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VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY
AND ITS APPLICATIONS*

HIROSHI IMAIf, MASAO IRIf AND KAZUO MUROTA"

Abstract. We extend the concept of Voronoi diagram in the ordinary Euclidean geometry for n points
to the one in the Laguerre geometry for n circles in the plane, where the distance between a circle and a
point is defined by the length of the tangent line, and show that there is an O(n log n) algorithm for this
extended case. The Voronoi diagram in the Laguerre geometry may be applied to solving effectively a
number of geometrical problems such as those of determining whether or not a point belongs to the union
of n circles, of finding the connected components of n circles, and of finding the contour of the union of n
circles. As in the case with ordinary Voronoi diagrams, the algorithms .proposed here for those problems
are optimal to within a constant factor. Some extensions of the problem and the algorithm from different
viewpoints are also suggested.

Key words. Voronoi diagram, computational geometry, Laguerre geometry, computational complexity,
divide-and-conquer, Gershgorin’s theorem

Introduction. The Voronoi diagram for a set of n points in the Euclidean plane
is one of the most interesting and useful subjects in computational geometry. Shamos
and Hoey [15] presented an algorithm which constructs the Voronoi diagram in the
Euclidean plane in O(n log n) time by using the divide-and-conquer technique, and
showed many useful applications. Since then, various generalizations of the Voronoi
diagram have been considered. Hwang [6] and Lee and Wong [10] considered the
Voronoi diagrams for a set of n points under the Ll-metric, and the L1- and Lo-metrics,
respectively, and gave O(n log n) algorithms to compute them. Lee and Drysdale [9]
studied the Voronoi diagrams for a set of n objects such as line segments or circles,
where the distance between a point and an object is defined as the least Euclidean
distance from the point to any point of the object, and therefore the edges of these
Voronoi diagrams are no longer simple straight line segments but may contain fragments
of parabolic or hyperbolic curves. They gave an O(n(log n)2) algorithm to construct
these diagrams, and Kirkpatrick [7] reduced its complexity to O(n log n).

Here we extend the concept of usual Voronoi diagram in the Euclidean geometry
for n points to the one in the Laguerre geometry for n circles in the plane, where the
distance from a point to a circle is defined by the length of the tangent line. Then the
edges of these extended diagrams are simple straight line segments which are easy to
manipulate. We show that there is an O(n log n) algorithm for this extended case.

In spite of the unusual distance employed here, the Voronoi diagram in the
Laguerre geometry can be applied to solving efficiently a number of geometric problems
concerning circles. By using this extended Voronoi diagram, the problem of determining
whether or not a point belongs to the union of given n circles can be solved in O(log n)
time and O(n) space with O(n log n) preprocessing. We can also solve the problem
of finding the connected components of given n circles in O(n log n) time, which can
be applied to a problem in numerical analysis, namely, estimating the region where
the eigenvalues of a given matrix lie [4]. The problem of finding the contour of the
union of n circles can also be solved in O(n log n) time, which can be applied to image
processing and computer graphics. As in the case of the problems connected with the
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94 HIROSHI IMAI, MASAO IRI AND KAZUO MUROTA

ordinary Voronoi diagram, the methods proposed here are optimal to within a constant
factor.

Some further generalizations of the problems and the algorithms from different
viewpoints are also suggested.

1. Laguerre geometry. Consider the three-dimensional real vector space R3

where the distance d(P, Q) between two points P= (xl, yl, Zl) and O (x2, y2, z2) is
defined by d2(P, Q) (Xl- x2) +(y- y)-(z- z). In the Laguerre geometry [1],
a point (x, y, z) in this space R3 is made to correspond to a directed circle in the
Euclidean plane with center (x, y) and radius Izl, the circle being endowed with the
direction of revolution corresponding to the sign of z. Then the distance between two
points in R3 corresponds to the length of the common tangent of the corresponding
two circles. Hereafter we consider the plane with distance so defined. Note here that,
so long as the distance dL(Ci, P) between a circle Ci C(Q; r) with center
and radius r and a point P (x, y) is concerned, the direction of the circle has no
meaning since the distance dL(C, P) is expressed as

