that of finding a convex decomposition with “minimum
ink” —that is, having minimum total edge length. We can simplify the search struc-
ture from Keil’s minimum ink algorithm? to achieve O(n?r?) time, but cannot
reduce the dependence on n. Greene” already achieved this time bound with a
double dynamic programming algorithm that was a contemporary of Keil’s.

2. Notation for simple polygons

Assume that we are given the n ver-
tices of a polygon P = {po,p1,-.-,Pn-1}
in counter-clockwise (ccw) order. We as-
sume that P is simple: that is, the only in-
tersections between the polygon edges, the
segments p;p;+1 that form the boundary of
P, are at the shared endpoint of adjacent
edges.

A diagonal of P is a segment that joins
two vertices of P and remains strictly in-
side P. We use the notation d;; for the
diagonal p;p; with ¢ < j. Diagonals for a
given vertex p; can be found by computing the wvisibility polygon for p; in linear
timeS.

Figure 2: A minimum convex
decomposition without Steiner points

One important observation for visibility algorithms will also be important for
us: that diagonals appear in the same order as vertices.
Observation 1 The angular order of diagonals dj, , dij,, .. .d;j, , counter-clockwise
(ccw) around a vertex p; is identical to the order of the vertices pj,, pj,, -..Pj, cCw
around P.

A vertex of P is reflex if its interior angle is greater than 7. It is not hard to see
that a minimum convex decomposition without Steiner points must use diagonals

that have at least one reflex vertex, since removal of a diagonal from a minimum

decomposition must result in a non-convex region. In fact, an easy way to obtain a
78 ;
S is

to start with any triangulation of P, and consider removing each diagonal in turn

decomposition into at most four times the minimum number of convex pieces

unless doing so forms a reflex angle.

Note that a particular diagonal d that joins two reflex vertices of P is not
necessarily present in a minimum convex decomposition—a decomposition of P
may use several diagonals that intersect d instead.

3. Dynamic programming for convex decomposition

To find a minimum set of diagonals and solve the minimum convex decomposi-
tion problem we use dynamic programming, which is an algorithmic paradigm that
finds the best solution to a problem by combining optimal solutions to subproblems!.

We define a subproblem for each diagonal d;, such that p; or py, is a reflex vertex:
let Pj denote the polygonal line p;, pit1, - - ., pr- The size of subproblem Pj, is the
number of vertices in P;;,. We want to associate with each Py a weight w;y, which is
the minimum number of diagonals in a convex decomposition of P;;. We make the
convention that dy(,_1) is also a diagonal, so we compute the number of diagonals
in a minimum convex decomposition by computing the weight of Py(,_1) = P.

We can identify three approaches to apply dynamic programming to find the
weight of Pj; from the weights of smaller subproblems.

1. Consider each convex polygon C' that can be constructed adjacent to d;; in Py.
Removal of C from P;; leaves a number of subproblems; the weight of using
C is the sum of subproblem weights plus the number of subproblems, since
each is cut off by a diagonal. The weight of Pj; is the minimum weight over
all polygons C. This is the basis of Greene’s approach’, but is complicated
by the fact that the polygons must be explored very efficiently.

2. Consider each triangle T' that can be constructed adjacent to d; in P;;. Re-
moval of T leaves two subproblems; the weight of using T is the sum of
subproblem weights plus the 0, 1, or 2 edges of T" that may need to be intro-
duced to avoid reflex vertices when merging the subproblem solutions. This
approach of Keil® must keep several solutions for each subproblem, as sketched
in Subsection 3.1.

3. Consider each triangle 7" that could be part of a “canonical triangulation,”
which will be defined in Subsection 3.2. The decomposition always uses 1 or
2 edges of these triangles, so the task of merging becomes easier. Multiple
solutions must still be stored, but the following subsections show that the
solutions can be stacked to be ready when needed.

Although we have described these three approaches as top-down recursive pro-
cedures, we prefer to implement them by bottom-up iteration, solving subproblems
in order of increasing size to end with the weight of a minimum decomposition of P.
We initialize by the convention that w;;11) = —1.