2(1) d2(C,, P) (x- x,) +(y- y,)Z- r,,

d(C, P) being the length of the tangent segment from P to C if P is outside of C.
Note that, according as a point P lies in the interior of, on the periphery of, or in the
exterior of circle Ci, d2(C, P) is negative, zero, or positive, respectively. The locus of
the points equidistant from two circles C and C is a straight line, called the radical
axis of C and Cj, which is perpendicular to the line connecting the two centers of C
and Cj. If two circles intersect, their radical axis is the line connecting the two points
of intersection. Typical types of radical axes are illustrated in Fig. 1. If the three, centers

(a) (b} (c}

(Ci :Cj) (Cj’Ck)

(Ck,C
(d)

FIG. 1. Radical axes and radical centers.

D
ow

nl
oa

de
d 

09
/0

1/
14

 to
 1

43
.1

07
.4

5.
10

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



VORONOI DIAGRAM IN THE ,LAGUERRE GEOMETRY 95

of three circles Ci, Cj and Ck are not on a line, the three radical axes among Ci, Q
and Ck meet at a point, which is called the radical center of Ci, Cj and Ck (see Fig. 1 (d)).

2. Definition of the Voronoi diagram in the Laguerre geometry. Suppose n circles
Ci C Q; r) Q (x, y)) are given in the plane, where the distance between a circle
C and a point P is defined by dL(Ci, P) as in 1. Then the Voronoi polygon V(C) for
circle C is defined by

(2) V(C) {pR21d2L(C,P)<-_d2L(C,P)}.

Note that the inequality d2c(C, P) _-< d2c(C, P) determines a half-plane so that V(Ci)
is convex. However, note also that V(C) may be empty and that C may not intersect
its polygon V(C) when circle C is contained in the union of the other circles. The
Voronoi polygons for n circles Ci (i-- 1,..., n) partition the whole plane, which we
shall refer to as the Voronoi diagram in the Laguerre geometry (see Fig. 2). A corner
of a Voronoi polygon is called a Voronoi point, and a boundary edge of the Voronoi
polygon is called a Voronoi edge. Furthermore, a circle whose corresponding Voronoi
polygon is nonempty (empty) is referred to as a substantial (trivial) circle. In Fig. 2,
circle C3 is trivial and all the others are substantial. It is also seen that, in Fig. 2, circle
C2 has no intersection with V(C2). A circle that intersects the corresponding Voronoi
polygon is said to be proper, and a circle which is not proper is called improper. The
following is immediate from the above definitions.

/

/v(ce
7)

FIG. 2. Voronoi diagram in the Laguerre geometry.

LEMMA 1. (i) A trivial circle is necessarily improper.
(ii) An improper circle is contained in the union of the proper circles.

Obviously, if ri 0 for all i, the Voronoi diagram in the Laguerre geometry reduces
to that in the ordinary Euclidean geometry.

In a Voronoi diagram in the Laguerre geometry, a Voronoi edge is (part of) a
radical axis and a Voronoi point is a radical center. Since the diagram is planar, and
Euler’s formula [5] still holds, we have

LEMMA 2. There are O(n) Voronoi edges and points in the Voronoi diagram in
the Laguerre geometry for n circles.

In the case of the Voronoi diagram in the ordinary Euclidean geometry for n
points P (i--1,..., n), the Voronoi polygon V(P) is unbounded iff point P is on
the boundary of the convex hull of the n points Pi, but, for the Voronoi diagram in
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96 HIROSHI IMAI, MASAO IRI AND KAZUO MUROTA

the Laguerre geometry for n circles C with center Q, this statement needs some
modification, as in Lemma 3 below. In Fig. 3, the center Q2 of C2 lies on the boundary
of the convex hull of the centers, but V(C2) is empty.

/" v(c3

FIG. 3. Relations between the convex hull and Voronoi polygons.

LEMMA 3. In the Voronoi diagram in the Laguerre geometry, the Voronoi polygon
V( Ci) is nonempty and unbounded if the center Qi of the circle Ci is at a corner of the
convex hull of the centers Qi,. Q,. Furthermore, if the center Qj of a circle Cj is on
the boundary of this convex hull but not at a corner, its Voronoi polygon V(C) is either
unbounded or empty. If the center Qk of a circle Ck is not on the boundary of this convex
hull, its Voronoi polygon V( Ck) is either bounded or empty.

Proof. Consider the Voronoi diagram in the Laguerre geometry for n circles
Ci(Qi; ri) (Qi=(x, y); i= 1,..., n), where we can assume y yi (i ]) without loss
of generality. First recall (cf. (1), (2)) that a point P=(x, y) belongs to V(C1) iff

d2(C1, P) --< d(C, P), 1, , n,

(3)

where

(xi- x)x + (Yi- Y)Y <= Ri, i=l,...,n,

2_ x- y2+ r21)/2.Ri (xZi + y- r

Next, note that the center Oa of Ca lies on the boundary (including the corners) of
the convex hull of { Oli 1,. , n} itf

(4) :l(a, fl)( (0, 0)): a(x,-xa)+(y-yl)<=O, i=l,...,n,

since all the centers O (i= 2,..., n) lie on one side with respect to a line passing
through (xa, Yl).

Suppose that V(Ca) and (Xo, Yo) E V(Ca). Then, V(Ca) f) is unbounded
itt a half line starting from (Xo, Yo) is contained in V(Ca), i.e.,

=l(a,/3)( (0, 0)), VM(>0): (x, y)=(xo+Ma, yo+Mfl) satisfies (3),
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VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY 97

which is easily seen to be equivalent to (4) above, so that V(C1) # ) is unbounded
iff the center Q1 of C1 lies on the boundary of the convex hull.

When the center Q1 lies at a corner of the convex hull, there exist two distinct
pairs of (a,/3), say, (al,/31) and (a2,/32) such that (4) holds and that the vectors
(xi-xl, Yi-Yl) (i=2,..., n) can be represented as linear combinations of (al,/31)
and (a2,/32) with nonpositive coefficients one of which is strictly negative. The assertion
that V(C1)# easily follows from the fact that (3) holds for (x, y)=(Ma, Mfl) with
a sufficiently large M(>0), where (a,/3) (al + a2,/31 +/32).

3. Construction of the Voronoi diagram in the Laguerre geometry. We shall
show that the Voronoi diagram in the Laguerre geometry can be constructed in
O(n log n) time. The algorithm is based on the divide-and-conquer technique, which
is very much like the one proposed initially by Shamos and Hoey [15] in constructing
the Voronoi diagram in the ordinary Euclidean geometry for n points, but which is
different in some essential points. We shall briefly review Shamos and Hoey’s algorithm
first, and then explain the difference.

Shamos and Hoey’s algorithm works as follows. For a given set S {P1, P2," , Pn}
of n distinct points, we sort them lexicographically by their (x, y)-coordinates with
the x-coordinate as the first key. Then, renumbering the indices of the points in that
order, we divide S into two subsets L {P1, P2," ", Pin and R {P[n/2]+l," ", P,}.
We recursively construct the Voronoi diagrams V(L) and V(R) for points in L and
R, respectively, and merge V(L) and V(R). If we can merge V(L) and V(R) in O(n)
time, the Voronoi diagram V(S) can be computed in O(n log n) time.

By virtue of the manner of partitioning S into L and R, there exists a unique
unicursal polygonal line, called the dividing (polygonal) line, such that every point to
the left [right] of it is closer to some point in L [R] than to any point in R [L]. Once
this dividing line is found, we can obtain the diagram V(S) in O(n) time simply by
discarding that part of Voronoi edges in V(L) and V(R) which lies, respectively, to
the right and to the left of the dividing line.

Hence, the main problem in merging V(L) and V(R) is to find the dividing
polygonal line in O(n) time, which is actually possible by virtue of the following
properties (Lemmas 4 and 5) of the dividing line.

LEMMA 4. The dividing line is composed of two rays extending to infinity and some

finite line segments. Each element (a ray or a segment) is contained in the intersection

of V(Pi) in V(L) and V(P) in V(R) for some pair of Pi L and P R and is the
perpendicular bisector of Pi and P. Iq

LEMMA 5. Each of the two rays is the perpendicular bisector of a pair of consecutive
points on the boundary of CH(S), the convex hull of points of S, such that one is in L
and the other in R.