3.1. Equivalent decompositions and narrowest pairs

Since there may be exponentially-many de-
compositions of Py, that attain weight w;y,, Keil® 9
suggests storing only certain equivalence classes
of decompositions. Associate a pair of vertex
indices [a, b] with each decomposition of Py, by
noting that one convex polygon of the decom-
position will be incident on diagonal d;; and
will have vertices a, ¢, k, b in clockwise order,
where possibly a = b. Two decompositions of
P;i, are considered equivalent if they have the
same weight and the same associated pair of indices.

Consider the example of polygon Pyg, shown in Figure 3, Its minimum convex
decompositions, shown in Figure 4, are labeled with their associated pairs. To
observe that these are all the minimum decompositions, note that any convex de-
composition of Pyg must use diagonals to eliminate the reflex vertices 3, 4, and 6;
there are eleven ways to do so with only three diagonals.

Figure 3: Useful diagonals of Pyg

Figure 4: The eleven minimum convex decompositions of
polygon Fyg with narrowest pairs circled

In this example, certain “narrowest” pairs have been circled. The narrowest
pairs are those whose convex region in a small neighborhood of d;;, does not contain
the convex region of any other minimum decomposition of P;;. Keil observed that
only subproblems with narrowest pairs need to be used to assemble a minimum
convex decomposition.?

According to Observation 1, we can test for narrowest pairs for Py, by simply
comparing indices—we discard any interval [a, b] that contains a smaller interval.
Notice that this means that if a set of narrowest pairs is ordered by their first indices,
then they will also be ordered by their second indices. As we compute indices of
narrowest pairs for subproblem Pj, we will store them on a stack S;;, in order, so
that the segments from bottom to top are in ccw order around p; and pg. Stack
Sog for Figure 4 would contain [1, 3], [3,4], and [6, 8], from bottom to top. Thus,

we would know that diagonal dgg and edge dgg formed the narrowest pair that was
furthest counter-clockwise.

3.2. Canonical triangulations

One way to decompose the subproblem P, into smaller subproblems would
be to determine a convex polygon C that is incident on dj; in some minimum
convex decomposition of Pj;. Removing that C' leaves smaller subproblems, whose
optimal decompositions could have already been computed. This is essentially the
approach taken by Greene”. Since this approach can involve turning one subproblem
into many, we instead extend any minimum convex decomposition to a canonical
triangulation by adding extra diagonals. Removing the triangle incident on dj
leaves at most two smaller subproblems, each of which have canonical triangulations.

Consider any convex decomposition in
which every diagonal is incident on a re-
flex vertex. We assume that vertex pg is
reflex either by convention, or by renum-
bering vertices of P if P is not already con-
vex. We can complete such a decomposition
to a canonical triangulation as follows: each
convex region C' has at least one vertex that
was reflex in P—connect the reflex vertex
in C' with lowest index to all vertices with Figure 5: Canonical triangulation
higher index in C. If C' is not yet triangu- {rom minimum decomposition
lated after this step, then the vertex with highest index was reflex in P; connect it
to the remaining vertices in that region. In Figure 5 shows an example in which

vertices between pg and pi» and between psg and psg connect to the highest index
in their region; all other vertices connect to the lowest.

We can make the following observations about the diagonals of a canonical
triangulation and the subproblems that they form.
Observation 2 In a canonical triangulation, each diagonal d;, with © < k, has
three properties:

1. The diagonals with endpoints in Pj, define a canonical triangulation of Py.

2. If p; is reflex in P, then the adjacent triangle Ap;p;pr, with ¢ < j <k, either
has j =k —1 or dji is a diagonal used in the conver decomposition.

3. If p; is not reflex in P, then p, must be. The adjacent triangle App;py,
with ¢ < j < k, either has j = i+ 1 or d;; is a diagonal used in the convex
decomposition.

Now, the minimum convex decompositions of P;; can be constructed by consid-
ering which vertices p; can form a canonical triangle with d;;, and whether diagonals
d;; and dj, must be added to the decompositions of P;; and Pj, or whether those
diagonals are merely in the canonical triangulation. In support of that decision, we
will also associate with each Pj; a stack, Si,, that contains equivalence classes of
solutions of Pyy.

3.8. Solving subproblems

We can use these properties to systematically explore the canonical triangula-
tions of the minimum decompositions of P, that have narrowest pairs. We assume
that we have, for each subproblem F,, that is smaller than F;;, the narrowest pairs
for all minimum convex decompositons of P,,. These are in ccw (increasing) order
in stack Sy and in cw (decreasing) order in stack 7;,. (The data structure can be
implemented as a single list with two independent “stack” pointers that start on
either end.) We use stack 7;; or Sji, depending on whether p; is a reflex vertex or
not, to produce the narrowest pairs for minimum decompositions of P;; in ccw order
on stack S;x. Then we make T, from S;i, so that both are available for subsequent
computation.