Lemma 4 implies that, given a ray, we can find the dividing line in O(n) time by
tracing it from the ray to the other by means of a special scanning scheme, i.e., by the
clockwise and counterclockwise scanning scheme [9]. Lemma 5, on the other hand,
enables us to find a ray in O(n) time from CH(S), which, in turn, can be found in
O(n) time from CH(L) and ell(R) [14], [15].

Most of the above ideas for the Euclidean Voronoi diagram, with suitable modifica-
tions, can be carried over to obtain an efficient algorithm for constructing the Voronoi
diagram in the Laguerre geometry for n circles C(Qi; r) as follows.

The first problem is how to partition the set of given circles into two subsets. We
partition the set S of n circles C into two sets L and R with respect to the coordinates
of the centers Q of C. That is, we sort centers Q (i= 1,..., n) lexicographically by
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98 HIROSHI IMAI, MASAO IRI AND KAZUO MUROTA

their (x, y)-coordinates with the x-coordinate as the first key and divide them into
two subsets. Then, the locus of points equidistant (in the Laguerre geometry) from L
and R, which we call the dividing line (see Fig. 4), enjoys the same property as in the
Euclidean case, as stated below.

I

FIG. 4. Merging the Voronoi diagrams in the Laguerre geometry.

LEMMA 6. The dividing polygonal line is unicursal, consisting of two rays and
several finite line segments. Every point to the left [right] of this polygonal line is closer
(in the sense of the Laguerre geometry) to some circle in L [R ] than to any circle in R ILl.

Proof. By rotating clockwise the axes, if necessary, by a sufficiently small angle,
we can assume that x # xj (i# j). Then there exists no Voronoi edge parallel to the
x-axis.
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VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY 99

It suffices to prove that, for any t, there exists one and only one intersection point
P (s, t) of the dividing line with the line y t, i.e,, the dividing line is monotone and
hence unicursal. By the assumption that xi # xj (i# j), there exists at least one such
point P= (s, t), since the point (-oo, t) is nearer to L than to R whereas the point
(+oo, t) is nearer to R than to L.

For such a point P=(s, t) let Ci(Qi; ri) be the circle in L that is nearest to the
point P and Cj(Q; r) the circle in R that is nearest to P. Since x < x, we see by
elementary calculation that, for some e > 0,

(5) (s+ e, t) V(C) and (s- e, t) V(Ci).

Suppose that there were more than one intersection point, say, P1-" (S1, t), P2-"
(s2, t),. , Pk (Sk, t) (Sl < S2 <" < Sk; k >- 2). It follows from (5) that the points
(s, t) with s Sl + e < s2) are nearer to R than to L, whereas the points with s s2- e
(> sl) are nearer to L than to R. Therefore, there exists one and only one intersection
point P (s, t) of the dividing line with the line y t. The Lemma then follows by the
continuity arguments. [3

It should be noted that the property of the above Lemma 6 does not hold for the
Voronoi diagram for line segments, i.e., that there may appear an "L-island" in the
R-region and vice versa, which makes the problem quite complicated [9].

The second problem is to trace the dividing line from a given ray to the other ray
in linear time. Since a statement similar to Lemma 4 holds for the Voronoi diagram
in the Laguerre geometry, we can simply utilize the ordinary clockwise and counter-
clockwise scanning scheme by taking advantage of the fact that the Voronoi edges are
straight lines.

The last problem is to find a ray in O(n) time. The ray is found just as in the
ordinary Voronoi diagram from the convex hull of the centers (cf. Lemma 5), provided
that the new hull edge is not degenerate (i.e., not collinear). In the degenerate case,
however, the property of Lemma 5, as it stands, does not necessarily hold, and
something more is needed. For example, consider the case shown in Fig. 5(i), where
one of the new hull edges is degenerate. Let be the line of the new degenerate hull
edge of the convex hull of the centers. Even if Q4 and Q5 are the closest pair of centers
on such that C4 e L and C5 e R, the radical axis of C4 and C5 does not appear in the
Voronoi diagram (Fig. 5(ii)). In place of Lemma 5, we have the following Lemma 7
in the Laguerre geometry.

LEMMA 7. Consider the line of the new hull edge (in the degenerate case, edges)
of the convex hull of the centers Q1, Q,. Let L and R be sets of circles in L and
R, respectively, with their centers on I. Let C, LI L and C, R

_
R be two circles

which have the corresponding Voronoi edge e* in the Voronoi diagram V(Lt U R) in
the Laguerre geometry for the subset Lt I..J Rt of circles. Then, e*, which is the radical
axis of C, and Cj,, is a ray of the dividing line in merging V(L) and V(R).

Proof. From the Lemma 3, it is obvious that the two circles corresponding to a
ray ot V(L t.J R) have their centers on the boundary ot the convex hull of Q1," , Q,.
Therefore, the edge e* is the only candidate for the ray ot the dividing line. [3

In order to find the ray of the dividing line in O(n) time, we find the Voronoi
edge e* in the diagram V(LI R) for circles in L 13 R in linear time in the tollowing
way. Note that the Voronoi edges of V(L t.J Rt) are all parallel.

First, we construct the diagrams V(L) and V(R) for circles in L and in Rt,
respectively, from the diagrams V(L) and V(R), which can be done in linear time as
tollows. Considering a part of the diagram V(L) far from the line l, we see that two
circles in L share a Voronoi edge in V(L) iff they share a Voronoi edge in V(L).

D
ow

nl
oa

de
d 

09
/0

1/
14

 to
 1

43
.1

07
.4

5.
10

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



100 HIROSHI IMAI, MASAO IRI AND KAZUO MUROTA

C7

C3 C6

C7

C3 C6

V(CI) v(C2) V(C3) V(C6) V(C7)

FIG. 5. Finding a ray in a degenerate case. (i) Degenerate new hull edge (Lt={C1, C2, Ca, C4},
Rt={Cs, C6, C7}). (ii) V(LU R). (iii) V(L) and V(R). (iv) V(Lt) and V(Rt).
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VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY 101

V(RZ)

V(C5)

V(C1) V(C2) V(C3)

V(C6) V(C7)

e*

c7

V(C4)

V(L)

FIG. 5. (cont.)

Hence, the diagram V(Lt) can be constructed simply by picking out the Voronoi edges
(rays) of pairs o circles in Lt in the diagram V(L). (In the example of Fig. 5, the
V(Lt) shown in Fig. 5(iv) by broken lines can be obtained by extending that part
(consisting of parallel lines) of V(L) which is far down to the bottom in Fig. 5(iii).)
A similar construction is valid or the diagram V(R).

Next, we can find e* from V(L) and V(Rt) in linear time as follows. Since all
the Voronoi edges in both diagrams V(Lt) and V(Rt) are perpendicular to l, we can
merge the diagrams V(Lt) and V(Rt) to obtain V(Lt U RI) in linear time in a way
similar to that in which we merge two sorted lists into a single sorted list. In the merged
diagram of V(Lt), and V(Rt), each region between two neighbouring edges is the
intersection of two Voronoi regions, one in V(L) and the other in V(R). For each
region of the merged diagram, with which is associated a pair (Ci E L, CjE R) of
circles, we examine whether or not there exists a point equidistant (in the Laguerre
geometry) rom Ci and Cj within the region; i there exists one, the radical axis o Ci
and C is the ray e*. (In the example ot Fig. 5(iv), the ray e*, lying in the intersection
of V(C3) in V(Lt) and V(C6) in V(R), is equidistant from C3 and 6"6.) Since the
number of those regions in that diagram is O(n), we can find e*, which is the ray of
the dividing line, in O(n) time. V(LtU Rt) is ready to obtain from V(Lt), V(Rt)
and e*.

Thus, it has been shown that the Voronoi diagram in the Laguerre geometry for
n circles can be constructed in O(n log n) time.