A. p; reflex: Minimum decompositions of P, use, for some i < j < k, the
diagonal or edge d;i, a decomposition of Pj;, and a decomposition of F;;, perhaps
with the diagonal d;;. That is, for subpolygon F;; we are using the following
dynamic programming recurrence.

Wi = min
i<j<k
& dij, djk exist

wy; +wji + 2 if dj; must be included
wy; +wjk + 1 otherwise

To compute all narrowest decompositions,
we consider, in increasing order, the vertices j
with ¢ < j < k and d;; and dj;, in the visibility
graph. If vertex j were not visible from ver-
tex ¢, then diagonal d;r would not be one of a
narrowest pair for Pjy.

For a given j, popping the cw-ordered stack
Ti; will go through the pairs in ccw order: find
the last pair [s,t] such that d;; and dj; do not
form a reflex angle at p;. If, as in the upper
half of Figure 6, there is no such pair [s,], or
if d;s and d;; form a reflex angle at p;, then
we must use diagonal d;; to obtain a convex
decomposition of Py, with weight w;; +w;x + 2
and narrowest pair [4, j]. (Recall our convention
that the weight of any polygon edge w;(;11) = Figure 6: p; reflex: use dj; and
—1.) Otherwise, as in the lower half of Figure 6, perhaps d;;
we obtain a convex decomposition of P with weight w;; + w;; + 1 and narrowest
pair [s, j].

To build the ccw-ordered stack S of narrowest pairs for Py is easy since the
second element is always the loop index j. For each pair [z,j] that achieves the
minimum weight, push [z, j] if the first element of the pair on top of Si; is < z.
Otherwise the pair on top of the stack S is narrower.

Because we use dj in the decomposition, either j = k—1 so that d;; is a polygon
edge or at least one of p; and py, is reflex.

B. p; not reflex: This case is symmetric except that we know that py is reflex.
Since minimum decompositions use d;;, either p; is reflex or d;; is a polygon edge.
We consider, in increasing order, the index j = ¢+ 1 and indices of reflex vertices p;
with ¢ +1 < j < k for which d;; and dj;, are in the visibility graph.

Popping the ccw-ordered stack S will go through the pairs in cw order: find
the last pair [s,t] such that d;; and dj; do not form a reflex angle at p;. If there
is no such pair [s,t], or if dy, and d;, form a reflex angle at py, then we must use
diagonal dj; to obtain a convex decomposition of Py, with weight w;; + wjr + 2
and narrowest pair [j, j]. Otherwise, we obtain a convex decomposition of Py, with
weight w;; + wjx + 1 and narrowest pair [, ¢].

To build the ccw-ordered stack S; of narrowest pairs for Py is again easy since
now the first element is the loop index j. For each pair [j,z] that achieves the
minimum weight, while the second element of the pair on top of S;, is > z, pop
Sir. Then push [j, z].

Given polygon P = {po,p1,...,Pn—1}, compute a minimum convex
decomposition by dynamic programming. This procedure shows the
flow of control; Subroutines TypeA and TypeB are described in text.

Procedure MCD(P)
Initialize weights of edges w;(;41) = —1;
for visible(i,i +2) { wi(i+2) = 0; push [i + 1,i + 1] on Sj(i40); }

for size =3 to n do {
for reflex vertices p; with 7 + size < n do
k =1+ size; if visible(i, k) {
if (py reflex) for j =i+ 1 to kK — 1 do TypeA(i, j, k);
else { /* Need p; reflex or j =k —1 x/
for reflex p; with ¢ < j < k — 1 do TypeA(s, j, k);
} TypeA(i,k — 1,k); }
for reflex vertices pp with size < k <n do
1 = k — size;
if (p; not reflex and visible(p;, pr)) {
TypeB(i,i + 1, k); /* Need j =i+1 or p; reflex x/
for reflex p; with i +1 < j < k do TypeB(3, j, k);
}

Stack S;;, is complete in ccw order; form stack 7;; in cw order;