4. Applications.
Problem 1. Given n circles in the plane, determine whether a given point P is

contained in their union or not.
Once we have constructed the Voronoi diagram in the Laguerre geometry for the

given n circles Ci(i= 1,..., n), we have only to find the Voronoi polygon V(Cj)
containing P and check if P lies in Cj. If P is not in C, then for any circle C,
d(C, P)->_ d2(Cj, P)> 0, and therefore P is not in any circle. Since we can construct
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102 HIROSHI IMAI, MASAO IRI AND KAZUO MUROTA

the Voronoi diagram in the Laguerre geometry in O(n log n) time, and locate a point
in a polygonal subdivision of the plane in O(log n) time and O(n) storage, using
O(n log n) preprocessing [8], [12], we can solve this problem completely in O(log n)
time and O(n) storage with O(n log n) preprocessing.

Problem 2. Partition the set of n circles into the connected components. That is,
find the connected components of the intersection graph of the n circles, i.e. the graph
whose vertices are the circles and which has an edge between two vertices iff the circles
corresponding to them intersect in the plane.

This problem arises in numerical analysis when we estimate the eigenvalues of a
matrix by means of Gershgorin’s theorem [4]. Though the intersection graph can have
O(n2) edges, we can solve this problem in O(n log n) time as follows with the help
of the Voronoi diagram in the Laguerre geometry.

Since an improper circle is contained in the union of the proper circles (Lemma
1) and does not affect the connectedness of the other circles, we first consider only
proper circles. For the connectedness of proper circles, we have:

LEMMA 8. For any pair ofproper circles C and C’ in the same connected component,
there exists a sequence C C1, C2," , Ck C’ of proper circles such that every pair of
consecutive circles intersect each other so that they have the corresponding Voronoi edge.

Proof. Consider the connected component St which consists of proper circles and
contains C and C’. Since the union of circles in $I is a connected region and is
partitioned into CiN V(Ci) (Ci.S1)[i.e., U{CilfiSI}- U{CiN V(Ci)ICSI}], we
can take a path within this connected region from a point in C n V(C) to a point in
C’N V(C’). Considering .a sequence C CI, C2,’", Ck C’ of circles in the order
in which this path passes through C n V(C) (Ci Sz), we can see that every pair of
consecutive circles in this sequence intersect each other so that they have the corre-
sponding Voronoi edge. []

We construct a subgraph G of the intersection graph of the n circles which is
guaranteed by Lemma 8 to carry the same information as the intersection graph so
far as the connected components of the proper circles are concerned. For each pair
of proper circles (Ci, Cj) having a common Voronoi edge, we put an edge connecting
Ci and Cj in G if the two circles C and C have a nonempty intersection in the plane.
The graph G can be constructed in O(n) time since there exist only O(n) Voronoi
edges. Furthermore, the connected components of G can easily be found in O(n) time.

In order to find which components the improper circles belong to, we first make
a list of all the improper circles, among which the trivial circles are found in the course
of the construction of the diagram and the substantial but improper circles are found
by scanning all the Voronoi edges. Next, for each improper circle Ci, we find a proper
circle that intersects Ci by locating the center Qi of Ci in the diagram; if Q V(C),
then C is a proper circle that contains Q, i.e., intersects C. The set of centers of
improper circles can be located in the diagram in O(n log n) time by means of the
simple algorithm which makes use of a balanced tree [11]. Thus, the total time to find
the partition of n circles into the connected components is O(n log n).

This algorithm is optimal to within a constant factor. In fact, we have
LEMMA 9. Any algorithm which finds the partition of n circles into the connected

components makes at least II( n log n) comparisons under the linear decision tree model

A referee has kindly informed the authors that this lemma holds true not only under the linear decision
tree model but also under the more precise algebraic computation tree model, based on the recent result
by Ben-Or (see M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15thACM Symposium on
Theory of Computing, Boston, 1983, pp. 80-86).
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Proof. This follows immediately from the fact that the element-uniqueness prob-
lem, i.e., to determine whether given, n real numbers are distinct, reduces in linear
time to the connected-component problem, where the lower bound ot f(n log n) is
known for the element-uniqueness problem under the above model of computation
[3]. D

Problem 3. Find the contour of the union of n given circles in the plane.
This kind of problem is sometimes encountered in image processing and computer

graphics. First, we construct the Voronoi diagram in the Laguerre geometry for n
circles and then collect that part of the periphery of each circle Ci which lies in the
Voronoi polygon V(Ci) for i= 1,..., n. The validity of this algorithm is obvious.
Concerning the number of circular arcs on the .contour, we have the following.