Algorithm 1: MCD algorithm

3.4. Correctness and analysis

Algorithm 1 shows the flow of control for the dynamic programming.
Theorem 3 Given a simple polygon with n vertices, r of which are reflex, we can

solve the minimum convex decomposition problem in O(nr?) time and space.
Proof: It is not difficult to bound the total running time of Algorithm 1: the
algorithm calls subroutines TypeA(i, j, k) or TypeB(i, j, k) for triples i < j < k that
are indices of at least two reflex vertices, or one reflex vertex and polygon edge.
Thus, there are less than nr? calls. The work done in each subroutine is constant
plus the number of pairs popped from stacks; since each subroutine adds at most
one pair to two stacks, at most O(nr?) elements can be popped. Thus, O(nr?)
bounds the total time. The memory requirements in the worst case are dominated
by the O(nr?) space for the stacks.

To prove the correctness of Algorithm 1 we can argue by induction that we
inspect the canonical triangulations and find the narrowest pairs in ccw order for
each minimum convex decomposition of Pj;, where p; or py is reflex. The key is
that by our flow of control—solving subproblems from smallest to largest—pairs
popped from a stack will never be needed again. For example, if while solving Py
we pop the ccw-ordered stack Sji, then Observation 1 implies that any Pj, with
i < i’ that uses subproblem Pj; will have dy; clockwise of d;;, and thus would also
require popping Sji. m

4. Biased convex decompositions

To reduce the dependence on n, the input size, we can look for a decomposition of
a special form. We say that a minimum convex decomposition is biased if diagonals
that end at a convex vertex can neither be moved to the next vertex ccw, nor deleted
and replaced by a reflex-reflex diagonal (RR-diagonal) while maintaining a convex
decomposition.

We single out two special types of diago-
nals that end at convex vertices; these defini-
tions are easier to illustrate (Figure 7) than to
write down. A diagonal 7p, with reflex vertex
r and convex vertex p, is a reflexr extension,
or RE-diagonal, if the extension through r of
the edge after r in ccw order first hits vertex
p or the edge after p. Similarly, diagonal 7p
is a diagonal extension, or DE-diagonal, if the
extension through r of an RR-diagonal or RE- Figure 7: Types of diagonals
diagonal incident on r first hits vertex p or the
edge after p.

Note that an RE-diagonal or DE-diagonal cannot be moved in a convex de-
composition; doing so would create a reflex angle with a polygon edge (in the RE-
diagonal case) or with an RR-diagonal or RE-diagonal (in the DE-diagonal case)
that is incident to its reflex vertex. In fact, these are the only possible obstructions
to moving the lead diagonal at any convex vertex of P—the diagonal that bounds
the same face as the next polygon edge ccw from that vertex.

Lemma 1 In a biased decomposition of a polygon P, the lead diagonal at any
convez verter p; € P must be an RE-diagonal or DE-diagonal.

Proof: Let 7p; be the lead diagonal under
consideration in the convex decomposition. By
the definition of lead diagonal, the next vertex
Di+1 is also on the boundary of the convex region
on the left of 7p;. Therefore, 7p;y1 is a diagonal
of P that does not intersect any other diagonals
of the decomposition.

On the other hand, because the decomposition
is biased, we cannot replace diagonal 7p; with 7p;;71. Because the replacement

Figure 8: Replace 7p; with 75

cannot cause non-convexity at p; or at p;1, it must do so at r.

We argue that if the non-convexity at r is not caused by a polygon edge or an
RR-diagonal, then it is caused by an RE-diagonal at r. Assume, therefore, that
non-convexity is caused by a diagonal 7p;, with p; a convex vertex. If the convex
region that has p;, r, and p; on its boundary also has another reflex vertex s, then
adding the RR-diagonal 75 as in Figure 8, would allow us to delete Tp; or ¥p;—one
of these deletions will maintain the convex decomposition. Thus, by the definition
of biased decompositions, we conclude that the portion of the boundary from p;
cew to p; is a convex chain of polygon edges. Since p; cannot move ccw, it must be
an RE-diagonal.

This completes the proof that 7p; must be an RE-diagonal or DE-diagonal. m

As an easy corollary, any convex decomposition can be converted to a biased
decomposition by deleting, moving and replacing diagonals. We are not concerned
about the time complexity of this process, just that it is sufficient to look for a
minimum convex decomposition among those that are biased.

Corollary 4 Any convex decomposition can be converted to a biased decomposition
by a finite number of steps that delete, move and replace diagonals.

Proof: Each operation either decreases the number of non-RR-diagonals, or ad-
vances a non-RR-diagonal’s endpoint. No endpoint is revisited. m

Notice that we now know a subset of vertices of P that can be used as endpoints
of diagonals in a minimum, biased, convex decomposition—the set of vertices that
can be endpoints of RE-diagonals or DE-diagonals. We can explicitly construct
this set by ray shooting,*® which takes logn time for each ray extended in P. A
tempting idea, therefore, is to reduce P to a polygon that uses just a few convex
vertices, and run the dynamic programming algorithm on the reduced polygon.

This idea works well for the decomposition that allows Steiner points; Chazelle
and Dobkin’s algorithm for convex decomposition with Steiner points makes use
of “RE-diagonals” and X -configurations, which are embedded trees that join reflex
vertices and have all angles bounded by 7. Since no DE-diagonals are needed, the
only convex vertices that are relevant are potential endpoints of RE-diagonals.

Here are the steps to construct an O(r)-size polygon that contains all relevant
vertices, and shows that the time complexity for minimum convex decomposition is
of the form O(n + rlogn + T'(r)). In polygon P, mark the edges incident on reflex
vertices, then shoot inside P from every reflex vertex along the extensions of the

incident edges, and mark the edges hit. Form polygon P’ by omitting from P all
vertices not incident to marked edges; P’ has at most 7r vertices.

To prove that P’ is simple, consider
deleting vertices one by one and stop when
the first intersection occurs. This must be
by an edge passing over a reflex vertex. As
illustrated in Figure 9, however, the short-
est path that joins the extensions of edges
at any reflex vertex is the same in P’ as it
is in P since it turns only at reflex vertices.
The extensions and this path certify that
no edge of P’ crosses a reflex vertex.

A biased minimum convex decomposi-
tion of P with Steiner points will move the RE-diagonals so that they end on edges
of P that are included in P’. The X-configurations will not be affected, but will re-
main in P’. Thus, a minimum decomposition of P’ gives a minimum decomposition
of P.

To perform a similar reduction for the non-Steiner problem, we would have to

Figure 9: Forming P’

add, in the worst case, min{n, r?} endpoints for DE-diagonals, since there are poten-
tially r(r — 1) RR-diagonals and r RE-diagonals that must be extended. Thus, after
O(n+min{n,r?}logn) time for ray shooting and other preprocessing, the dynamic
programming algorithm runs in O(min{n,r?}r?) time, giving O(n + min{nr?,r*})
time overall.

Theorem 5 Given a simple polygon with n vertices, r of which are reflex, we can
solve the minimum convex decomposition problem in O(n +min{nr?,r*}) time and

space.

Acknowledgment

We thank Mariette Yvinec and Sylvan Lazard for discussions, and the anony-
mous referees for their encouragement to give more details.

References

1. R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
1987.

2. B. Chazelle and D. P. Dobkin. Decomposing a polygon into its convex parts. In
Proc. 11th Annu. ACM Sympos. Theory Comput., pages 38—48, 1979.

3. B. Chazelle and D. P. Dobkin. Optimal convex decompositions. In G. T. Tous-
saint, editor, Computational Geometry, pages 63—133. North-Holland, Amsterdam,
Netherlands, 1985.

4. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorith-
mica, 12:54-68, 1994.

5. B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geometry.
Discrete Comput. Geom., 4:551-581, 1989.

10

10.

H. ElGindy and D. Avis. A linear algorithm for computing the visibility polygon
from a point. J. Algorithms, 2:186-197, 1981.

D. H. Greene. The decomposition of polygons into convex parts. In F. P. Preparata,
editor, Computational Geometry, volume 1 of Adv. Comput. Res., pages 235-259.
JAI Press, London, England, 1983.

S. Hertel and K. Mehlhorn. Fast triangulation of the plane with respect to simple
polygons. Inform. Control, 64:52-76, 1985.

J. M. Keil. Decomposing a polygon into simpler components. SIAM J. Comput.,
14:799-817, 1985.

J. M. Keil and J.-R. Sack. Minimum decompositions of polygonal objects. In
G. T. Toussaint, editor, Computational Geometry, pages 197-216. North-Holland,
Amsterdam, Netherlands, 1985.

11