LEMMA 10. The number of circular arcs on the contour is O(n).
Proof. To distinct pairs of consecutive arcs of the contour, there correspond distinct

Voronoi edges (i.e., radical axes), the. number o which is O(n).
This algorithm is optimal for the contour problem.. In fact, we have
LEMMA 11. The complexity of finding the contour of the n circles in the plane is

f(n log n) under the decision tree model.
Proof. We show that sorting n real numbers Xl, x2," , x, reduces to this problem

in O(n) time. First, find x. min (xi) and x* =max (x), and let R x*-x.>-O. Then,
consider n circles with centers (x, 0) and radii R (see Fig. 6). The contour of the
union of these circles consists of circular arcs, and the order of arcs, according to which
the contour can be traced unicursally, gives us the sorted list of n numbers.

FIG. 6. Reduction of sorting to finding the contour of the union of circles.

5. Discussion. Consider the Voronoi diagram in the Laguerre geometry for n
circles C(Qi; ri) (Qi=(x, yi); i=1,... ,n). This diagram will remain invariant if
2 2ri.(i 1,..’, n) are replaced simultaneously by r-R with some constant R; in other
words, this diagram can be regarded as the Voronoi diagram for n points Q (x, y)
in the plane where, with some constant R, a distance d(Q, P) between Q and a point
P (x, y) is defined by

2d2(Q,,P)=(x-x)2+(y- yi)2-r +R.

On the other hand, the two-dimensional section (with z =0) of the Voronoi
diagram in the three-dimensional Euclidean space for n points P (x, y, zi) (i
1,..., n) is a kind of Voronoi diagram for n points Qi (x, y) (i 1,..., n), which
we will call the section diagram (or, the generalized Dirichlet tessellation [13]), with

the distance d(Q, P) between Q and a point P= (x, y) defined by

d2(Q,,P) (x x,)2+(y- y)2+ z2
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2 2Hence, by setting r R- z with sufficiently large constant R, the algorithm we
presented here can be applied to the construction in O(n log n) time of the section
with the plane z =0 of the Voronoi diagram for n points in the three-dimensional
Euclidean space.

More generally, we can consider the section of the Voronoi diagram in the
k-dimensional space with the distance d(P, Pj) between two points, P x and
Pj x Rk, defined by

d2 P,, P) (x,- x G x, x
where G is a k x k symmetric matrix [13], [16]. We can apply the algorithm presented
here to such section diagrams even if G is not positive definite (for example, G =
diag[1,-1,-1]). Here, it should be noted that the Voronoi diagram in the Laguerre
geometry itself is the section with the plane z 0 0t the Voronoi diagram or n points
P (x, y, z) in three-dimensional space where the square of distance between two
points (xl, Yl, Zl) and (x2, Y2, Z2) is defined by (x1-x2)2+(y1-Y2)2-(zl-z2)2.
Nevertheless, it would be worth while to consider the Voronoi diagram in the Laguerre
geometry in connection with the circles since, then, the Voronoi edges and the Voronoi
points have the geometrical and physical meanings of radical axes and radical centers,
respectively.

Condutling remarks. We have shown that the Voronoi diagram in the Laguerre
geometry can be constructed in O(n log n) time, and is useful for geometric problems
concerning circles. Brown [2] considered a technique of inversion which is also useful
for geometrical problems for circles. In act, it can be applied to the problems treated
in the present paper. However, our approach is intrinsic in the plane and would be of
interest in itself. We have also discussed the relation between the Voronoi diagram in
the Laguerre geometry and the two-dimensional section o the Voronoi diagram in
the three-dimensional Euclidean space.

Aeknowletlgment. The authors thank the referees for many helpful comments,
without which the paper might have been less readable.
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